Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,715 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import re
|
| 5 |
+
import unicodedata
|
| 6 |
+
from typing import Dict, Tuple, List
|
| 7 |
+
import ftfy
|
| 8 |
+
import nltk
|
| 9 |
+
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
| 10 |
+
from rouge_score import rouge_scorer
|
| 11 |
+
from nltk.translate.meteor_score import meteor_score
|
| 12 |
+
from bert_score import score as bert_score
|
| 13 |
+
from deepeval.test_case import LLMTestCase
|
| 14 |
+
from deepeval.metrics import AnswerRelevancyMetric, FaithfulnessMetric, GEval
|
| 15 |
+
from deepeval.models import DeepEvalBaseLLM
|
| 16 |
+
import google.generativeai as genai
|
| 17 |
+
import tempfile
|
| 18 |
+
import os
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
import logging
|
| 21 |
+
|
| 22 |
+
# Download required NLTK data
|
| 23 |
+
nltk.download('punkt', quiet=True)
|
| 24 |
+
nltk.download('wordnet', quiet=True)
|
| 25 |
+
|
| 26 |
+
# Configure logging
|
| 27 |
+
logging.basicConfig(level=logging.INFO)
|
| 28 |
+
logger = logging.getLogger(__name__)
|
| 29 |
+
|
| 30 |
+
# Global variables for API keys (in production, use environment variables)
|
| 31 |
+
GEMINI_API_KEY = None # Will be set from user input
|
| 32 |
+
CONFIDENT_API_KEY = None # Will be set from user input
|
| 33 |
+
|
| 34 |
+
class LLMProvider:
|
| 35 |
+
"""Abstract base class for LLM providers"""
|
| 36 |
+
def __init__(self, model):
|
| 37 |
+
self.model = model
|
| 38 |
+
|
| 39 |
+
def generate(self, prompt: str) -> str:
|
| 40 |
+
raise NotImplementedError
|
| 41 |
+
|
| 42 |
+
def get_model_name(self) -> str:
|
| 43 |
+
raise NotImplementedError
|
| 44 |
+
|
| 45 |
+
class GeminiProvider(LLMProvider):
|
| 46 |
+
"""Gemini implementation"""
|
| 47 |
+
def __init__(self, model_name="gemini-1.5-flash"):
|
| 48 |
+
self.model_name = model_name
|
| 49 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
| 50 |
+
self.model = genai.GenerativeModel(model_name)
|
| 51 |
+
|
| 52 |
+
def generate(self, prompt: str) -> str:
|
| 53 |
+
try:
|
| 54 |
+
response = self.model.generate_content(prompt)
|
| 55 |
+
return response.text.strip()
|
| 56 |
+
except Exception as e:
|
| 57 |
+
logger.error(f"Error generating content with Gemini: {e}")
|
| 58 |
+
return f"Error: {str(e)}"
|
| 59 |
+
|
| 60 |
+
def get_model_name(self) -> str:
|
| 61 |
+
return self.model_name
|
| 62 |
+
|
| 63 |
+
class GroqProvider(LLMProvider):
|
| 64 |
+
"""Placeholder for Groq implementation"""
|
| 65 |
+
def __init__(self, model_name="llama3-70b-8192"):
|
| 66 |
+
self.model_name = model_name
|
| 67 |
+
# Implementation would go here
|
| 68 |
+
pass
|
| 69 |
+
|
| 70 |
+
def generate(self, prompt: str) -> str:
|
| 71 |
+
return "Groq implementation not available"
|
| 72 |
+
|
| 73 |
+
def get_model_name(self) -> str:
|
| 74 |
+
return self.model_name
|
| 75 |
+
|
| 76 |
+
class GeminiLLM(DeepEvalBaseLLM):
|
| 77 |
+
"""Wrapper for Gemini to work with DeepEval"""
|
| 78 |
+
def __init__(self, model):
|
| 79 |
+
self.model = model
|
| 80 |
+
|
| 81 |
+
def load_model(self):
|
| 82 |
+
return self.model
|
| 83 |
+
|
| 84 |
+
def generate(self, prompt: str) -> str:
|
| 85 |
+
return self.model.generate_content(prompt).text.strip()
|
| 86 |
+
|
| 87 |
+
async def a_generate(self, prompt: str) -> str:
|
| 88 |
+
return self.model.generate_content(prompt).text.strip()
|
| 89 |
+
|
| 90 |
+
def get_model_name(self) -> str:
|
| 91 |
+
return "gemini-pro"
|
| 92 |
+
|
| 93 |
+
def clean_text(text: str) -> str:
|
| 94 |
+
"""
|
| 95 |
+
Clean text by fixing encoding artifacts and normalizing characters.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
text (str): Input text to clean
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
str: Cleaned text
|
| 102 |
+
"""
|
| 103 |
+
if not text or not isinstance(text, str):
|
| 104 |
+
return ""
|
| 105 |
+
|
| 106 |
+
# Fix common encoding artifacts
|
| 107 |
+
text = ftfy.fix_text(text)
|
| 108 |
+
text = unicodedata.normalize('NFKD', text)
|
| 109 |
+
|
| 110 |
+
# Replace smart quotes with standard ASCII quotes
|
| 111 |
+
text = text.replace('“', '"').replace('”', '"')
|
| 112 |
+
text = text.replace("‘", "'").replace("’", "'")
|
| 113 |
+
|
| 114 |
+
# Remove non-ASCII characters (optional, can be toggled)
|
| 115 |
+
text = re.sub(r'[^\x00-\x7F]+', ' ', text)
|
| 116 |
+
|
| 117 |
+
# Normalize whitespace
|
| 118 |
+
text = ' '.join(text.split())
|
| 119 |
+
|
| 120 |
+
return text
|
| 121 |
+
|
| 122 |
+
def create_prompts() -> Dict[str, str]:
|
| 123 |
+
"""
|
| 124 |
+
Create different prompt variants for testing.
|
| 125 |
+
|
| 126 |
+
Returns:
|
| 127 |
+
Dict[str, str]: Dictionary of prompt names and their text
|
| 128 |
+
"""
|
| 129 |
+
prompts = {
|
| 130 |
+
"Strategic Narrative Architect": """Role: Strategic Narrative Architect
|
| 131 |
+
You are a professional content writer who transforms raw text into engaging, well-structured narratives.
|
| 132 |
+
Your goal is to rewrite the following text while preserving all key facts and statistics, but enhancing:
|
| 133 |
+
- Structure and flow
|
| 134 |
+
- Engagement and readability
|
| 135 |
+
- Professional tone
|
| 136 |
+
- Strategic storytelling
|
| 137 |
+
|
| 138 |
+
Guidelines:
|
| 139 |
+
1. Maintain all factual information and numerical data
|
| 140 |
+
2. Improve sentence structure for better readability
|
| 141 |
+
3. Use active voice where appropriate
|
| 142 |
+
4. Ensure professional tone suitable for publication
|
| 143 |
+
5. Add logical transitions between ideas
|
| 144 |
+
6. Keep the length similar to the original
|
| 145 |
+
|
| 146 |
+
Rewrite the following text:
|
| 147 |
+
{input_text}""",
|
| 148 |
+
|
| 149 |
+
"Precision Storyteller": """Role: Precision Storyteller
|
| 150 |
+
You are a meticulous editor who ensures factual accuracy and clarity in all content.
|
| 151 |
+
Your goal is to rewrite the following text with maximum precision while maintaining:
|
| 152 |
+
- Factual accuracy above all
|
| 153 |
+
- Clarity and conciseness
|
| 154 |
+
- Proper grammar and punctuation
|
| 155 |
+
- Consistent terminology
|
| 156 |
+
|
| 157 |
+
Guidelines:
|
| 158 |
+
1. Preserve every fact, statistic, and detail from the original
|
| 159 |
+
2. Correct any grammatical errors or awkward phrasing
|
| 160 |
+
3. Use precise, unambiguous language
|
| 161 |
+
4. Avoid embellishment or subjective interpretation
|
| 162 |
+
5. Maintain neutral, professional tone
|
| 163 |
+
6. Ensure all claims are supported by the original text
|
| 164 |
+
|
| 165 |
+
Rewrite the following text:
|
| 166 |
+
{input_text}"""
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
return prompts
|
| 170 |
+
|
| 171 |
+
def evaluate_text(input_text: str, candidate_text: str, reference_text: str,
|
| 172 |
+
judge_model) -> Dict[str, float]:
|
| 173 |
+
"""
|
| 174 |
+
Evaluate the quality of a rewritten text using multiple metrics.
|
| 175 |
+
|
| 176 |
+
Args:
|
| 177 |
+
input_text (str): Original raw input text
|
| 178 |
+
candidate_text (str): Generated candidate text
|
| 179 |
+
reference_text (str): Cleaned reference text
|
| 180 |
+
judge_model: Model for LLM-as-judge metrics
|
| 181 |
+
|
| 182 |
+
Returns:
|
| 183 |
+
Dict[str, float]: Dictionary of metric scores
|
| 184 |
+
"""
|
| 185 |
+
results = {}
|
| 186 |
+
|
| 187 |
+
try:
|
| 188 |
+
# Initialize scorers
|
| 189 |
+
bleu_scorer = SmoothingFunction().method4
|
| 190 |
+
rouge_scorer_obj = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
| 191 |
+
|
| 192 |
+
# Tokenize for BLEU and METEOR
|
| 193 |
+
reference_tokens = reference_text.split()
|
| 194 |
+
candidate_tokens = candidate_text.split()
|
| 195 |
+
|
| 196 |
+
# BLEU Score
|
| 197 |
+
try:
|
| 198 |
+
bleu_score_val = sentence_bleu([reference_tokens], candidate_tokens,
|
| 199 |
+
smoothing_function=bleu_scorer)
|
| 200 |
+
results["BLEU"] = bleu_score_val
|
| 201 |
+
except Exception as e:
|
| 202 |
+
logger.warning(f"BLEU calculation failed: {e}")
|
| 203 |
+
results["BLEU"] = 0.0
|
| 204 |
+
|
| 205 |
+
# ROUGE Score
|
| 206 |
+
try:
|
| 207 |
+
rouge_scores = rouge_scorer_obj.score(reference_text, candidate_text)
|
| 208 |
+
# Average of ROUGE-1, ROUGE-2, and ROUGE-L F1 scores
|
| 209 |
+
rouge_avg = (rouge_scores['rouge1'].fmeasure +
|
| 210 |
+
rouge_scores['rouge2'].fmeasure +
|
| 211 |
+
rouge_scores['rougeL'].fmeasure) / 3
|
| 212 |
+
results["ROUGE"] = rouge_avg
|
| 213 |
+
except Exception as e:
|
| 214 |
+
logger.warning(f"ROUGE calculation failed: {e}")
|
| 215 |
+
results["ROUGE"] = 0.0
|
| 216 |
+
|
| 217 |
+
# METEOR Score
|
| 218 |
+
try:
|
| 219 |
+
meteor_score_val = meteor_score([reference_tokens], candidate_tokens)
|
| 220 |
+
results["METEOR"] = meteor_score_val
|
| 221 |
+
except Exception as e:
|
| 222 |
+
logger.warning(f"METEOR calculation failed: {e}")
|
| 223 |
+
results["METEOR"] = 0.0
|
| 224 |
+
|
| 225 |
+
# BERTScore
|
| 226 |
+
try:
|
| 227 |
+
P, R, F1 = bert_score([candidate_text], [reference_text], lang="en", verbose=False)
|
| 228 |
+
results["BERTScore"] = F1.item()
|
| 229 |
+
except Exception as e:
|
| 230 |
+
logger.warning(f"BERTScore calculation failed: {e}")
|
| 231 |
+
results["BERTScore"] = 0.0
|
| 232 |
+
|
| 233 |
+
# LLM-as-judge metrics
|
| 234 |
+
try:
|
| 235 |
+
test_case = LLMTestCase(
|
| 236 |
+
input=input_text,
|
| 237 |
+
actual_output=candidate_text,
|
| 238 |
+
expected_output=reference_text,
|
| 239 |
+
retrieval_context=[reference_text]
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
# Answer Relevancy
|
| 243 |
+
answer_rel = AnswerRelevancyMetric(model=judge_model)
|
| 244 |
+
answer_rel.measure(test_case)
|
| 245 |
+
results["AnswerRelevancy"] = answer_rel.score
|
| 246 |
+
|
| 247 |
+
# Faithfulness
|
| 248 |
+
faith = FaithfulnessMetric(model=judge_model)
|
| 249 |
+
faith.measure(test_case)
|
| 250 |
+
results["Faithfulness"] = faith.score
|
| 251 |
+
|
| 252 |
+
# GEval
|
| 253 |
+
geval = GEval(
|
| 254 |
+
name="OverallQuality",
|
| 255 |
+
criteria="Evaluate if the candidate response is accurate, complete, and well-written.",
|
| 256 |
+
evaluation_params=[
|
| 257 |
+
"input",
|
| 258 |
+
"actual_output",
|
| 259 |
+
"expected_output"
|
| 260 |
+
],
|
| 261 |
+
model=judge_model,
|
| 262 |
+
strict_mode=False
|
| 263 |
+
)
|
| 264 |
+
geval.measure(test_case)
|
| 265 |
+
results["GEval"] = geval.score
|
| 266 |
+
|
| 267 |
+
except Exception as e:
|
| 268 |
+
logger.warning(f"LLM-as-judge metrics failed: {e}")
|
| 269 |
+
# Set default values if LLM-as-judge fails
|
| 270 |
+
results["AnswerRelevancy"] = 0.5
|
| 271 |
+
results["Faithfulness"] = 0.5
|
| 272 |
+
results["GEval"] = 0.5
|
| 273 |
+
|
| 274 |
+
except Exception as e:
|
| 275 |
+
logger.error(f"Error in evaluation: {e}")
|
| 276 |
+
# Return default scores if everything fails
|
| 277 |
+
default_metrics = ["BLEU", "ROUGE", "METEOR", "BERTScore",
|
| 278 |
+
"AnswerRelevancy", "Faithfulness", "GEval"]
|
| 279 |
+
for metric in default_metrics:
|
| 280 |
+
results[metric] = 0.0
|
| 281 |
+
|
| 282 |
+
return results
|
| 283 |
+
|
| 284 |
+
def normalize_score(metric: str, value: float) -> float:
|
| 285 |
+
"""
|
| 286 |
+
Normalize score to 0-1 scale based on metric's natural range.
|
| 287 |
+
|
| 288 |
+
Args:
|
| 289 |
+
metric (str): Name of the metric
|
| 290 |
+
value (float): Raw score value
|
| 291 |
+
|
| 292 |
+
Returns:
|
| 293 |
+
float: Normalized score between 0 and 1
|
| 294 |
+
"""
|
| 295 |
+
# Define natural ranges for each metric
|
| 296 |
+
normalization_ranges = {
|
| 297 |
+
"AnswerRelevancy": (0.0, 1.0),
|
| 298 |
+
"Faithfulness": (0.0, 1.0),
|
| 299 |
+
"GEval": (0.0, 1.0),
|
| 300 |
+
"BERTScore": (0.7, 0.95),
|
| 301 |
+
"ROUGE": (0.0, 0.6),
|
| 302 |
+
"BLEU": (0.0, 0.4),
|
| 303 |
+
"METEOR": (0.0, 0.6)
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
if metric not in normalization_ranges or not isinstance(value, (int, float)):
|
| 307 |
+
return value
|
| 308 |
+
|
| 309 |
+
min_val, max_val = normalization_ranges[metric]
|
| 310 |
+
|
| 311 |
+
# Handle edge cases
|
| 312 |
+
if max_val <= min_val:
|
| 313 |
+
return 0.5 # Default middle value if range is invalid
|
| 314 |
+
|
| 315 |
+
# Normalize and clamp to [0,1]
|
| 316 |
+
normalized = (value - min_val) / (max_val - min_val)
|
| 317 |
+
return max(0.0, min(normalized, 1.0))
|
| 318 |
+
|
| 319 |
+
def calculate_weighted_score(scores: Dict[str, float]) -> float:
|
| 320 |
+
"""
|
| 321 |
+
Calculate weighted average of normalized scores.
|
| 322 |
+
|
| 323 |
+
Args:
|
| 324 |
+
scores (Dict[str, float]): Dictionary of metric scores
|
| 325 |
+
|
| 326 |
+
Returns:
|
| 327 |
+
float: Weighted average score
|
| 328 |
+
"""
|
| 329 |
+
# Define weights for each metric
|
| 330 |
+
weights = {
|
| 331 |
+
"AnswerRelevancy": 0.10,
|
| 332 |
+
"Faithfulness": 0.10,
|
| 333 |
+
"GEval": 0.025,
|
| 334 |
+
"BERTScore": 0.20,
|
| 335 |
+
"ROUGE": 0.15,
|
| 336 |
+
"BLEU": 0.025,
|
| 337 |
+
"METEOR": 0.15
|
| 338 |
+
}
|
| 339 |
+
|
| 340 |
+
normalized_scores = {m: normalize_score(m, v) for m, v in scores.items()}
|
| 341 |
+
total_weight = 0
|
| 342 |
+
weighted_sum = 0
|
| 343 |
+
|
| 344 |
+
for metric, weight in weights.items():
|
| 345 |
+
if metric in normalized_scores:
|
| 346 |
+
weighted_sum += normalized_scores[metric] * weight
|
| 347 |
+
total_weight += weight
|
| 348 |
+
|
| 349 |
+
return weighted_sum / total_weight if total_weight > 0 else 0.0
|
| 350 |
+
|
| 351 |
+
def process_single_text(input_text: str, gemini_api_key: str,
|
| 352 |
+
confident_api_key: str, progress=gr.Progress()) -> Tuple[Dict, List[Dict]]:
|
| 353 |
+
"""
|
| 354 |
+
Process a single text input and return evaluation results.
|
| 355 |
+
|
| 356 |
+
Args:
|
| 357 |
+
input_text (str): Input text to evaluate
|
| 358 |
+
gemini_api_key (str): Gemini API key
|
| 359 |
+
confident_api_key (str): Confident API key for DeepEval
|
| 360 |
+
progress: Gradio progress tracker
|
| 361 |
+
|
| 362 |
+
Returns:
|
| 363 |
+
Tuple[Dict, List[Dict]]: Summary results and detailed results for each prompt
|
| 364 |
+
"""
|
| 365 |
+
global GEMINI_API_KEY, CONFIDENT_API_KEY
|
| 366 |
+
|
| 367 |
+
# Set API keys
|
| 368 |
+
GEMINI_API_KEY = gemini_api_key
|
| 369 |
+
CONFIDENT_API_KEY = confident_api_key
|
| 370 |
+
|
| 371 |
+
if not input_text or not input_text.strip():
|
| 372 |
+
return {"error": "Please provide valid input text"}, []
|
| 373 |
+
|
| 374 |
+
try:
|
| 375 |
+
# Clean the input text to create reference
|
| 376 |
+
progress(0.1, "Cleaning input text...")
|
| 377 |
+
reference_text = clean_text(input_text)
|
| 378 |
+
|
| 379 |
+
if not reference_text:
|
| 380 |
+
return {"error": "Could not process the input text"}, []
|
| 381 |
+
|
| 382 |
+
# Initialize Gemini model
|
| 383 |
+
progress(0.2, "Initializing Gemini model...")
|
| 384 |
+
try:
|
| 385 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
| 386 |
+
gemini_model = genai.GenerativeModel("gemini-1.5-flash")
|
| 387 |
+
judge = GeminiLLM(gemini_model)
|
| 388 |
+
except Exception as e:
|
| 389 |
+
return {"error": f"Failed to initialize Gemini: {str(e)}"}, []
|
| 390 |
+
|
| 391 |
+
# Get prompts
|
| 392 |
+
progress(0.3, "Generating candidate texts...")
|
| 393 |
+
prompts = create_prompts()
|
| 394 |
+
|
| 395 |
+
detailed_results = []
|
| 396 |
+
|
| 397 |
+
# Process each prompt
|
| 398 |
+
for prompt_name, prompt_template in prompts.items():
|
| 399 |
+
progress(0.3 + 0.6 * (list(prompts.keys()).index(prompt_name) / len(prompts)),
|
| 400 |
+
f"Processing {prompt_name}...")
|
| 401 |
+
|
| 402 |
+
# Generate candidate
|
| 403 |
+
full_prompt = prompt_template.format(input_text=input_text)
|
| 404 |
+
candidate_text = gemini_model.generate_content(full_prompt).text.strip()
|
| 405 |
+
|
| 406 |
+
# Clean candidate text
|
| 407 |
+
cleaned_candidate = clean_text(candidate_text)
|
| 408 |
+
|
| 409 |
+
# Evaluate
|
| 410 |
+
scores = evaluate_text(input_text, cleaned_candidate, reference_text, judge)
|
| 411 |
+
|
| 412 |
+
# Calculate hybrid scores
|
| 413 |
+
hybrid_avg = np.mean(list(scores.values()))
|
| 414 |
+
weighted_avg = calculate_weighted_score(scores)
|
| 415 |
+
|
| 416 |
+
# Add interpretation
|
| 417 |
+
if weighted_avg >= 0.85:
|
| 418 |
+
interpretation = "Outstanding performance (A) - ready for professional use"
|
| 419 |
+
elif weighted_avg >= 0.70:
|
| 420 |
+
interpretation = "Strong performance (B) - good quality with minor improvements"
|
| 421 |
+
elif weighted_avg >= 0.50:
|
| 422 |
+
interpretation = "Adequate performance (C) - usable but needs refinement"
|
| 423 |
+
elif weighted_avg >= 0.30:
|
| 424 |
+
interpretation = "Weak performance (D) - requires significant revision"
|
| 425 |
+
else:
|
| 426 |
+
interpretation = "Poor performance (F) - likely needs complete rewriting"
|
| 427 |
+
|
| 428 |
+
detailed_results.append({
|
| 429 |
+
"Prompt": prompt_name,
|
| 430 |
+
"Original Input": input_text[:500] + "..." if len(input_text) > 500 else input_text,
|
| 431 |
+
"Reference Text": reference_text[:500] + "..." if len(reference_text) > 500 else reference_text,
|
| 432 |
+
"Candidate Text": cleaned_candidate,
|
| 433 |
+
"Scores": scores,
|
| 434 |
+
"Hybrid Average": hybrid_avg,
|
| 435 |
+
"Weighted Average": weighted_avg,
|
| 436 |
+
"Interpretation": interpretation
|
| 437 |
+
})
|
| 438 |
+
|
| 439 |
+
# Create summary
|
| 440 |
+
summary = {
|
| 441 |
+
"Total Prompts Evaluated": len(detailed_results),
|
| 442 |
+
"Best Performing Prompt": max(detailed_results, key=lambda x: x["Weighted Average"])["Prompt"],
|
| 443 |
+
"Highest Weighted Score": max(detailed_results, key=lambda x: x["Weighted Average"])["Weighted Average"],
|
| 444 |
+
"Lowest Weighted Score": min(detailed_results, key=lambda x: x["Weighted Average"])["Weighted Average"]
|
| 445 |
+
}
|
| 446 |
+
|
| 447 |
+
progress(1.0, "Processing complete!")
|
| 448 |
+
return summary, detailed_results
|
| 449 |
+
|
| 450 |
+
except Exception as e:
|
| 451 |
+
logger.error(f"Error processing text: {e}")
|
| 452 |
+
return {"error": f"Processing failed: {str(e)}"}, []
|
| 453 |
+
|
| 454 |
+
def process_uploaded_file(file_path: str, gemini_api_key: str,
|
| 455 |
+
confident_api_key: str, progress=gr.Progress()) -> Tuple[Dict, List[Dict]]:
|
| 456 |
+
"""
|
| 457 |
+
Process an uploaded CSV/Excel file containing texts to evaluate.
|
| 458 |
+
|
| 459 |
+
Args:
|
| 460 |
+
file_path (str): Path to uploaded file
|
| 461 |
+
gemini_api_key (str): Gemini API key
|
| 462 |
+
confident_api_key (str): Confident API key for DeepEval
|
| 463 |
+
progress: Gradio progress tracker
|
| 464 |
+
|
| 465 |
+
Returns:
|
| 466 |
+
Tuple[Dict, List[Dict]]: Summary results and detailed results
|
| 467 |
+
"""
|
| 468 |
+
try:
|
| 469 |
+
# Read file based on extension
|
| 470 |
+
file_ext = Path(file_path).suffix.lower()
|
| 471 |
+
|
| 472 |
+
if file_ext in ['.csv']:
|
| 473 |
+
df = pd.read_csv(file_path)
|
| 474 |
+
elif file_ext in ['.xls', '.xlsx']:
|
| 475 |
+
df = pd.read_excel(file_path)
|
| 476 |
+
else:
|
| 477 |
+
return {"error": "Unsupported file format. Please upload CSV or Excel file."}, []
|
| 478 |
+
|
| 479 |
+
if df.empty:
|
| 480 |
+
return {"error": "File is empty"}, []
|
| 481 |
+
|
| 482 |
+
# Look for text column (case-insensitive)
|
| 483 |
+
text_column = None
|
| 484 |
+
for col in df.columns:
|
| 485 |
+
if 'text' in col.lower() or 'content' in col.lower() or 'article' in col.lower():
|
| 486 |
+
text_column = col
|
| 487 |
+
break
|
| 488 |
+
|
| 489 |
+
if not text_column:
|
| 490 |
+
# Use first column if no text-like column found
|
| 491 |
+
text_column = df.columns[0]
|
| 492 |
+
|
| 493 |
+
texts = df[text_column].dropna().astype(str).tolist()
|
| 494 |
+
|
| 495 |
+
if not texts:
|
| 496 |
+
return {"error": "No valid text data found in the file"}, []
|
| 497 |
+
|
| 498 |
+
all_results = []
|
| 499 |
+
summaries = []
|
| 500 |
+
|
| 501 |
+
# Process each text
|
| 502 |
+
for i, text in enumerate(texts):
|
| 503 |
+
progress(i / len(texts), f"Processing text {i+1} of {len(texts)}...")
|
| 504 |
+
summary, details = process_single_text(text, gemini_api_key, confident_api_key)
|
| 505 |
+
if "error" not in summary:
|
| 506 |
+
summaries.append(summary)
|
| 507 |
+
all_results.extend(details)
|
| 508 |
+
|
| 509 |
+
if not all_results:
|
| 510 |
+
return {"error": "Failed to process any texts"}, []
|
| 511 |
+
|
| 512 |
+
# Create overall summary
|
| 513 |
+
overall_summary = {
|
| 514 |
+
"Total Files Processed": len(texts),
|
| 515 |
+
"Total Prompts Evaluated": len(all_results),
|
| 516 |
+
"Average Weighted Score": np.mean([r["Weighted Average"] for r in all_results]),
|
| 517 |
+
"Best Performing Prompt": pd.DataFrame(all_results)["Prompt"].mode()[0]
|
| 518 |
+
if len(all_results) > 0 else "N/A"
|
| 519 |
+
}
|
| 520 |
+
|
| 521 |
+
progress(1.0, "Batch processing complete!")
|
| 522 |
+
return overall_summary, all_results
|
| 523 |
+
|
| 524 |
+
except Exception as e:
|
| 525 |
+
logger.error(f"Error processing file: {e}")
|
| 526 |
+
return {"error": f"File processing failed: {str(e)}"}, []
|
| 527 |
+
|
| 528 |
+
def create_gradio_interface():
|
| 529 |
+
"""Create the Gradio interface."""
|
| 530 |
+
|
| 531 |
+
with gr.Blocks(title="LLM Evaluation Framework") as demo:
|
| 532 |
+
gr.Markdown("# 📊 LLM Evaluation Framework for Content Rewriting")
|
| 533 |
+
gr.Markdown("Evaluate and compare different prompts for professional content rewriting tasks.")
|
| 534 |
+
|
| 535 |
+
with gr.Tabs():
|
| 536 |
+
with gr.Tab("Single Text Evaluation"):
|
| 537 |
+
gr.Markdown("### Evaluate a single piece of text")
|
| 538 |
+
|
| 539 |
+
with gr.Row():
|
| 540 |
+
with gr.Column(scale=2):
|
| 541 |
+
input_text = gr.Textbox(
|
| 542 |
+
label="Input Text",
|
| 543 |
+
placeholder="Paste your text here...",
|
| 544 |
+
lines=10
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
with gr.Column(scale=1):
|
| 548 |
+
gemini_api_key = gr.Textbox(
|
| 549 |
+
label="Gemini API Key",
|
| 550 |
+
placeholder="Enter your Gemini API key",
|
| 551 |
+
type="password"
|
| 552 |
+
)
|
| 553 |
+
confident_api_key = gr.Textbox(
|
| 554 |
+
label="Confident API Key (for DeepEval)",
|
| 555 |
+
placeholder="Enter your Confident API key",
|
| 556 |
+
type="password"
|
| 557 |
+
)
|
| 558 |
+
evaluate_btn = gr.Button("Evaluate Text", variant="primary")
|
| 559 |
+
|
| 560 |
+
gr.Markdown("### Results")
|
| 561 |
+
with gr.Row():
|
| 562 |
+
with gr.Column():
|
| 563 |
+
summary_output = gr.JSON(label="Summary Results")
|
| 564 |
+
|
| 565 |
+
with gr.Column():
|
| 566 |
+
detailed_output = gr.Dataframe(
|
| 567 |
+
label="Detailed Results",
|
| 568 |
+
headers=["Prompt", "Weighted Average", "Interpretation"],
|
| 569 |
+
datatype=["str", "number", "str"]
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
# Hidden outputs for detailed data
|
| 573 |
+
hidden_detailed_results = gr.State()
|
| 574 |
+
|
| 575 |
+
def update_outputs(text, gemini_key, confident_key):
|
| 576 |
+
if not text.strip():
|
| 577 |
+
return {"error": "Please enter text"}, None, None
|
| 578 |
+
|
| 579 |
+
summary, detailed = process_single_text(text, gemini_key, confident_key)
|
| 580 |
+
|
| 581 |
+
if "error" in summary:
|
| 582 |
+
return summary, None, None
|
| 583 |
+
|
| 584 |
+
# Prepare dataframe data
|
| 585 |
+
df_data = []
|
| 586 |
+
for result in detailed:
|
| 587 |
+
df_data.append([
|
| 588 |
+
result["Prompt"],
|
| 589 |
+
round(result["Weighted Average"], 3),
|
| 590 |
+
result["Interpretation"]
|
| 591 |
+
])
|
| 592 |
+
|
| 593 |
+
return summary, df_data, detailed
|
| 594 |
+
|
| 595 |
+
evaluate_btn.click(
|
| 596 |
+
fn=update_outputs,
|
| 597 |
+
inputs=[input_text, gemini_api_key, confident_api_key],
|
| 598 |
+
outputs=[summary_output, detailed_output, hidden_detailed_results]
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
# Button to show full candidate texts
|
| 602 |
+
with gr.Row():
|
| 603 |
+
show_details_btn = gr.Button("Show Full Results with Candidate Texts")
|
| 604 |
+
|
| 605 |
+
full_results_output = gr.JSON(label="Full Detailed Results", visible=False)
|
| 606 |
+
|
| 607 |
+
def show_full_results(detailed_results):
|
| 608 |
+
if detailed_results is None:
|
| 609 |
+
return {"error": "No results to display"}
|
| 610 |
+
return detailed_results
|
| 611 |
+
|
| 612 |
+
show_details_btn.click(
|
| 613 |
+
fn=show_full_results,
|
| 614 |
+
inputs=[hidden_detailed_results],
|
| 615 |
+
outputs=[full_results_output]
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
with gr.Tab("Batch File Evaluation"):
|
| 619 |
+
gr.Markdown("### Evaluate multiple texts from a file")
|
| 620 |
+
|
| 621 |
+
with gr.Row():
|
| 622 |
+
with gr.Column():
|
| 623 |
+
file_input = gr.File(
|
| 624 |
+
label="Upload CSV or Excel file",
|
| 625 |
+
file_types=['.csv', '.xls', '.xlsx']
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
with gr.Column():
|
| 629 |
+
batch_gemini_key = gr.Textbox(
|
| 630 |
+
label="Gemini API Key",
|
| 631 |
+
placeholder="Enter your Gemini API key",
|
| 632 |
+
type="password"
|
| 633 |
+
)
|
| 634 |
+
batch_confident_key = gr.Textbox(
|
| 635 |
+
label="Confident API Key (for DeepEval)",
|
| 636 |
+
placeholder="Enter your Confident API key",
|
| 637 |
+
type="password"
|
| 638 |
+
)
|
| 639 |
+
batch_evaluate_btn = gr.Button("Process File", variant="primary")
|
| 640 |
+
|
| 641 |
+
gr.Markdown("### Batch Results")
|
| 642 |
+
batch_summary_output = gr.JSON(label="Batch Summary Results")
|
| 643 |
+
batch_detailed_output = gr.Dataframe(
|
| 644 |
+
label="Detailed Results",
|
| 645 |
+
headers=["Prompt", "Weighted Average", "Interpretation"],
|
| 646 |
+
datatype=["str", "number", "str"]
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
# Hidden state for batch results
|
| 650 |
+
hidden_batch_results = gr.State()
|
| 651 |
+
|
| 652 |
+
def process_file(file, gemini_key, confident_key):
|
| 653 |
+
if file is None:
|
| 654 |
+
return {"error": "Please upload a file"}, None, None
|
| 655 |
+
|
| 656 |
+
summary, detailed = process_uploaded_file(file.name, gemini_key, confident_key)
|
| 657 |
+
|
| 658 |
+
if "error" in summary:
|
| 659 |
+
return summary, None, None
|
| 660 |
+
|
| 661 |
+
# Prepare dataframe data
|
| 662 |
+
df_data = []
|
| 663 |
+
for result in detailed:
|
| 664 |
+
df_data.append([
|
| 665 |
+
result["Prompt"],
|
| 666 |
+
round(result["Weighted Average"], 3),
|
| 667 |
+
result["Interpretation"]
|
| 668 |
+
])
|
| 669 |
+
|
| 670 |
+
return summary, df_data, detailed
|
| 671 |
+
|
| 672 |
+
batch_evaluate_btn.click(
|
| 673 |
+
fn=process_file,
|
| 674 |
+
inputs=[file_input, batch_gemini_key, batch_confident_key],
|
| 675 |
+
outputs=[batch_summary_output, batch_detailed_output, hidden_batch_results]
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
# Button to show full batch results
|
| 679 |
+
show_batch_details_btn = gr.Button("Show Full Batch Results")
|
| 680 |
+
batch_full_results_output = gr.JSON(label="Full Batch Results", visible=False)
|
| 681 |
+
|
| 682 |
+
show_batch_details_btn.click(
|
| 683 |
+
fn=show_full_results,
|
| 684 |
+
inputs=[hidden_batch_results],
|
| 685 |
+
outputs=[batch_full_results_output]
|
| 686 |
+
)
|
| 687 |
+
|
| 688 |
+
gr.Markdown("""
|
| 689 |
+
## How to Use
|
| 690 |
+
|
| 691 |
+
1. **Single Text Evaluation**:
|
| 692 |
+
- Enter your text in the input box
|
| 693 |
+
- Provide your API keys
|
| 694 |
+
- Click "Evaluate Text" to see results
|
| 695 |
+
|
| 696 |
+
2. **Batch File Evaluation**:
|
| 697 |
+
- Upload a CSV or Excel file with a column containing text
|
| 698 |
+
- Provide your API keys
|
| 699 |
+
- Click "Process File" to evaluate all texts
|
| 700 |
+
|
| 701 |
+
### API Keys
|
| 702 |
+
- **Gemini API Key**: Get from Google AI Studio
|
| 703 |
+
- **Confident API Key**: Get from DeepEval dashboard
|
| 704 |
+
|
| 705 |
+
### Interpreting Results
|
| 706 |
+
- **Weighted Average**: Our primary metric combining all evaluations
|
| 707 |
+
- **Interpretation**: Performance grade based on weighted score
|
| 708 |
+
""")
|
| 709 |
+
|
| 710 |
+
return demo
|
| 711 |
+
|
| 712 |
+
# Launch the app
|
| 713 |
+
if __name__ == "__main__":
|
| 714 |
+
app = create_gradio_interface()
|
| 715 |
+
app.launch(debug=True)
|