First commit
Browse files- app.py +252 -0
- classifier.pth +3 -0
app.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from torchvision import transforms
|
| 7 |
+
from transformers import BertTokenizer, AutoModel
|
| 8 |
+
from torch.utils.data import Dataset, DataLoader, random_split
|
| 9 |
+
from sklearn.model_selection import train_test_split
|
| 10 |
+
from typing import List
|
| 11 |
+
from dataclasses import dataclass
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import torch, re
|
| 14 |
+
import numpy as np
|
| 15 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration, ViTImageProcessor, BertTokenizer, BlipProcessor, BlipForQuestionAnswering, AutoProcessor, AutoModelForCausalLM, DonutProcessor, VisionEncoderDecoderModel, Pix2StructProcessor, Pix2StructForConditionalGeneration, AutoModelForSeq2SeqLM
|
| 16 |
+
|
| 17 |
+
import librosa
|
| 18 |
+
from PIL import Image
|
| 19 |
+
from torch.nn.utils import rnn
|
| 20 |
+
from gtts import gTTS
|
| 21 |
+
|
| 22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
+
|
| 24 |
+
class LabelClassifier(nn.Module):
|
| 25 |
+
def __init__(self):
|
| 26 |
+
super(LabelClassifier, self).__init__()
|
| 27 |
+
self.text_encoder = AutoModel.from_pretrained('bert-base-uncased')
|
| 28 |
+
self.image_encoder = AutoModel.from_pretrained('microsoft/swin-tiny-patch4-window7-224')
|
| 29 |
+
self.intermediate_dim = 128
|
| 30 |
+
self.fusion = nn.Sequential(
|
| 31 |
+
nn.Linear(self.text_encoder.config.hidden_size + self.image_encoder.config.hidden_size, self.intermediate_dim),
|
| 32 |
+
nn.ReLU(),
|
| 33 |
+
nn.Dropout(0.5),
|
| 34 |
+
)
|
| 35 |
+
self.classifier = nn.Linear(self.intermediate_dim, 6) # Concatenating BERT output and Swin Transformer output
|
| 36 |
+
|
| 37 |
+
self.criterion = nn.CrossEntropyLoss()
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def forward(self,
|
| 41 |
+
input_ids: torch.LongTensor,pixel_values: torch.FloatTensor, attention_mask: torch.LongTensor = None, token_type_ids: torch.LongTensor = None, labels: torch.LongTensor = None):
|
| 42 |
+
|
| 43 |
+
encoded_text = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
| 44 |
+
encoded_image = self.image_encoder(pixel_values=pixel_values)
|
| 45 |
+
|
| 46 |
+
# print(encoded_text['last_hidden_state'].shape)
|
| 47 |
+
# print(encoded_image['last_hidden_state'].shape)
|
| 48 |
+
|
| 49 |
+
fused_state = self.fusion(torch.cat((encoded_text['pooler_output'], encoded_image['pooler_output']), dim=1))
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Pass through the classifier
|
| 53 |
+
logits = self.classifier(fused_state)
|
| 54 |
+
|
| 55 |
+
out = {"logits": logits}
|
| 56 |
+
|
| 57 |
+
if labels is not None:
|
| 58 |
+
loss = self.criterion(logits, labels)
|
| 59 |
+
out["loss"] = loss
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
return out
|
| 63 |
+
|
| 64 |
+
model = LabelClassifier().to(device)
|
| 65 |
+
model.load_state_dict(torch.load('classifier.pth'))
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 70 |
+
processor = ViTImageProcessor.from_pretrained('microsoft/swin-tiny-patch4-window7-224')
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# Load the Whisper model in Hugging Face format:
|
| 74 |
+
# processor2 = WhisperProcessor.from_pretrained("openai/whisper-medium.en")
|
| 75 |
+
# model2 = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium.en")
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def m1(que, image):
|
| 80 |
+
processor3 = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
| 81 |
+
model3 = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large").to("cuda")
|
| 82 |
+
|
| 83 |
+
inputs = processor3(image, que, return_tensors="pt").to("cuda")
|
| 84 |
+
|
| 85 |
+
out = model3.generate(**inputs)
|
| 86 |
+
return processor3.decode(out[0], skip_special_tokens=True)
|
| 87 |
+
|
| 88 |
+
def m2(que, image):
|
| 89 |
+
processor3 = AutoProcessor.from_pretrained("microsoft/git-large-textvqa")
|
| 90 |
+
model3 = AutoModelForCausalLM.from_pretrained("microsoft/git-large-textvqa")
|
| 91 |
+
|
| 92 |
+
pixel_values = processor3(images=image, return_tensors="pt").pixel_values
|
| 93 |
+
|
| 94 |
+
input_ids = processor3(text=que, add_special_tokens=False).input_ids
|
| 95 |
+
input_ids = [processor3.tokenizer.cls_token_id] + input_ids
|
| 96 |
+
input_ids = torch.tensor(input_ids).unsqueeze(0)
|
| 97 |
+
|
| 98 |
+
generated_ids = model3.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
|
| 99 |
+
return processor3.batch_decode(generated_ids, skip_special_tokens=True)
|
| 100 |
+
|
| 101 |
+
def m3(que, image):
|
| 102 |
+
processor3 = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
| 103 |
+
model3 = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
| 104 |
+
|
| 105 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 106 |
+
model3.to(device)
|
| 107 |
+
|
| 108 |
+
prompt = "<s_docvqa><s_question>{que}</s_question><s_answer>"
|
| 109 |
+
decoder_input_ids = processor3.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
| 110 |
+
|
| 111 |
+
pixel_values = processor3(image, return_tensors="pt").pixel_values
|
| 112 |
+
|
| 113 |
+
outputs = model3.generate(
|
| 114 |
+
pixel_values.to(device),
|
| 115 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
| 116 |
+
max_length=model3.decoder.config.max_position_embeddings,
|
| 117 |
+
pad_token_id=processor3.tokenizer.pad_token_id,
|
| 118 |
+
eos_token_id=processor3.tokenizer.eos_token_id,
|
| 119 |
+
use_cache=True,
|
| 120 |
+
bad_words_ids=[[processor3.tokenizer.unk_token_id]],
|
| 121 |
+
return_dict_in_generate=True,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
sequence = processor3.batch_decode(outputs.sequences)[0]
|
| 125 |
+
sequence = sequence.replace(processor3.tokenizer.eos_token, "").replace(processor3.tokenizer.pad_token, "")
|
| 126 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
| 127 |
+
return processor3.token2json(sequence)['answer']
|
| 128 |
+
|
| 129 |
+
def m4(que, image):
|
| 130 |
+
processor3 = Pix2StructProcessor.from_pretrained('google/matcha-plotqa-v1')
|
| 131 |
+
model3 = Pix2StructForConditionalGeneration.from_pretrained('google/matcha-plotqa-v1')
|
| 132 |
+
|
| 133 |
+
inputs = processor3(images=image, text=que, return_tensors="pt")
|
| 134 |
+
predictions = model3.generate(**inputs, max_new_tokens=512)
|
| 135 |
+
return processor3.decode(predictions[0], skip_special_tokens=True)
|
| 136 |
+
|
| 137 |
+
def m5(que, image):
|
| 138 |
+
|
| 139 |
+
processor3 = AutoProcessor.from_pretrained("google/pix2struct-ocrvqa-large")
|
| 140 |
+
model3 = AutoModelForSeq2SeqLM.from_pretrained("google/pix2struct-ocrvqa-large")
|
| 141 |
+
|
| 142 |
+
inputs = processor3(images=image, text=que, return_tensors="pt").to("cuda")
|
| 143 |
+
|
| 144 |
+
predictions = model3.generate(**inputs)
|
| 145 |
+
return processor3.decode(predictions[0], skip_special_tokens=True)
|
| 146 |
+
|
| 147 |
+
def m6(que, image):
|
| 148 |
+
processor3 = AutoProcessor.from_pretrained("google/pix2struct-infographics-vqa-large")
|
| 149 |
+
model3 = AutoModelForSeq2SeqLM.from_pretrained("google/pix2struct-infographics-vqa-large")
|
| 150 |
+
|
| 151 |
+
inputs = processor3(images=image, text=que, return_tensors="pt").to("cuda")
|
| 152 |
+
|
| 153 |
+
predictions = model3.generate(**inputs)
|
| 154 |
+
return processor3.decode(predictions[0], skip_special_tokens=True)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def predict_answer(category, que, image):
|
| 158 |
+
if category == 0:
|
| 159 |
+
return m1(que, image)
|
| 160 |
+
elif category == 1:
|
| 161 |
+
return m2(que, image)
|
| 162 |
+
elif category == 2:
|
| 163 |
+
return m3(que, image)
|
| 164 |
+
elif category == 3:
|
| 165 |
+
return m4(que, image)
|
| 166 |
+
elif category == 4:
|
| 167 |
+
return m5(que, image)
|
| 168 |
+
else:
|
| 169 |
+
return m6(que, image)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def transcribe_audio(audio):
|
| 174 |
+
# print(audio)
|
| 175 |
+
processor2 = WhisperProcessor.from_pretrained("openai/whisper-large-v3",language='en')
|
| 176 |
+
model2 = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3")
|
| 177 |
+
|
| 178 |
+
sampling_rate = audio[0]
|
| 179 |
+
audio_data = audio[1]
|
| 180 |
+
|
| 181 |
+
# print(np.array([audio_data]).shape)
|
| 182 |
+
audio_data_float = np.array(audio_data).astype(np.float32)
|
| 183 |
+
resampled_audio_data = librosa.resample(audio_data_float, orig_sr=sampling_rate, target_sr=16000)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# Use the model and processor to transcribe the audio:
|
| 187 |
+
input_features = processor2(
|
| 188 |
+
resampled_audio_data, sampling_rate=16000, return_tensors="pt"
|
| 189 |
+
).input_features
|
| 190 |
+
|
| 191 |
+
# Generate token ids
|
| 192 |
+
predicted_ids = model2.generate(input_features)
|
| 193 |
+
|
| 194 |
+
# Decode token ids to text
|
| 195 |
+
transcription = processor2.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 196 |
+
|
| 197 |
+
return transcription
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def predict_category(que, input_image):
|
| 201 |
+
# print(type(input_image))
|
| 202 |
+
# print(input_image)
|
| 203 |
+
|
| 204 |
+
encoded_text = tokenizer(
|
| 205 |
+
text=que,
|
| 206 |
+
padding='longest',
|
| 207 |
+
max_length=24,
|
| 208 |
+
truncation=True,
|
| 209 |
+
return_tensors='pt',
|
| 210 |
+
return_token_type_ids=True,
|
| 211 |
+
return_attention_mask=True,
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
encoded_image = processor(input_image, return_tensors='pt').to(device)
|
| 215 |
+
|
| 216 |
+
dict = {
|
| 217 |
+
'input_ids': encoded_text['input_ids'].to(device),
|
| 218 |
+
'token_type_ids': encoded_text['token_type_ids'].to(device),
|
| 219 |
+
'attention_mask': encoded_text['attention_mask'].to(device),
|
| 220 |
+
'pixel_values': encoded_image['pixel_values'].to(device)
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
output = model(input_ids=dict['input_ids'],token_type_ids=dict['token_type_ids'],attention_mask=dict['attention_mask'],pixel_values=dict['pixel_values'])
|
| 224 |
+
|
| 225 |
+
preds = output["logits"].argmax(axis=-1).cpu().numpy()
|
| 226 |
+
|
| 227 |
+
return preds[0]
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def combine(audio, input_image):
|
| 231 |
+
que = transcribe_audio(audio)
|
| 232 |
+
# que = "What is the animal here?"
|
| 233 |
+
|
| 234 |
+
image = Image.fromarray(input_image).convert('RGB')
|
| 235 |
+
category = predict_category(que, image)
|
| 236 |
+
|
| 237 |
+
answer = predict_answer(0, que, image)
|
| 238 |
+
|
| 239 |
+
# print(category)
|
| 240 |
+
|
| 241 |
+
tts = gTTS(answer)
|
| 242 |
+
tts.save('answer.mp3')
|
| 243 |
+
return que, answer, 'answer.mp3'
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
# Define the Gradio interface for recording audio and displaying the transcription
|
| 248 |
+
model_interface = gr.Interface(fn=combine, inputs=[gr.Microphone(label="Ask your question"),gr.Image(label="Upload the image")], outputs=[gr.Text(label="Transcribed Question"), gr.Text(label="Answer"), gr.Audio(label="Audio Answer")])
|
| 249 |
+
# image_upload_interface = gr.Interface(fn=upload_image, inputs=gr.Image(label="Upload the image"), outputs="text")
|
| 250 |
+
|
| 251 |
+
# Launch the Gradio interface
|
| 252 |
+
model_interface.launch(debug=True)
|
classifier.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd3c37a6110305f0641190ac90f5db3e527056f5a9bdbe2c11214256435c62fa
|
| 3 |
+
size 549215152
|