Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| from datasets import load_dataset, Dataset | |
| from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments | |
| import torch | |
| import os | |
| import matplotlib.pyplot as plt | |
| from huggingface_hub import HfApi # ここを修正しました | |
| import json | |
| import io | |
| from datetime import datetime | |
| # グローバル変数で検出された列を保存 | |
| columns = [] | |
| # データセットをロードする関数 | |
| def load_data(dataset_name): | |
| global columns | |
| try: | |
| # Hugging Faceのデータセットをロード | |
| dataset = load_dataset(dataset_name) | |
| # 最初のデータをプレビューとして表示 | |
| df = pd.DataFrame(dataset['train']) | |
| # 列名を検出 | |
| columns = df.columns.tolist() | |
| return columns, df.head().to_string(index=False) | |
| except Exception as e: | |
| return f"エラーが発生しました: {str(e)}" | |
| # 列の選択が正しいかを検証 | |
| def validate_columns(prompt_col, description_col): | |
| if prompt_col not in columns or description_col not in columns: | |
| return False | |
| return True | |
| # モデル訓練関数 | |
| def train_model(dataset_name, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col, description_col, hf_token): | |
| try: | |
| # 列の検証 | |
| if not validate_columns(prompt_col, description_col): | |
| return "無効な列選択です。データセット内の列を確認してください。" | |
| # Hugging Faceのデータセットをロード | |
| dataset = load_dataset(dataset_name) | |
| # 訓練データを取得 | |
| df = pd.DataFrame(dataset['train']) | |
| # データのプレビュー | |
| preview = df.head().to_string(index=False) | |
| # 訓練用テキストの準備 | |
| df['text'] = df[prompt_col] + ': ' + df[description_col] | |
| train_dataset = Dataset.from_pandas(df[['text']]) | |
| # GPT-2のトークナイザーとモデルを初期化 | |
| tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
| model = GPT2LMHeadModel.from_pretrained(model_name) | |
| # 必要であればパディングトークンを追加 | |
| if tokenizer.pad_token is None: | |
| tokenizer.add_special_tokens({'pad_token': '[PAD]'}) | |
| model.resize_token_embeddings(len(tokenizer)) | |
| # データのトークナイズ関数 | |
| def tokenize_function(examples): | |
| tokens = tokenizer(examples['text'], padding="max_length", truncation=True, max_length=128) | |
| tokens['labels'] = tokens['input_ids'].copy() | |
| return tokens | |
| tokenized_datasets = train_dataset.map(tokenize_function, batched=True) | |
| # 訓練のための設定 | |
| training_args = TrainingArguments( | |
| output_dir=output_dir, | |
| overwrite_output_dir=True, | |
| num_train_epochs=int(epochs), | |
| per_device_train_batch_size=int(batch_size), | |
| per_device_eval_batch_size=int(batch_size), | |
| warmup_steps=1000, | |
| weight_decay=0.01, | |
| learning_rate=float(learning_rate), | |
| logging_dir="./logs", | |
| logging_steps=10, | |
| save_steps=500, | |
| save_total_limit=2, | |
| evaluation_strategy="steps", | |
| eval_steps=500, | |
| load_best_model_at_end=True, | |
| metric_for_best_model="eval_loss" | |
| ) | |
| # Trainer設定 | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=tokenized_datasets, | |
| eval_dataset=tokenized_datasets, | |
| ) | |
| # 訓練開始 | |
| trainer.train() | |
| eval_results = trainer.evaluate() | |
| # Fine-tunedモデルを保存 | |
| model.save_pretrained(output_dir) | |
| tokenizer.save_pretrained(output_dir) | |
| # 訓練損失と評価損失のグラフ生成 | |
| train_loss = [x['loss'] for x in trainer.state.log_history if 'loss' in x] | |
| eval_loss = [x['eval_loss'] for x in trainer.state.log_history if 'eval_loss' in x] | |
| plt.plot(train_loss, label='訓練損失') | |
| plt.plot(eval_loss, label='評価損失') | |
| plt.xlabel('ステップ数') | |
| plt.ylabel('損失') | |
| plt.title('訓練と評価の損失') | |
| plt.legend() | |
| plt.savefig(os.path.join(output_dir, 'training_eval_loss.png')) | |
| # モデルのHuggingFaceにアップロード | |
| hf_api = HfApi() | |
| hf_api.upload_folder( | |
| folder_path=output_dir, | |
| path_in_repo=".", | |
| repo_id="sakaltcommunity/grape-small", | |
| token=hf_token | |
| ) | |
| return f"訓練が完了しました。\nデータのプレビュー:\n{preview}", eval_results | |
| except Exception as e: | |
| return f"エラーが発生しました: {str(e)}" | |
| # テキスト生成関数 | |
| def generate_text(prompt, temperature, top_k, top_p, max_length, repetition_penalty, use_comma, batch_size): | |
| try: | |
| model_name = "./fine-tuned-gpt2" | |
| tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
| model = GPT2LMHeadModel.from_pretrained(model_name) | |
| if use_comma: | |
| prompt = prompt.replace('.', ',') | |
| inputs = tokenizer(prompt, return_tensors="pt", padding=True) | |
| attention_mask = inputs.attention_mask | |
| outputs = model.generate( | |
| inputs.input_ids, | |
| attention_mask=attention_mask, | |
| max_length=int(max_length), | |
| temperature=float(temperature), | |
| top_k=int(top_k), | |
| top_p=float(top_p), | |
| repetition_penalty=float(repetition_penalty), | |
| num_return_sequences=int(batch_size), | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| return [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] | |
| except Exception as e: | |
| return f"エラーが発生しました: {str(e)}" | |
| # UI設定 | |
| with gr.Blocks() as ui: | |
| with gr.Row(): | |
| dataset_name = gr.Textbox(label="データセット名", value="imdb") # ここにデータセット名を入力 | |
| model_name = gr.Textbox(label="モデル名", value="gpt2") | |
| epochs = gr.Number(label="エポック数", value=3, minimum=1) | |
| batch_size = gr.Number(label="バッチサイズ", value=4, minimum=1) | |
| learning_rate = gr.Number(label="学習率", value=5e-5, minimum=1e-7, maximum=1e-2, step=1e-7) | |
| output_dir = gr.Textbox(label="出力ディレクトリ", value="./output") | |
| prompt_col = gr.Textbox(label="プロンプト列名", value="text") # 例:IMDBのレビュー列名 | |
| description_col = gr.Textbox(label="説明列名", value="label") # 例:IMDBのラベル列名 | |
| hf_token = gr.Textbox(label="Hugging Face アクセストークン") | |
| with gr.Row(): | |
| validate_button = gr.Button("列検証") | |
| output = gr.Textbox(label="出力") | |
| validate_button.click( | |
| load_data, | |
| inputs=[dataset_name], | |
| outputs=[output] | |
| ) | |
| with gr.Row(): | |
| train_button = gr.Button("訓練開始") | |
| result_output = gr.Textbox(label="訓練結果", lines=20) | |
| train_button.click( | |
| train_model, | |
| inputs=[dataset_name, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col, description_col, hf_token], | |
| outputs=[result_output] | |
| ) | |
| ui.launch() |