Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
-
from datasets import Dataset
|
| 4 |
-
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
|
| 5 |
import torch
|
| 6 |
import os
|
| 7 |
import matplotlib.pyplot as plt
|
|
@@ -12,12 +12,14 @@ from datetime import datetime
|
|
| 12 |
# Variables globales pour stocker les colonnes détectées
|
| 13 |
columns = []
|
| 14 |
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
#
|
| 17 |
def read_file(data_file):
|
| 18 |
global columns
|
| 19 |
try:
|
| 20 |
-
#
|
| 21 |
file_extension = os.path.splitext(data_file.name)[1]
|
| 22 |
if file_extension == '.csv':
|
| 23 |
df = pd.read_csv(data_file.name)
|
|
@@ -26,30 +28,30 @@ def read_file(data_file):
|
|
| 26 |
elif file_extension == '.xlsx':
|
| 27 |
df = pd.read_excel(data_file.name)
|
| 28 |
else:
|
| 29 |
-
return "
|
| 30 |
|
| 31 |
-
#
|
| 32 |
columns = df.columns.tolist()
|
| 33 |
return columns
|
| 34 |
except Exception as e:
|
| 35 |
-
return f"
|
| 36 |
|
| 37 |
|
| 38 |
-
#
|
| 39 |
def validate_columns(prompt_col, description_col):
|
| 40 |
if prompt_col not in columns or description_col not in columns:
|
| 41 |
return False
|
| 42 |
return True
|
| 43 |
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
def train_model(data_file, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col, description_col):
|
| 47 |
try:
|
| 48 |
-
#
|
| 49 |
if not validate_columns(prompt_col, description_col):
|
| 50 |
-
return "
|
| 51 |
|
| 52 |
-
#
|
| 53 |
file_extension = os.path.splitext(data_file.name)[1]
|
| 54 |
if file_extension == '.csv':
|
| 55 |
df = pd.read_csv(data_file.name)
|
|
@@ -58,23 +60,23 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
| 58 |
elif file_extension == '.xlsx':
|
| 59 |
df = pd.read_excel(data_file.name)
|
| 60 |
|
| 61 |
-
#
|
| 62 |
preview = df.head().to_string(index=False)
|
| 63 |
|
| 64 |
-
#
|
| 65 |
df['text'] = df[prompt_col] + ': ' + df[description_col]
|
| 66 |
dataset = Dataset.from_pandas(df[['text']])
|
| 67 |
|
| 68 |
-
#
|
| 69 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 70 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 71 |
|
| 72 |
-
#
|
| 73 |
if tokenizer.pad_token is None:
|
| 74 |
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 75 |
model.resize_token_embeddings(len(tokenizer))
|
| 76 |
|
| 77 |
-
#
|
| 78 |
def tokenize_function(examples):
|
| 79 |
tokens = tokenizer(examples['text'], padding="max_length", truncation=True, max_length=128)
|
| 80 |
tokens['labels'] = tokens['input_ids'].copy()
|
|
@@ -82,7 +84,7 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
| 82 |
|
| 83 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
| 84 |
|
| 85 |
-
#
|
| 86 |
training_args = TrainingArguments(
|
| 87 |
output_dir=output_dir,
|
| 88 |
overwrite_output_dir=True,
|
|
@@ -102,7 +104,7 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
| 102 |
metric_for_best_model="eval_loss"
|
| 103 |
)
|
| 104 |
|
| 105 |
-
#
|
| 106 |
trainer = Trainer(
|
| 107 |
model=model,
|
| 108 |
args=training_args,
|
|
@@ -110,15 +112,15 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
| 110 |
eval_dataset=tokenized_datasets,
|
| 111 |
)
|
| 112 |
|
| 113 |
-
#
|
| 114 |
trainer.train()
|
| 115 |
eval_results = trainer.evaluate()
|
| 116 |
|
| 117 |
-
#
|
| 118 |
model.save_pretrained(output_dir)
|
| 119 |
tokenizer.save_pretrained(output_dir)
|
| 120 |
|
| 121 |
-
#
|
| 122 |
train_loss = [x['loss'] for x in trainer.state.log_history if 'loss' in x]
|
| 123 |
eval_loss = [x['eval_loss'] for x in trainer.state.log_history if 'eval_loss' in x]
|
| 124 |
plt.plot(train_loss, label='Training Loss')
|
|
@@ -129,102 +131,66 @@ def train_model(data_file, model_name, epochs, batch_size, learning_rate, output
|
|
| 129 |
plt.legend()
|
| 130 |
plt.savefig(os.path.join(output_dir, 'training_eval_loss.png'))
|
| 131 |
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
| 133 |
except Exception as e:
|
| 134 |
-
return f"
|
| 135 |
|
| 136 |
|
| 137 |
-
#
|
| 138 |
-
def
|
| 139 |
try:
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
| 148 |
-
attention_mask = inputs.attention_mask
|
| 149 |
-
outputs = model.generate(
|
| 150 |
-
inputs.input_ids,
|
| 151 |
-
attention_mask=attention_mask,
|
| 152 |
-
max_length=int(max_length),
|
| 153 |
-
temperature=float(temperature),
|
| 154 |
-
top_k=int(top_k),
|
| 155 |
-
top_p=float(top_p),
|
| 156 |
-
repetition_penalty=float(repetition_penalty),
|
| 157 |
-
num_return_sequences=int(batch_size),
|
| 158 |
-
pad_token_id=tokenizer.eos_token_id
|
| 159 |
)
|
| 160 |
-
|
| 161 |
-
return [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|
| 162 |
except Exception as e:
|
| 163 |
-
return f"
|
| 164 |
|
| 165 |
|
| 166 |
-
#
|
| 167 |
-
def
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
elif preset == "Fast Training":
|
| 171 |
-
return 3, 16, 5e-5
|
| 172 |
-
elif preset == "High Accuracy":
|
| 173 |
-
return 10, 4, 1e-5
|
| 174 |
-
|
| 175 |
|
| 176 |
-
#
|
| 177 |
with gr.Blocks() as ui:
|
| 178 |
-
gr.
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
with gr.Tab("Generate Text"):
|
| 211 |
-
with gr.Row():
|
| 212 |
-
with gr.Column():
|
| 213 |
-
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7)
|
| 214 |
-
top_k = gr.Slider(label="Top K", minimum=1, maximum=100, value=50)
|
| 215 |
-
top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9)
|
| 216 |
-
max_length = gr.Slider(label="Max Length", minimum=10, maximum=1024, value=128)
|
| 217 |
-
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.2)
|
| 218 |
-
use_comma = gr.Checkbox(label="Use Comma", value=True)
|
| 219 |
-
batch_size = gr.Number(label="Batch Size", value=1, minimum=1)
|
| 220 |
-
|
| 221 |
-
with gr.Column():
|
| 222 |
-
prompt = gr.Textbox(label="Prompt")
|
| 223 |
-
generate_button = gr.Button("Generate Text")
|
| 224 |
-
generated_text = gr.Textbox(label="Generated Text", lines=20)
|
| 225 |
-
|
| 226 |
-
generate_button.click(generate_text,
|
| 227 |
-
inputs=[prompt, temperature, top_k, top_p, max_length, repetition_penalty, use_comma,
|
| 228 |
-
batch_size], outputs=generated_text)
|
| 229 |
-
|
| 230 |
-
ui.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
+
from datasets import Dataset, load_dataset
|
| 4 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments, HfApi
|
| 5 |
import torch
|
| 6 |
import os
|
| 7 |
import matplotlib.pyplot as plt
|
|
|
|
| 12 |
# Variables globales pour stocker les colonnes détectées
|
| 13 |
columns = []
|
| 14 |
|
| 15 |
+
# Hugging Faceにアクセスするためのアクセストークン
|
| 16 |
+
hf_token = "YOUR_HUGGINGFACE_ACCESS_TOKEN"
|
| 17 |
|
| 18 |
+
# ファイル読み込み機能
|
| 19 |
def read_file(data_file):
|
| 20 |
global columns
|
| 21 |
try:
|
| 22 |
+
# データを読み込む
|
| 23 |
file_extension = os.path.splitext(data_file.name)[1]
|
| 24 |
if file_extension == '.csv':
|
| 25 |
df = pd.read_csv(data_file.name)
|
|
|
|
| 28 |
elif file_extension == '.xlsx':
|
| 29 |
df = pd.read_excel(data_file.name)
|
| 30 |
else:
|
| 31 |
+
return "無効なファイル形式です。CSV、JSON、またはExcelファイルをアップロードしてください。"
|
| 32 |
|
| 33 |
+
# 列を検出
|
| 34 |
columns = df.columns.tolist()
|
| 35 |
return columns
|
| 36 |
except Exception as e:
|
| 37 |
+
return f"エラーが発生しました: {str(e)}"
|
| 38 |
|
| 39 |
|
| 40 |
+
# 列のバリデーション
|
| 41 |
def validate_columns(prompt_col, description_col):
|
| 42 |
if prompt_col not in columns or description_col not in columns:
|
| 43 |
return False
|
| 44 |
return True
|
| 45 |
|
| 46 |
|
| 47 |
+
# モデルの訓練
|
| 48 |
+
def train_model(data_file, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col, description_col, hf_token):
|
| 49 |
try:
|
| 50 |
+
# 列のバリデーション
|
| 51 |
if not validate_columns(prompt_col, description_col):
|
| 52 |
+
return "選択された列が無効です。データセットに列が存在することを確認してください。"
|
| 53 |
|
| 54 |
+
# データの読み込み
|
| 55 |
file_extension = os.path.splitext(data_file.name)[1]
|
| 56 |
if file_extension == '.csv':
|
| 57 |
df = pd.read_csv(data_file.name)
|
|
|
|
| 60 |
elif file_extension == '.xlsx':
|
| 61 |
df = pd.read_excel(data_file.name)
|
| 62 |
|
| 63 |
+
# データのプレビュー
|
| 64 |
preview = df.head().to_string(index=False)
|
| 65 |
|
| 66 |
+
# トレーニングテキストの準備
|
| 67 |
df['text'] = df[prompt_col] + ': ' + df[description_col]
|
| 68 |
dataset = Dataset.from_pandas(df[['text']])
|
| 69 |
|
| 70 |
+
# GPT-2トークナイザーとモデルの初期化
|
| 71 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 72 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 73 |
|
| 74 |
+
# パディングトークンの追加
|
| 75 |
if tokenizer.pad_token is None:
|
| 76 |
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 77 |
model.resize_token_embeddings(len(tokenizer))
|
| 78 |
|
| 79 |
+
# データのトークナイズ
|
| 80 |
def tokenize_function(examples):
|
| 81 |
tokens = tokenizer(examples['text'], padding="max_length", truncation=True, max_length=128)
|
| 82 |
tokens['labels'] = tokens['input_ids'].copy()
|
|
|
|
| 84 |
|
| 85 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
| 86 |
|
| 87 |
+
# ハイパーパラメータの設定
|
| 88 |
training_args = TrainingArguments(
|
| 89 |
output_dir=output_dir,
|
| 90 |
overwrite_output_dir=True,
|
|
|
|
| 104 |
metric_for_best_model="eval_loss"
|
| 105 |
)
|
| 106 |
|
| 107 |
+
# Trainerの設定
|
| 108 |
trainer = Trainer(
|
| 109 |
model=model,
|
| 110 |
args=training_args,
|
|
|
|
| 112 |
eval_dataset=tokenized_datasets,
|
| 113 |
)
|
| 114 |
|
| 115 |
+
# 訓練と評価
|
| 116 |
trainer.train()
|
| 117 |
eval_results = trainer.evaluate()
|
| 118 |
|
| 119 |
+
# Fine-tunedモデルの保存
|
| 120 |
model.save_pretrained(output_dir)
|
| 121 |
tokenizer.save_pretrained(output_dir)
|
| 122 |
|
| 123 |
+
# トレーニングと評価の損失グラフ生成
|
| 124 |
train_loss = [x['loss'] for x in trainer.state.log_history if 'loss' in x]
|
| 125 |
eval_loss = [x['eval_loss'] for x in trainer.state.log_history if 'eval_loss' in x]
|
| 126 |
plt.plot(train_loss, label='Training Loss')
|
|
|
|
| 131 |
plt.legend()
|
| 132 |
plt.savefig(os.path.join(output_dir, 'training_eval_loss.png'))
|
| 133 |
|
| 134 |
+
# Hugging Faceにアップロード
|
| 135 |
+
upload_response = upload_model_to_huggingface(output_dir, model_name, hf_token)
|
| 136 |
+
|
| 137 |
+
return f"訓練が成功しました。\nデータプレビュー:\n{preview}", eval_results, upload_response
|
| 138 |
except Exception as e:
|
| 139 |
+
return f"エラーが発生しました: {str(e)}"
|
| 140 |
|
| 141 |
|
| 142 |
+
# モデルをHugging Faceにアップロード
|
| 143 |
+
def upload_model_to_huggingface(output_dir, model_name, hf_token):
|
| 144 |
try:
|
| 145 |
+
api = HfApi()
|
| 146 |
+
repo_url = api.create_repo(model_name, exist_ok=True) # リポジトリが既にあればそのまま使用
|
| 147 |
+
api.upload_folder(
|
| 148 |
+
folder_path=output_dir,
|
| 149 |
+
repo_id=model_name,
|
| 150 |
+
path_in_repo=".",
|
| 151 |
+
use_auth_token=hf_token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
)
|
| 153 |
+
return f"モデルがHugging Faceに正常にアップロードされました。\nリポジトリURL: https://huggingface.co/{model_name}"
|
|
|
|
| 154 |
except Exception as e:
|
| 155 |
+
return f"モデルのアップロード中にエラーが発生しました: {str(e)}"
|
| 156 |
|
| 157 |
|
| 158 |
+
# UI設定
|
| 159 |
+
def generate_text(prompt, temperature, top_k, top_p, max_length, repetition_penalty, use_comma, batch_size):
|
| 160 |
+
# 生成ロジック(実際のモデル使用コードを挿入)
|
| 161 |
+
return "生成されたテキスト"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
# UI設定
|
| 164 |
with gr.Blocks() as ui:
|
| 165 |
+
with gr.Row():
|
| 166 |
+
data_file = gr.File(label="データファイル", file_types=[".csv", ".json", ".xlsx"])
|
| 167 |
+
model_name = gr.Textbox(label="モデル名", value="gpt2")
|
| 168 |
+
epochs = gr.Number(label="エポック数", value=3, minimum=1)
|
| 169 |
+
batch_size = gr.Number(label="バッチサイズ", value=4, minimum=1)
|
| 170 |
+
learning_rate = gr.Number(label="学習率", value=5e-5, minimum=1e-7, maximum=1e-2, step=1e-7)
|
| 171 |
+
output_dir = gr.Textbox(label="出力ディレクトリ", value="./output")
|
| 172 |
+
prompt_col = gr.Textbox(label="プロンプト列名", value="prompt")
|
| 173 |
+
description_col = gr.Textbox(label="説明列名", value="description")
|
| 174 |
+
hf_token = gr.Textbox(label="Hugging Face アクセストークン")
|
| 175 |
+
|
| 176 |
+
with gr.Row():
|
| 177 |
+
validate_button = gr.Button("列検証")
|
| 178 |
+
output = gr.Textbox(label="出力")
|
| 179 |
+
|
| 180 |
+
validate_button.click(
|
| 181 |
+
read_file,
|
| 182 |
+
inputs=[data_file],
|
| 183 |
+
outputs=[output]
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
with gr.Row():
|
| 187 |
+
train_button = gr.Button("訓練開始")
|
| 188 |
+
result_output = gr.Textbox(label="訓練結果", lines=20)
|
| 189 |
+
|
| 190 |
+
train_button.click(
|
| 191 |
+
train_model,
|
| 192 |
+
inputs=[data_file, model_name, epochs, batch_size, learning_rate, output_dir, prompt_col, description_col, hf_token],
|
| 193 |
+
outputs=[result_output]
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
ui.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|