Spaces:
Runtime error
Runtime error
| import multiprocessing | |
| import cv2 | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image, ImageDraw | |
| from ultralytics import YOLO | |
| from ultralytics.utils.plotting import Annotator, colors | |
| import logging | |
| import math | |
| import time | |
| from collections import deque | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Global variables to store line coordinates and line equation | |
| start_point = None | |
| end_point = None | |
| line_params = None # Stores (slope, intercept) of the line | |
| # Maximize CPU usage | |
| cpu_cores = multiprocessing.cpu_count() | |
| cv2.setNumThreads(cpu_cores) | |
| logger.info(f"OpenCV using {cv2.getNumThreads()} threads out of {cpu_cores} available cores") | |
| def extract_first_frame(stream_url): | |
| """ | |
| Extracts the first available frame from the IP camera stream and returns it as a PIL image. | |
| """ | |
| logger.info("Attempting to extract the first frame from the stream...") | |
| cap = cv2.VideoCapture(stream_url) | |
| if not cap.isOpened(): | |
| logger.error("Error: Could not open stream.") | |
| return None, "Error: Could not open stream." | |
| ret, frame = cap.read() | |
| cap.release() | |
| if not ret: | |
| logger.error("Error: Could not read the first frame.") | |
| return None, "Error: Could not read the first frame." | |
| # Convert the frame to a PIL image | |
| frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(frame_rgb) | |
| logger.info("First frame extracted successfully.") | |
| return pil_image, "First frame extracted successfully." | |
| def update_line(image, evt: gr.SelectData): | |
| """ | |
| Updates the line based on user interaction (click and drag). | |
| """ | |
| global start_point, end_point, line_params | |
| # If it's the first click, set the start point and show it on the image | |
| if start_point is None: | |
| start_point = (evt.index[0], evt.index[1]) | |
| # Draw the start point on the image | |
| draw = ImageDraw.Draw(image) | |
| draw.ellipse( | |
| (start_point[0] - 5, start_point[1] - 5, start_point[0] + 5, start_point[1] + 5), | |
| fill="blue", outline="blue" | |
| ) | |
| return image, f"Line Coordinates:\nStart: {start_point}, End: None" | |
| # If it's the second click, set the end point and draw the line | |
| end_point = (evt.index[0], evt.index[1]) | |
| # Calculate the slope (m) and intercept (b) of the line: y = mx + b | |
| if start_point[0] != end_point[0]: # Avoid division by zero | |
| slope = (end_point[1] - start_point[1]) / (end_point[0] - start_point[0]) | |
| intercept = start_point[1] - slope * start_point[0] | |
| line_params = (slope, intercept, start_point, end_point) # Store slope, intercept, and points | |
| else: | |
| # Vertical line (special case) | |
| line_params = (float('inf'), start_point[0], start_point, end_point) | |
| # Draw the line and end point on the image | |
| draw = ImageDraw.Draw(image) | |
| draw.line([start_point, end_point], fill="red", width=2) | |
| draw.ellipse( | |
| (end_point[0] - 5, end_point[1] - 5, end_point[0] + 5, end_point[1] + 5), | |
| fill="green", outline="green" | |
| ) | |
| # Return the updated image and line info | |
| line_info = f"Line Coordinates:\nStart: {start_point}, End: {end_point}\nLine Equation: y = {line_params[0]:.2f}x + {line_params[1]:.2f}" | |
| # Reset the points for the next interaction | |
| start_point = None | |
| end_point = None | |
| return image, line_info | |
| def reset_line(): | |
| """ | |
| Resets the line coordinates. | |
| """ | |
| global start_point, end_point, line_params | |
| start_point = None | |
| end_point = None | |
| line_params = None | |
| return None, "Line reset. Click to draw a new line." | |
| def intersect(A, B, C, D): | |
| """ | |
| Determines if two line segments AB and CD intersect. | |
| """ | |
| def ccw(A, B, C): | |
| return (C[1] - A[1]) * (B[0] - A[0]) - (B[1] - A[1]) * (C[0] - A[0]) | |
| def on_segment(A, B, C): | |
| if min(A[0], B[0]) <= C[0] <= max(A[0], B[0]) and min(A[1], B[1]) <= C[1] <= max(A[1], B[1]): | |
| return True | |
| return False | |
| # Check if the line segments intersect | |
| ccw1 = ccw(A, B, C) | |
| ccw2 = ccw(A, B, D) | |
| ccw3 = ccw(C, D, A) | |
| ccw4 = ccw(C, D, B) | |
| if ((ccw1 * ccw2 < 0) and (ccw3 * ccw4 < 0)): | |
| return True | |
| elif ccw1 == 0 and on_segment(A, B, C): | |
| return True | |
| elif ccw2 == 0 and on_segment(A, B, D): | |
| return True | |
| elif ccw3 == 0 and on_segment(C, D, A): | |
| return True | |
| elif ccw4 == 0 and on_segment(C, D, B): | |
| return True | |
| else: | |
| return False | |
| def is_object_crossing_line(box, line_params): | |
| """ | |
| Determines if an object's bounding box is fully intersected by the user-drawn line. | |
| """ | |
| _, _, line_start, line_end = line_params | |
| # Get the bounding box coordinates | |
| x1, y1, x2, y2 = box | |
| # Define the four edges of the bounding box | |
| box_edges = [ | |
| ((x1, y1), (x2, y1)), # Top edge | |
| ((x2, y1), (x2, y2)), # Right edge | |
| ((x2, y2), (x1, y2)), # Bottom edge | |
| ((x1, y2), (x1, y1)) # Left edge | |
| ] | |
| # Count the number of intersections between the line and the bounding box edges | |
| intersection_count = 0 | |
| for edge_start, edge_end in box_edges: | |
| if intersect(line_start, line_end, edge_start, edge_end): | |
| intersection_count += 1 | |
| # Only count the object if the line intersects the bounding box at least twice | |
| return intersection_count >= 2 | |
| def draw_angled_line(image, line_params, color=(0, 255, 0), thickness=2): | |
| """ | |
| Draws the user-defined line on the frame. | |
| """ | |
| _, _, start_point, end_point = line_params | |
| cv2.line(image, start_point, end_point, color, thickness) | |
| def process_video(confidence_threshold=0.5, selected_classes=None, stream_url=None, target_fps=30, model_name="yolov8n.pt"): | |
| """ | |
| Processes the IP camera stream to count objects of the selected classes crossing the line. | |
| """ | |
| global line_params | |
| errors = [] | |
| if line_params is None: | |
| errors.append("Error: No line drawn. Please draw a line on the first frame.") | |
| if selected_classes is None or len(selected_classes) == 0: | |
| errors.append("Error: No classes selected. Please select at least one class to detect.") | |
| if stream_url is None or stream_url.strip() == "": | |
| errors.append("Error: No stream URL provided.") | |
| if errors: | |
| return None, "\n".join(errors) | |
| logger.info("Connecting to the IP camera stream...") | |
| cap = cv2.VideoCapture(stream_url) | |
| if not cap.isOpened(): | |
| errors.append("Error: Could not open stream.") | |
| return None, "\n".join(errors) | |
| model = YOLO(model=model_name) | |
| crossed_objects = {} | |
| max_tracked_objects = 1000 # Maximum number of objects to track before clearing | |
| # Queue to hold frames for processing | |
| frame_queue = deque(maxlen=10) | |
| logger.info("Starting to process the stream...") | |
| last_time = time.time() | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| errors.append("Error: Could not read frame from the stream.") | |
| break | |
| # Add frame to the queue | |
| frame_queue.append(frame) | |
| # Process frames in the queue | |
| if len(frame_queue) > 0: | |
| process_frame = frame_queue.popleft() | |
| # Perform object tracking with confidence threshold | |
| results = model.track(process_frame, persist=True, conf=confidence_threshold) | |
| if results[0].boxes.id is not None: | |
| track_ids = results[0].boxes.id.int().cpu().tolist() | |
| clss = results[0].boxes.cls.cpu().tolist() | |
| boxes = results[0].boxes.xyxy.cpu() | |
| confs = results[0].boxes.conf.cpu().tolist() | |
| for box, cls, t_id, conf in zip(boxes, clss, track_ids, confs): | |
| if conf >= confidence_threshold and model.names[cls] in selected_classes: | |
| # Check if the object crosses the line | |
| if is_object_crossing_line(box, line_params) and t_id not in crossed_objects: | |
| crossed_objects[t_id] = True | |
| # Clear the dictionary if it gets too large | |
| if len(crossed_objects) > max_tracked_objects: | |
| crossed_objects.clear() | |
| # Visualize the results with bounding boxes, masks, and IDs | |
| annotated_frame = results[0].plot() | |
| # Draw the angled line on the frame | |
| draw_angled_line(annotated_frame, line_params, color=(0, 255, 0), thickness=2) | |
| # Display the count on the frame with a modern look | |
| count = len(crossed_objects) | |
| (text_width, text_height), _ = cv2.getTextSize(f"COUNT: {count}", cv2.FONT_HERSHEY_SIMPLEX, 1, 2) | |
| # Calculate the position for the middle of the top | |
| margin = 10 # Margin from the top | |
| x = (annotated_frame.shape[1] - text_width) // 2 # Center-align the text horizontally | |
| y = text_height + margin # Top-align the text | |
| # Draw the black background rectangle | |
| cv2.rectangle(annotated_frame, (x - margin, y - text_height - margin), (x + text_width + margin, y + margin), (0, 0, 0), -1) | |
| # Draw the text | |
| cv2.putText(annotated_frame, f"COUNT: {count}", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) | |
| # Yield the annotated frame to Gradio | |
| yield annotated_frame, "" | |
| # Calculate the time taken to process the frame | |
| current_time = time.time() | |
| elapsed_time = current_time - last_time | |
| last_time = current_time | |
| # Calculate the time to sleep to maintain the target FPS | |
| sleep_time = max(0, (1.0 / target_fps) - elapsed_time) | |
| time.sleep(sleep_time) | |
| cap.release() | |
| logger.info("Stream processing completed.") | |
| # Define the Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1>Real-time monitoring, object tracking, and line-crossing detection for CCTV camera streams.</h1></center>") | |
| gr.Markdown("## https://github.com/SanshruthR/CCTV_SENTRY_YOLO12") | |
| # Step 1: Enter the IP Camera Stream URL | |
| ip="https://59d39900ebfb8.streamlock.net/Channels301/default.stream/chunklist_w1780413149.m3u8" | |
| stream_url = gr.Textbox(label="Enter IP Camera Stream URL", value=ip, visible=False) | |
| # Step 1: Extract the first frame from the stream | |
| gr.Markdown("### Step 1: Click on the frame to draw a line, the objects crossing it would be counted in real-time.") | |
| first_frame, status = extract_first_frame(stream_url.value) | |
| if first_frame is None: | |
| gr.Markdown(f"**Error:** {status}") | |
| else: | |
| # Image component for displaying the first frame | |
| image = gr.Image(value=first_frame, label="First Frame of Stream", type="pil") | |
| line_info = gr.Textbox(label="Line Coordinates", value="Line Coordinates:\nStart: None, End: None") | |
| image.select(update_line, inputs=image, outputs=[image, line_info]) | |
| # Step 2: Select classes to detect | |
| gr.Markdown("### Step 2: Select Classes to Detect") | |
| model = YOLO(model="yolov8n.pt") # Load the model to get class names | |
| class_names = list(model.names.values()) # Get class names | |
| selected_classes = gr.CheckboxGroup(choices=class_names, label="Select Classes to Detect") | |
| # Step 3: Adjust confidence threshold | |
| gr.Markdown("### Step 3: Adjust Confidence Threshold (Optional)") | |
| confidence_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Confidence Threshold") | |
| # Step 4: Set target FPS | |
| gr.Markdown("### Step 4: Set Target FPS (Optional)") | |
| target_fps = gr.Slider(minimum=1, maximum=120*4, value=60, label="Target FPS", interactive=False) | |
| # Step 5: Select YOLO model | |
| gr.Markdown("### Step 5: Select YOLO Model") | |
| model_name = gr.Dropdown(choices=["yolov8n.pt", "yolo11n.pt","yolo12n.pt"], label="Select YOLO Model", value="yolo12n.pt") | |
| # Process the stream | |
| process_button = gr.Button("Process Stream") | |
| # Output image for real-time frame rendering | |
| output_image = gr.Image(label="Processed Frame", streaming=True) | |
| # Error box to display warnings/errors | |
| error_box = gr.Textbox(label="Errors/Warnings", interactive=False) | |
| # Event listener for processing the video | |
| process_button.click(process_video, inputs=[confidence_threshold, selected_classes, stream_url, target_fps, model_name], outputs=[output_image, error_box]) | |
| # Launch the interface | |
| demo.launch(debug=True) |