Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,6 @@ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
|
| 6 |
import os
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
import gradio as gr
|
| 9 |
-
import markdowm as md
|
| 10 |
import base64
|
| 11 |
|
| 12 |
# Load environment variables
|
|
@@ -17,32 +16,6 @@ llm_models = [
|
|
| 17 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
| 18 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 19 |
"tiiuae/falcon-7b-instruct",
|
| 20 |
-
# "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
| 21 |
-
# "deepseek-ai/deepseek-vl2", ## 54GB > 10GB
|
| 22 |
-
# "deepseek-ai/deepseek-vl2-small", ## 32GB > 10GB
|
| 23 |
-
# "deepseek-ai/deepseek-vl2-tiny", ## high response time
|
| 24 |
-
# "deepseek-ai/deepseek-llm-7b-chat", ## 13GB > 10GB
|
| 25 |
-
# "deepseek-ai/deepseek-math-7b-instruct", ## 13GB > 10GB
|
| 26 |
-
# "deepseek-ai/deepseek-coder-33b-instruct", ## 66GB > 10GB
|
| 27 |
-
# "deepseek-ai/DeepSeek-R1-Zero", ## 688GB > 10GB
|
| 28 |
-
# "mistralai/Mixtral-8x22B-Instruct-v0.1", ## 281GB>10GB
|
| 29 |
-
# "NousResearch/Yarn-Mistral-7b-64k", ## 14GB>10GB
|
| 30 |
-
# "impira/layoutlm-document-qa", ## ERR
|
| 31 |
-
# "Qwen/Qwen1.5-7B", ## 15GB
|
| 32 |
-
# "Qwen/Qwen2.5-3B", ## high response time
|
| 33 |
-
# "google/gemma-2-2b-jpn-it", ## high response time
|
| 34 |
-
# "impira/layoutlm-invoices", ## bad req
|
| 35 |
-
# "google/pix2struct-docvqa-large", ## bad req
|
| 36 |
-
# "google/gemma-7b-it", ## 17GB > 10GB
|
| 37 |
-
# "google/gemma-2b-it", ## high response time
|
| 38 |
-
# "HuggingFaceH4/zephyr-7b-beta", ## high response time
|
| 39 |
-
# "HuggingFaceH4/zephyr-7b-gemma-v0.1", ## bad req
|
| 40 |
-
# "microsoft/phi-2", ## high response time
|
| 41 |
-
# "TinyLlama/TinyLlama-1.1B-Chat-v1.0", ## high response time
|
| 42 |
-
# "mosaicml/mpt-7b-instruct", ## 13GB>10GB
|
| 43 |
-
# "google/flan-t5-xxl" ## high respons time
|
| 44 |
-
# "NousResearch/Yarn-Mistral-7b-128k", ## 14GB>10GB
|
| 45 |
-
# "Qwen/Qwen2.5-7B-Instruct", ## 15GB>10GB
|
| 46 |
]
|
| 47 |
|
| 48 |
embed_models = [
|
|
@@ -59,6 +32,7 @@ vector_index = None
|
|
| 59 |
|
| 60 |
# Initialize the parser
|
| 61 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
|
|
|
| 62 |
# Define file extractor with various common extensions
|
| 63 |
file_extractor = {
|
| 64 |
'.pdf': parser, # PDF documents
|
|
@@ -66,62 +40,109 @@ file_extractor = {
|
|
| 66 |
'.doc': parser, # Older Microsoft Word documents
|
| 67 |
'.txt': parser, # Plain text files
|
| 68 |
'.csv': parser, # Comma-separated values files
|
| 69 |
-
'.xlsx': parser, # Microsoft Excel files
|
| 70 |
-
'.pptx': parser, # Microsoft PowerPoint files
|
| 71 |
-
'.html': parser, # HTML files
|
| 72 |
-
# '.rtf': parser, # Rich Text Format files
|
| 73 |
-
# '.odt': parser, # OpenDocument Text files
|
| 74 |
-
# '.epub': parser, # ePub files (e-books)
|
| 75 |
-
|
| 76 |
-
# Image files for OCR processing
|
| 77 |
'.jpg': parser, # JPEG images
|
| 78 |
'.jpeg': parser, # JPEG images
|
| 79 |
'.png': parser, # PNG images
|
| 80 |
-
# '.bmp': parser, # Bitmap images
|
| 81 |
-
# '.tiff': parser, # TIFF images
|
| 82 |
-
# '.tif': parser, # TIFF images (alternative extension)
|
| 83 |
-
# '.gif': parser, # GIF images (can contain text)
|
| 84 |
-
|
| 85 |
-
# Scanned documents in image formats
|
| 86 |
'.webp': parser, # WebP images
|
| 87 |
-
'.svg': parser, # SVG files
|
| 88 |
}
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
# File processing function
|
| 92 |
def load_files(file_path: str, embed_model_name: str):
|
| 93 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
global vector_index
|
| 95 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
| 96 |
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
| 97 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
| 98 |
print(f"Parsing done for {file_path}")
|
| 99 |
filename = os.path.basename(file_path)
|
| 100 |
-
return f"Ready to
|
| 101 |
except Exception as e:
|
| 102 |
-
return f"An error occurred: {e}"
|
| 103 |
-
|
| 104 |
|
| 105 |
# Function to handle the selected model from dropdown
|
| 106 |
def set_llm_model(selected_model):
|
| 107 |
global selected_llm_model_name
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
|
| 113 |
# Respond function that uses the globally set selected model
|
| 114 |
def respond(message, history):
|
| 115 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
# Initialize the LLM with the selected model
|
| 117 |
llm = HuggingFaceInferenceAPI(
|
| 118 |
model_name=selected_llm_model_name,
|
| 119 |
-
contextWindow=8192,
|
| 120 |
-
maxTokens=1024,
|
| 121 |
-
temperature=0.3,
|
| 122 |
-
topP=0.9,
|
| 123 |
-
frequencyPenalty=0.5,
|
| 124 |
-
presencePenalty=0.5,
|
| 125 |
token=os.getenv("TOKEN")
|
| 126 |
)
|
| 127 |
|
|
@@ -130,58 +151,151 @@ def respond(message, history):
|
|
| 130 |
bot_message = query_engine.query(message)
|
| 131 |
|
| 132 |
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
|
| 133 |
-
return f"{selected_llm_model_name}
|
| 134 |
except Exception as e:
|
| 135 |
-
|
| 136 |
-
return "Please upload a file."
|
| 137 |
-
return f"An error occurred: {e}"
|
| 138 |
|
| 139 |
-
def
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
| 147 |
|
| 148 |
-
#
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
# UI Setup
|
| 151 |
-
with gr.Blocks(
|
| 152 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
with gr.Tabs():
|
| 154 |
-
with gr.TabItem("
|
| 155 |
-
gr.Markdown(
|
| 156 |
|
| 157 |
-
with gr.TabItem("DocBot"):
|
| 158 |
-
with gr.Accordion("
|
| 159 |
-
|
|
|
|
| 160 |
with gr.Row():
|
| 161 |
with gr.Column(scale=1):
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
)
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
-
# Launch the demo
|
| 186 |
if __name__ == "__main__":
|
| 187 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import os
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
import gradio as gr
|
|
|
|
| 9 |
import base64
|
| 10 |
|
| 11 |
# Load environment variables
|
|
|
|
| 16 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
| 17 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 18 |
"tiiuae/falcon-7b-instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
]
|
| 20 |
|
| 21 |
embed_models = [
|
|
|
|
| 32 |
|
| 33 |
# Initialize the parser
|
| 34 |
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
| 35 |
+
|
| 36 |
# Define file extractor with various common extensions
|
| 37 |
file_extractor = {
|
| 38 |
'.pdf': parser, # PDF documents
|
|
|
|
| 40 |
'.doc': parser, # Older Microsoft Word documents
|
| 41 |
'.txt': parser, # Plain text files
|
| 42 |
'.csv': parser, # Comma-separated values files
|
| 43 |
+
'.xlsx': parser, # Microsoft Excel files
|
| 44 |
+
'.pptx': parser, # Microsoft PowerPoint files
|
| 45 |
+
'.html': parser, # HTML files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
'.jpg': parser, # JPEG images
|
| 47 |
'.jpeg': parser, # JPEG images
|
| 48 |
'.png': parser, # PNG images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
'.webp': parser, # WebP images
|
| 50 |
+
'.svg': parser, # SVG files
|
| 51 |
}
|
| 52 |
|
| 53 |
+
# Markdown content definitions
|
| 54 |
+
description = """
|
| 55 |
+
## Welcome to DocBot ππ€
|
| 56 |
+
|
| 57 |
+
DocBot is an intelligent document analysis tool that can help you extract insights from various document formats including:
|
| 58 |
+
- PDF documents
|
| 59 |
+
- Word documents (.docx, .doc)
|
| 60 |
+
- Text files
|
| 61 |
+
- CSV files
|
| 62 |
+
- Excel files
|
| 63 |
+
- PowerPoint presentations
|
| 64 |
+
- HTML files
|
| 65 |
+
- Images with text (JPG, PNG, WebP, SVG)
|
| 66 |
+
|
| 67 |
+
Simply upload your document, select your preferred embedding model and LLM, then start asking questions!
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
guide = """
|
| 71 |
+
### How to Use DocBot:
|
| 72 |
+
|
| 73 |
+
1. **Upload Document**: Choose any supported file format
|
| 74 |
+
2. **Select Embedding Model**: Choose from available embedding models (BAAI/bge-small-en-v1.5 is recommended for most cases)
|
| 75 |
+
3. **Submit**: Click submit to process your document
|
| 76 |
+
4. **Select LLM**: Choose your preferred language model
|
| 77 |
+
5. **Ask Questions**: Start chatting with your document!
|
| 78 |
+
|
| 79 |
+
### Tips:
|
| 80 |
+
- Smaller embedding models (like bge-small-en-v1.5) are faster but may be less accurate
|
| 81 |
+
- Larger models provide better understanding but take more time
|
| 82 |
+
- Be specific in your questions for better results
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
footer = """
|
| 86 |
+
<div style="text-align: center; margin-top: 20px; padding: 20px; border-top: 1px solid #ddd;">
|
| 87 |
+
<p>Built with β€οΈ using LlamaIndex and Gradio</p>
|
| 88 |
+
<div style="display: flex; justify-content: center; gap: 20px; margin-top: 10px;">
|
| 89 |
+
<a href="https://github.com" target="_blank">
|
| 90 |
+
<img src="data:image/png;base64,{0}" alt="GitHub" style="width: 24px; height: 24px;">
|
| 91 |
+
</a>
|
| 92 |
+
<a href="https://linkedin.com" target="_blank">
|
| 93 |
+
<img src="data:image/png;base64,{1}" alt="LinkedIn" style="width: 24px; height: 24px;">
|
| 94 |
+
</a>
|
| 95 |
+
<a href="https://your-website.com" target="_blank">
|
| 96 |
+
<img src="data:image/png;base64,{2}" alt="Website" style="width: 24px; height: 24px;">
|
| 97 |
+
</a>
|
| 98 |
+
</div>
|
| 99 |
+
</div>
|
| 100 |
+
"""
|
| 101 |
|
| 102 |
# File processing function
|
| 103 |
def load_files(file_path: str, embed_model_name: str):
|
| 104 |
try:
|
| 105 |
+
if not file_path:
|
| 106 |
+
return "Please select a file first."
|
| 107 |
+
|
| 108 |
+
if not embed_model_name:
|
| 109 |
+
return "Please select an embedding model."
|
| 110 |
+
|
| 111 |
global vector_index
|
| 112 |
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
| 113 |
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
| 114 |
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
| 115 |
print(f"Parsing done for {file_path}")
|
| 116 |
filename = os.path.basename(file_path)
|
| 117 |
+
return f"β
Ready to answer questions about: {filename}"
|
| 118 |
except Exception as e:
|
| 119 |
+
return f"β An error occurred: {str(e)}"
|
|
|
|
| 120 |
|
| 121 |
# Function to handle the selected model from dropdown
|
| 122 |
def set_llm_model(selected_model):
|
| 123 |
global selected_llm_model_name
|
| 124 |
+
if selected_model:
|
| 125 |
+
selected_llm_model_name = selected_model
|
| 126 |
+
return f"LLM set to: {selected_model}"
|
|
|
|
| 127 |
|
| 128 |
# Respond function that uses the globally set selected model
|
| 129 |
def respond(message, history):
|
| 130 |
try:
|
| 131 |
+
if not vector_index:
|
| 132 |
+
return "Please upload and process a document first."
|
| 133 |
+
|
| 134 |
+
if not message.strip():
|
| 135 |
+
return "Please enter a question."
|
| 136 |
+
|
| 137 |
# Initialize the LLM with the selected model
|
| 138 |
llm = HuggingFaceInferenceAPI(
|
| 139 |
model_name=selected_llm_model_name,
|
| 140 |
+
contextWindow=8192,
|
| 141 |
+
maxTokens=1024,
|
| 142 |
+
temperature=0.3,
|
| 143 |
+
topP=0.9,
|
| 144 |
+
frequencyPenalty=0.5,
|
| 145 |
+
presencePenalty=0.5,
|
| 146 |
token=os.getenv("TOKEN")
|
| 147 |
)
|
| 148 |
|
|
|
|
| 151 |
bot_message = query_engine.query(message)
|
| 152 |
|
| 153 |
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
|
| 154 |
+
return f"**{selected_llm_model_name}:**\n\n{str(bot_message)}"
|
| 155 |
except Exception as e:
|
| 156 |
+
return f"β An error occurred: {str(e)}"
|
|
|
|
|
|
|
| 157 |
|
| 158 |
+
def encode_image_safe(image_path):
|
| 159 |
+
"""Safely encode image, return empty string if file doesn't exist"""
|
| 160 |
+
try:
|
| 161 |
+
if os.path.exists(image_path):
|
| 162 |
+
with open(image_path, "rb") as image_file:
|
| 163 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
| 164 |
+
except Exception:
|
| 165 |
+
pass
|
| 166 |
+
return ""
|
| 167 |
|
| 168 |
+
# Encode the images (with fallback for missing images)
|
| 169 |
+
github_logo_encoded = encode_image_safe("Images/github-logo.png")
|
| 170 |
+
linkedin_logo_encoded = encode_image_safe("Images/linkedin-logo.png")
|
| 171 |
+
website_logo_encoded = encode_image_safe("Images/ai-logo.png")
|
| 172 |
|
| 173 |
# UI Setup
|
| 174 |
+
with gr.Blocks(
|
| 175 |
+
theme=gr.themes.Soft(),
|
| 176 |
+
css='footer {visibility: hidden}',
|
| 177 |
+
title="DocBot - Document Analysis Assistant"
|
| 178 |
+
) as demo:
|
| 179 |
+
|
| 180 |
+
gr.Markdown("# DocBot ππ€")
|
| 181 |
+
gr.Markdown("*Intelligent Document Analysis Assistant*")
|
| 182 |
+
|
| 183 |
with gr.Tabs():
|
| 184 |
+
with gr.TabItem("π Introduction"):
|
| 185 |
+
gr.Markdown(description)
|
| 186 |
|
| 187 |
+
with gr.TabItem("π€ DocBot"):
|
| 188 |
+
with gr.Accordion("π Quick Start Guide", open=False):
|
| 189 |
+
gr.Markdown(guide)
|
| 190 |
+
|
| 191 |
with gr.Row():
|
| 192 |
with gr.Column(scale=1):
|
| 193 |
+
with gr.Group():
|
| 194 |
+
gr.Markdown("### Document Processing")
|
| 195 |
+
file_input = gr.File(
|
| 196 |
+
file_count="single",
|
| 197 |
+
type='filepath',
|
| 198 |
+
label="Step 1: Upload Document",
|
| 199 |
+
file_types=['.pdf', '.docx', '.doc', '.txt', '.csv', '.xlsx', '.pptx', '.html', '.jpg', '.jpeg', '.png', '.webp', '.svg']
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
embed_model_dropdown = gr.Dropdown(
|
| 203 |
+
choices=embed_models,
|
| 204 |
+
label="Step 2: Select Embedding Model",
|
| 205 |
+
interactive=True,
|
| 206 |
+
value=embed_models[0]
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
with gr.Row():
|
| 210 |
+
btn = gr.Button("π Process Document", variant='primary', size="lg")
|
| 211 |
+
clear = gr.ClearButton("ποΈ Clear", size="lg")
|
| 212 |
+
|
| 213 |
+
output = gr.Textbox(
|
| 214 |
+
label='Processing Status',
|
| 215 |
+
interactive=False,
|
| 216 |
+
placeholder="Upload a document and click 'Process Document' to begin..."
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
with gr.Group():
|
| 220 |
+
gr.Markdown("### Model Selection")
|
| 221 |
+
llm_model_dropdown = gr.Dropdown(
|
| 222 |
+
choices=llm_models,
|
| 223 |
+
label="Step 3: Select Language Model",
|
| 224 |
+
interactive=True,
|
| 225 |
+
value=llm_models[0]
|
| 226 |
+
)
|
| 227 |
+
llm_status = gr.Textbox(
|
| 228 |
+
label="Selected Model",
|
| 229 |
+
interactive=False,
|
| 230 |
+
value=f"LLM set to: {llm_models[0]}"
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
with gr.Column(scale=2):
|
| 234 |
+
gr.Markdown("### Chat with Your Document")
|
| 235 |
+
chatbot = gr.Chatbot(
|
| 236 |
+
height=600,
|
| 237 |
+
placeholder="Process a document first, then start asking questions!",
|
| 238 |
+
show_label=False
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
msg = gr.Textbox(
|
| 242 |
+
placeholder="Step 4: Ask questions about your document...",
|
| 243 |
+
container=False,
|
| 244 |
+
scale=7
|
| 245 |
)
|
| 246 |
+
|
| 247 |
+
with gr.Row():
|
| 248 |
+
submit_btn = gr.Button("Send", variant="primary")
|
| 249 |
+
clear_chat = gr.ClearButton([msg, chatbot], value="Clear Chat")
|
| 250 |
+
|
| 251 |
+
# Add footer if images exist
|
| 252 |
+
if any([github_logo_encoded, linkedin_logo_encoded, website_logo_encoded]):
|
| 253 |
+
gr.HTML(footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded))
|
| 254 |
+
|
| 255 |
+
# Set up event handlers
|
| 256 |
+
def chat_respond(message, history):
|
| 257 |
+
if not message.strip():
|
| 258 |
+
return history, ""
|
| 259 |
+
|
| 260 |
+
response = respond(message, history)
|
| 261 |
+
history.append([message, response])
|
| 262 |
+
return history, ""
|
| 263 |
+
|
| 264 |
+
# Event bindings
|
| 265 |
+
llm_model_dropdown.change(
|
| 266 |
+
fn=set_llm_model,
|
| 267 |
+
inputs=[llm_model_dropdown],
|
| 268 |
+
outputs=[llm_status]
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
btn.click(
|
| 272 |
+
fn=load_files,
|
| 273 |
+
inputs=[file_input, embed_model_dropdown],
|
| 274 |
+
outputs=[output]
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
submit_btn.click(
|
| 278 |
+
fn=chat_respond,
|
| 279 |
+
inputs=[msg, chatbot],
|
| 280 |
+
outputs=[chatbot, msg]
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
msg.submit(
|
| 284 |
+
fn=chat_respond,
|
| 285 |
+
inputs=[msg, chatbot],
|
| 286 |
+
outputs=[chatbot, msg]
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
clear.click(
|
| 290 |
+
lambda: [None, None, ""],
|
| 291 |
+
outputs=[file_input, embed_model_dropdown, output]
|
| 292 |
+
)
|
| 293 |
|
| 294 |
+
# Launch the demo
|
| 295 |
if __name__ == "__main__":
|
| 296 |
+
demo.launch(
|
| 297 |
+
share=True,
|
| 298 |
+
server_name="0.0.0.0",
|
| 299 |
+
server_port=7860,
|
| 300 |
+
show_error=True
|
| 301 |
+
)
|