Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoImageProcessor, AutoModelForImageClassification | |
| import torch | |
| from PIL import Image | |
| # Load the image processor and model | |
| processor = AutoImageProcessor.from_pretrained("ozair23/swin-tiny-patch4-window7-224-finetuned-plantdisease") | |
| model = AutoModelForImageClassification.from_pretrained("ozair23/swin-tiny-patch4-window7-224-finetuned-plantdisease") | |
| # Define the function to process the image and make predictions | |
| def classify_leaf_disease(image): | |
| # Preprocess the image | |
| inputs = processor(images=image, return_tensors="pt") | |
| # Run the model on the image | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # Get the predicted label and confidence score | |
| probs = torch.softmax(outputs.logits, dim=1) | |
| predicted_class_idx = probs.argmax(dim=1).item() | |
| predicted_label = model.config.id2label[predicted_class_idx] | |
| confidence_score = probs[0][predicted_class_idx].item() | |
| # Format the output | |
| return predicted_label, f"{confidence_score:.2f}", image | |
| # Create Gradio Interface | |
| interface = gr.Interface( | |
| fn=classify_leaf_disease, | |
| inputs=gr.Image(type="pil"), | |
| outputs=[ | |
| gr.Textbox(label="Disease Name"), | |
| gr.Textbox(label="Confidence Score"), | |
| gr.Image(type="pil", label="Uploaded Image") | |
| ], | |
| title="Leaf Disease Identification", | |
| description="Upload an image of any plant leaf, and this model will identify the disease and show the confidence score." | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| interface.launch() | |