Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,31 +1,56 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
from PIL import Image
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
# Load the
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
|
| 9 |
def identify_disease(image):
|
| 10 |
-
#
|
| 11 |
-
|
|
|
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
results =
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Define Gradio interface
|
| 20 |
interface = gr.Interface(
|
| 21 |
-
fn=identify_disease,
|
| 22 |
inputs=gr.inputs.Image(type="pil"),
|
| 23 |
outputs=[
|
| 24 |
-
gr.outputs.Image(type="pil", label="
|
| 25 |
-
gr.outputs.Dataframe(
|
| 26 |
],
|
| 27 |
-
title="
|
| 28 |
-
description="Upload an image of a
|
| 29 |
)
|
| 30 |
|
| 31 |
# Launch the app
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from ultralytics import YOLO
|
| 3 |
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
import cv2
|
| 6 |
|
| 7 |
+
# Load the pre-trained YOLOv5 model
|
| 8 |
+
# Use 'yolov5s' or any available YOLO model from ultralytics
|
| 9 |
+
model = YOLO('yolov5s') # Change to a leaf disease detection model if available
|
| 10 |
|
| 11 |
def identify_disease(image):
|
| 12 |
+
# Convert the image to RGB if it's not
|
| 13 |
+
if image.mode != 'RGB':
|
| 14 |
+
image = image.convert('RGB')
|
| 15 |
|
| 16 |
+
# Perform inference
|
| 17 |
+
results = model(image)
|
| 18 |
|
| 19 |
+
# Extract predictions
|
| 20 |
+
predictions = results[0]
|
| 21 |
+
boxes = predictions.boxes
|
| 22 |
+
labels = boxes.cls.cpu().numpy()
|
| 23 |
+
scores = boxes.conf.cpu().numpy()
|
| 24 |
+
class_names = model.names
|
| 25 |
+
|
| 26 |
+
# Annotate image with bounding boxes and labels
|
| 27 |
+
annotated_image = np.array(image)
|
| 28 |
+
for box, label, score in zip(boxes.xyxy.cpu().numpy(), labels, scores):
|
| 29 |
+
x1, y1, x2, y2 = map(int, box)
|
| 30 |
+
class_name = class_names[int(label)]
|
| 31 |
+
confidence = f"{score * 100:.2f}%"
|
| 32 |
+
annotated_image = cv2.rectangle(annotated_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 33 |
+
annotated_image = cv2.putText(annotated_image, f"{class_name} {confidence}", (x1, y1 - 10),
|
| 34 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 35 |
+
|
| 36 |
+
# Convert annotated image back to PIL format
|
| 37 |
+
annotated_image = Image.fromarray(annotated_image)
|
| 38 |
+
|
| 39 |
+
# Prepare results for display
|
| 40 |
+
results_list = [{"Disease": class_names[int(label)], "Confidence": f"{score * 100:.2f}%"} for label, score in zip(labels, scores)]
|
| 41 |
+
|
| 42 |
+
return annotated_image, results_list
|
| 43 |
|
| 44 |
# Define Gradio interface
|
| 45 |
interface = gr.Interface(
|
| 46 |
+
fn=identify_disease,
|
| 47 |
inputs=gr.inputs.Image(type="pil"),
|
| 48 |
outputs=[
|
| 49 |
+
gr.outputs.Image(type="pil", label="Annotated Image"),
|
| 50 |
+
gr.outputs.Dataframe(headers=["Disease", "Confidence"], label="Predictions")
|
| 51 |
],
|
| 52 |
+
title="Leaf Disease Identifier with YOLOv5",
|
| 53 |
+
description="Upload an image of a leaf, and this tool will identify the disease with confidence scores."
|
| 54 |
)
|
| 55 |
|
| 56 |
# Launch the app
|