Spaces:
Running
Running
| import gradio as gr | |
| import pandas as pd | |
| import os | |
| from huggingface_hub import snapshot_download, login | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter | |
| from src.display.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| CONTACT_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| SUB_TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.envs import API | |
| from src.leaderboard.load_results import load_data | |
| # clone / pull the lmeh eval data | |
| TOKEN = os.environ.get("TOKEN", None) | |
| login(token=TOKEN) | |
| RESULTS_REPO = f"SeaLLMs/SeaExam-results" | |
| CACHE_PATH=os.getenv("HF_HOME", ".") | |
| EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") | |
| print(EVAL_RESULTS_PATH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", | |
| token=TOKEN | |
| ) | |
| def restart_space(): | |
| API.restart_space(repo_id="SeaLLMs/SeaExam_leaderboard", token=TOKEN) | |
| all_columns = ['R', 'Model', 'type', 'open?', 'avg-pub', 'avg-prv ⬇️', 'id-pub', | |
| 'th-pub', 'vi-pub', 'id-prv', 'th-prv', 'vi-prv', '#P(B)'] | |
| show_columns = ['R', 'Model','type','open?','#P(B)', 'avg-pub', 'avg-prv ⬇️', | |
| 'id-pub', 'th-pub', 'vi-pub', 'id-prv', 'th-prv', 'vi-prv'] | |
| TYPES = ['number', 'markdown', 'str', 'str', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'] | |
| show_columns_overall = ['R', 'Model', 'type', 'open?','#P(B)', 'SeaExam-pub', 'SeaExam-prv ⬇️', | |
| 'SeaBench-pub', 'SeaBench-prv'] | |
| TYPES_overall = ['number', 'markdown', 'str', 'str', 'number', 'number', 'number', 'number', 'number'] | |
| # Load the data from the csv file | |
| csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results_20250415.csv' | |
| df = pd.read_csv(csv_path, skiprows=1, header=0) | |
| # df_m3exam, df_mmlu, df_avg = load_data(csv_path) | |
| df_seaexam, df_seabench, df_overall = load_data(csv_path) | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| # gr.HTML(SUB_TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.Tab("🏅 Overall"): | |
| Leaderboard( | |
| value=df_overall[show_columns_overall], | |
| select_columns=SelectColumns( | |
| default_selection=show_columns_overall, | |
| cant_deselect=["R", "Model"], | |
| label="Select Columns to Display:", | |
| ), | |
| search_columns=["Model"], | |
| # hide_columns=["model_name_for_query", "Model Size"], | |
| filter_columns=[ | |
| "type", | |
| "open?", | |
| # ColumnFilter("MOE", type="boolean", default=False, label="MoE"), | |
| # ColumnFilter("Flagged", type="boolean", default=False), | |
| ColumnFilter("#P(B)", default=[7, 9], label="Paramers(B)"), | |
| ], | |
| datatype=TYPES_overall, | |
| # column_widths=["3%", "20%", "6%", "4%"] | |
| ) | |
| with gr.Tab("SeaExam"): | |
| Leaderboard( | |
| value=df_seaexam[show_columns], | |
| select_columns=SelectColumns( | |
| default_selection=show_columns, | |
| cant_deselect=["R", "Model"], | |
| label="Select Columns to Display:", | |
| ), | |
| search_columns=["Model"], | |
| # hide_columns=["model_name_for_query", "Model Size"], | |
| filter_columns=[ | |
| "type", | |
| "open?", | |
| # ColumnFilter("MOE", type="boolean", default=False, label="MoE"), | |
| # ColumnFilter("Flagged", type="boolean", default=False), | |
| ColumnFilter("#P(B)", default=[7, 9]), | |
| ], | |
| datatype=TYPES, | |
| # column_widths=["2%", "33%"], | |
| ) | |
| with gr.Tab("SeaBench"): | |
| Leaderboard( | |
| value=df_seabench[show_columns], | |
| select_columns=SelectColumns( | |
| default_selection=show_columns, | |
| cant_deselect=["R", "Model"], | |
| label="Select Columns to Display:", | |
| ), | |
| search_columns=["Model"], | |
| # hide_columns=["model_name_for_query", "Model Size"], | |
| filter_columns=[ | |
| "type", | |
| "open?", | |
| # ColumnFilter("MOE", type="boolean", default=False, label="MoE"), | |
| # ColumnFilter("Flagged", type="boolean", default=False), | |
| ColumnFilter("#P(B)", default=[7, 9]), | |
| ], | |
| datatype=TYPES, | |
| # column_widths=["2%", "33%"], | |
| ) | |
| with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Accordion("📙 Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| gr.Markdown(CONTACT_TEXT, elem_classes="markdown-text") | |
| demo.launch(share=True) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch(share=True) | |