Spaces:
Running
Running
update the UI
Browse files- .DS_Store +0 -0
- .gitignore +3 -0
- app.py +54 -260
- requirements.txt +1 -0
- src/leaderboard/load_results.py +2 -1
.DS_Store
DELETED
|
Binary file (6.15 kB)
|
|
|
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*__pycache__/
|
| 2 |
+
eval-results/
|
| 3 |
+
.DS_Store
|
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import pandas as pd
|
|
| 3 |
import os
|
| 4 |
from huggingface_hub import snapshot_download, login
|
| 5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
|
| 6 |
|
| 7 |
from src.display.about import (
|
| 8 |
CITATION_BUTTON_LABEL,
|
|
@@ -39,59 +40,6 @@ TYPES = ['number', 'markdown', 'str', 'str', 'number', 'number', 'number', 'numb
|
|
| 39 |
# Load the data from the csv file
|
| 40 |
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results_20240808.csv'
|
| 41 |
df_m3exam, df_mmlu, df_avg = load_data(csv_path)
|
| 42 |
-
# df_m3exam = df_m3exam.copy()[show_columns]
|
| 43 |
-
# df_mmlu = df_mmlu.copy()[show_columns]
|
| 44 |
-
df_avg_init = df_avg.copy()[df_avg['type'] == '🔶 chat'][show_columns]
|
| 45 |
-
df_m3exam_init = df_m3exam.copy()[df_m3exam['type'] == '🔶 chat'][show_columns]
|
| 46 |
-
df_mmlu_init = df_mmlu.copy()[df_mmlu['type'] == '🔶 chat'][show_columns]
|
| 47 |
-
|
| 48 |
-
# data_types = ['number', 'str', 'markdown','str', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
|
| 49 |
-
# map_columns = {'rank':'R','type':'type', 'Model':'Model','open?':'open?', 'avg_sea':'avg_sea ⬇️', 'en':'en', 'zh':'zh', 'id':'id', 'th':'th', 'vi':'vi', 'avg':'avg', 'params':'params(B)'}
|
| 50 |
-
# map_types = {'rank': 'number', 'type': 'str', 'Model': 'markdown', 'open?': 'str', 'avg_sea': 'number', 'en': 'number', 'zh': 'number', 'id': 'number', 'th': 'number', 'vi': 'number', 'avg': 'number', 'params': 'number'}
|
| 51 |
-
# Searching and filtering
|
| 52 |
-
def update_table(
|
| 53 |
-
hidden_df: pd.DataFrame,
|
| 54 |
-
# columns: list,
|
| 55 |
-
type_query: list,
|
| 56 |
-
open_query: list,
|
| 57 |
-
# precision_query: str,
|
| 58 |
-
# size_query: list,
|
| 59 |
-
# show_deleted: bool,
|
| 60 |
-
query: str,
|
| 61 |
-
):
|
| 62 |
-
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 63 |
-
# filtered_df = filter_queries(query, filtered_df)
|
| 64 |
-
# df = select_columns(filtered_df, columns)
|
| 65 |
-
filtered_df = hidden_df.copy()
|
| 66 |
-
|
| 67 |
-
filtered_df = filtered_df[filtered_df['type'].isin(type_query)]
|
| 68 |
-
map_open = {'open': 'Y', 'closed': 'N'}
|
| 69 |
-
filtered_df = filtered_df[filtered_df['open?'].isin([map_open[o] for o in open_query])]
|
| 70 |
-
filtered_df = filter_queries(query, filtered_df)
|
| 71 |
-
# filtered_df = filtered_df[[map_columns[k] for k in columns]]
|
| 72 |
-
# deduplication
|
| 73 |
-
# df = df.drop_duplicates(subset=["Model"])
|
| 74 |
-
df = filtered_df.drop_duplicates()
|
| 75 |
-
df = df[show_columns]
|
| 76 |
-
return df
|
| 77 |
-
|
| 78 |
-
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 79 |
-
return df[(df['Model'].str.contains(query, case=False))]
|
| 80 |
-
|
| 81 |
-
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
| 82 |
-
final_df = []
|
| 83 |
-
if query != "":
|
| 84 |
-
queries = [q.strip() for q in query.split(";")]
|
| 85 |
-
for _q in queries:
|
| 86 |
-
_q = _q.strip()
|
| 87 |
-
if _q != "":
|
| 88 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
| 89 |
-
if len(temp_filtered_df) > 0:
|
| 90 |
-
final_df.append(temp_filtered_df)
|
| 91 |
-
if len(final_df) > 0:
|
| 92 |
-
filtered_df = pd.concat(final_df)
|
| 93 |
-
|
| 94 |
-
return filtered_df
|
| 95 |
|
| 96 |
demo = gr.Blocks(css=custom_css)
|
| 97 |
with demo:
|
|
@@ -100,222 +48,68 @@ with demo:
|
|
| 100 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 101 |
|
| 102 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 103 |
-
with gr.
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
#
|
| 117 |
-
#
|
| 118 |
-
|
| 119 |
-
# interactive=True,
|
| 120 |
-
# )
|
| 121 |
-
|
| 122 |
-
# with gr.Row():
|
| 123 |
-
with gr.Column():
|
| 124 |
-
type_query = gr.CheckboxGroup(
|
| 125 |
-
choices=["🟢 base", "🔶 chat"],
|
| 126 |
-
value=["🔶 chat" ],
|
| 127 |
-
label="model types to show",
|
| 128 |
-
elem_id="type-select",
|
| 129 |
-
interactive=True,
|
| 130 |
-
)
|
| 131 |
-
with gr.Column():
|
| 132 |
-
open_query = gr.CheckboxGroup(
|
| 133 |
-
choices=["open", "closed"],
|
| 134 |
-
value=["open", "closed"],
|
| 135 |
-
label="open-source or closed-source models?",
|
| 136 |
-
elem_id="open-select",
|
| 137 |
-
interactive=True,
|
| 138 |
-
)
|
| 139 |
-
|
| 140 |
-
leaderboard_table = gr.components.Dataframe(
|
| 141 |
-
value=df_avg_init,
|
| 142 |
-
# [[map_columns[k] for k in shown_columns.value]],
|
| 143 |
-
# value=leaderboard_df[
|
| 144 |
-
# [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 145 |
-
# + shown_columns.value
|
| 146 |
-
# + [AutoEvalColumn.dummy.name]
|
| 147 |
-
# ],
|
| 148 |
-
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 149 |
-
datatype=TYPES,
|
| 150 |
-
elem_id="leaderboard-table",
|
| 151 |
-
interactive=False,
|
| 152 |
-
# datatype=['number', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
|
| 153 |
-
# datatype=[map_types[k] for k in shown_columns.value],
|
| 154 |
-
visible=True,
|
| 155 |
-
# column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"],
|
| 156 |
-
)
|
| 157 |
-
|
| 158 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 159 |
-
value=df_avg,
|
| 160 |
-
# elem_id="leaderboard-table",
|
| 161 |
-
interactive=False,
|
| 162 |
-
visible=False,
|
| 163 |
-
)
|
| 164 |
-
|
| 165 |
-
search_bar.submit(
|
| 166 |
-
update_table,
|
| 167 |
-
[
|
| 168 |
-
# df_avg,
|
| 169 |
-
hidden_leaderboard_table_for_search,
|
| 170 |
-
# shown_columns,
|
| 171 |
-
type_query,
|
| 172 |
-
open_query,
|
| 173 |
-
# filter_columns_type,
|
| 174 |
-
# filter_columns_precision,
|
| 175 |
-
# filter_columns_size,
|
| 176 |
-
# deleted_models_visibility,
|
| 177 |
-
search_bar,
|
| 178 |
],
|
| 179 |
-
leaderboard_table,
|
| 180 |
-
)
|
| 181 |
-
for selector in [type_query, open_query]:
|
| 182 |
-
selector.change(
|
| 183 |
-
update_table,
|
| 184 |
-
[
|
| 185 |
-
# df_avg,
|
| 186 |
-
hidden_leaderboard_table_for_search,
|
| 187 |
-
# shown_columns,
|
| 188 |
-
type_query,
|
| 189 |
-
open_query,
|
| 190 |
-
# filter_columns_type,
|
| 191 |
-
# filter_columns_precision,
|
| 192 |
-
# filter_columns_size,
|
| 193 |
-
# deleted_models_visibility,
|
| 194 |
-
search_bar,
|
| 195 |
-
],
|
| 196 |
-
leaderboard_table,
|
| 197 |
-
)
|
| 198 |
-
with gr.TabItem("M3Exam", elem_id="llm-benchmark-M3Exam", id=1):
|
| 199 |
-
with gr.Row():
|
| 200 |
-
with gr.Column():
|
| 201 |
-
search_bar = gr.Textbox(
|
| 202 |
-
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 203 |
-
show_label=False,
|
| 204 |
-
elem_id="search-bar",
|
| 205 |
-
)
|
| 206 |
-
with gr.Column():
|
| 207 |
-
type_query = gr.CheckboxGroup(
|
| 208 |
-
choices=["🟢 base", "🔶 chat"],
|
| 209 |
-
value=["🔶 chat" ],
|
| 210 |
-
label="model types to show",
|
| 211 |
-
elem_id="type-select",
|
| 212 |
-
interactive=True,
|
| 213 |
-
)
|
| 214 |
-
with gr.Column():
|
| 215 |
-
open_query = gr.CheckboxGroup(
|
| 216 |
-
choices=["open", "closed"],
|
| 217 |
-
value=["open", "closed"],
|
| 218 |
-
label="open-source or closed-source models?",
|
| 219 |
-
elem_id="open-select",
|
| 220 |
-
interactive=True,
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
leaderboard_table = gr.components.Dataframe(
|
| 224 |
-
value=df_m3exam_init,
|
| 225 |
-
interactive=False,
|
| 226 |
-
visible=True,
|
| 227 |
-
# datatype=['number', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
|
| 228 |
datatype=TYPES,
|
|
|
|
| 229 |
)
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
[
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
|
|
|
|
|
|
|
|
|
| 244 |
],
|
| 245 |
-
leaderboard_table,
|
| 246 |
-
)
|
| 247 |
-
for selector in [type_query, open_query]:
|
| 248 |
-
selector.change(
|
| 249 |
-
update_table,
|
| 250 |
-
[
|
| 251 |
-
hidden_leaderboard_table_for_search,
|
| 252 |
-
type_query,
|
| 253 |
-
open_query,
|
| 254 |
-
search_bar,
|
| 255 |
-
],
|
| 256 |
-
leaderboard_table,
|
| 257 |
-
)
|
| 258 |
-
|
| 259 |
-
with gr.TabItem("MMLU", elem_id="llm-benchmark-MMLU", id=2):
|
| 260 |
-
with gr.Row():
|
| 261 |
-
with gr.Column():
|
| 262 |
-
search_bar = gr.Textbox(
|
| 263 |
-
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 264 |
-
show_label=False,
|
| 265 |
-
elem_id="search-bar",
|
| 266 |
-
)
|
| 267 |
-
with gr.Column():
|
| 268 |
-
type_query = gr.CheckboxGroup(
|
| 269 |
-
choices=["🟢 base", "🔶 chat"],
|
| 270 |
-
value=["🔶 chat" ],
|
| 271 |
-
label="model types to show",
|
| 272 |
-
elem_id="type-select",
|
| 273 |
-
interactive=True,
|
| 274 |
-
)
|
| 275 |
-
with gr.Column():
|
| 276 |
-
open_query = gr.CheckboxGroup(
|
| 277 |
-
choices=["open", "closed"],
|
| 278 |
-
value=["open", "closed"],
|
| 279 |
-
label="open-source or closed-source models?",
|
| 280 |
-
elem_id="open-select",
|
| 281 |
-
interactive=True,
|
| 282 |
-
)
|
| 283 |
-
|
| 284 |
-
leaderboard_table = gr.components.Dataframe(
|
| 285 |
-
value=df_mmlu_init,
|
| 286 |
-
interactive=False,
|
| 287 |
-
visible=True,
|
| 288 |
-
# datatype=['number', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
|
| 289 |
datatype=TYPES,
|
|
|
|
| 290 |
)
|
| 291 |
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
[
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
| 305 |
],
|
| 306 |
-
|
|
|
|
| 307 |
)
|
| 308 |
-
for selector in [type_query, open_query]:
|
| 309 |
-
selector.change(
|
| 310 |
-
update_table,
|
| 311 |
-
[
|
| 312 |
-
hidden_leaderboard_table_for_search,
|
| 313 |
-
type_query,
|
| 314 |
-
open_query,
|
| 315 |
-
search_bar,
|
| 316 |
-
],
|
| 317 |
-
leaderboard_table,
|
| 318 |
-
)
|
| 319 |
|
| 320 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
|
| 321 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
|
| 3 |
import os
|
| 4 |
from huggingface_hub import snapshot_download, login
|
| 5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 6 |
+
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
|
| 7 |
|
| 8 |
from src.display.about import (
|
| 9 |
CITATION_BUTTON_LABEL,
|
|
|
|
| 40 |
# Load the data from the csv file
|
| 41 |
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results_20240808.csv'
|
| 42 |
df_m3exam, df_mmlu, df_avg = load_data(csv_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
demo = gr.Blocks(css=custom_css)
|
| 45 |
with demo:
|
|
|
|
| 48 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 49 |
|
| 50 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 51 |
+
with gr.Tab("🏅 Overall"):
|
| 52 |
+
Leaderboard(
|
| 53 |
+
value=df_avg[show_columns],
|
| 54 |
+
select_columns=SelectColumns(
|
| 55 |
+
default_selection=show_columns,
|
| 56 |
+
cant_deselect=["R", "Model"],
|
| 57 |
+
label="Select Columns to Display:",
|
| 58 |
+
),
|
| 59 |
+
search_columns=["Model"],
|
| 60 |
+
# hide_columns=["model_name_for_query", "Model Size"],
|
| 61 |
+
filter_columns=[
|
| 62 |
+
"type",
|
| 63 |
+
"open?",
|
| 64 |
+
# ColumnFilter("MOE", type="boolean", default=False, label="MoE"),
|
| 65 |
+
# ColumnFilter("Flagged", type="boolean", default=False),
|
| 66 |
+
ColumnFilter("params(B)", default=[7, 10]),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
datatype=TYPES,
|
| 69 |
+
# column_widths=["2%", "33%"],
|
| 70 |
)
|
| 71 |
+
|
| 72 |
+
with gr.Tab("M3Exam"):
|
| 73 |
+
Leaderboard(
|
| 74 |
+
value=df_m3exam[show_columns],
|
| 75 |
+
select_columns=SelectColumns(
|
| 76 |
+
default_selection=show_columns,
|
| 77 |
+
cant_deselect=["R", "Model"],
|
| 78 |
+
label="Select Columns to Display:",
|
| 79 |
+
),
|
| 80 |
+
search_columns=["Model"],
|
| 81 |
+
# hide_columns=["model_name_for_query", "Model Size"],
|
| 82 |
+
filter_columns=[
|
| 83 |
+
"type",
|
| 84 |
+
"open?",
|
| 85 |
+
# ColumnFilter("MOE", type="boolean", default=False, label="MoE"),
|
| 86 |
+
# ColumnFilter("Flagged", type="boolean", default=False),
|
| 87 |
+
ColumnFilter("params(B)", default=[7, 10]),
|
| 88 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
datatype=TYPES,
|
| 90 |
+
# column_widths=["2%", "33%"],
|
| 91 |
)
|
| 92 |
|
| 93 |
+
with gr.Tab("MMLU"):
|
| 94 |
+
Leaderboard(
|
| 95 |
+
value=df_mmlu[show_columns],
|
| 96 |
+
select_columns=SelectColumns(
|
| 97 |
+
default_selection=show_columns,
|
| 98 |
+
cant_deselect=["R", "Model"],
|
| 99 |
+
label="Select Columns to Display:",
|
| 100 |
+
),
|
| 101 |
+
search_columns=["Model"],
|
| 102 |
+
# hide_columns=["model_name_for_query", "Model Size"],
|
| 103 |
+
filter_columns=[
|
| 104 |
+
"type",
|
| 105 |
+
"open?",
|
| 106 |
+
# ColumnFilter("MOE", type="boolean", default=False, label="MoE"),
|
| 107 |
+
# ColumnFilter("Flagged", type="boolean", default=False),
|
| 108 |
+
ColumnFilter("params(B)", default=[7, 10]),
|
| 109 |
],
|
| 110 |
+
datatype=TYPES,
|
| 111 |
+
# column_widths=["2%", "33%"],
|
| 112 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
|
| 115 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
requirements.txt
CHANGED
|
@@ -3,6 +3,7 @@ black==23.11.0
|
|
| 3 |
click==8.1.3
|
| 4 |
datasets==2.14.5
|
| 5 |
gradio==4.4.0
|
|
|
|
| 6 |
gradio_client==0.7.0
|
| 7 |
huggingface-hub>=0.18.0
|
| 8 |
matplotlib==3.7.1
|
|
|
|
| 3 |
click==8.1.3
|
| 4 |
datasets==2.14.5
|
| 5 |
gradio==4.4.0
|
| 6 |
+
gradio-leaderboard==0.0.11
|
| 7 |
gradio_client==0.7.0
|
| 8 |
huggingface-hub>=0.18.0
|
| 9 |
matplotlib==3.7.1
|
src/leaderboard/load_results.py
CHANGED
|
@@ -28,7 +28,8 @@ def make_clickable_model(model_name, link=None):
|
|
| 28 |
if len(model_name.split("/")) == 2:
|
| 29 |
link = "https://huggingface.co/" + model_name
|
| 30 |
return (
|
| 31 |
-
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
|
|
|
|
| 32 |
)
|
| 33 |
return model_name
|
| 34 |
|
|
|
|
| 28 |
if len(model_name.split("/")) == 2:
|
| 29 |
link = "https://huggingface.co/" + model_name
|
| 30 |
return (
|
| 31 |
+
# f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
|
| 32 |
+
f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name.split("/")[-1]}</a>'
|
| 33 |
)
|
| 34 |
return model_name
|
| 35 |
|