Spaces:
Running
Running
update scripts
Browse files- app.py +42 -1
- src/display/about.py +2 -1
app.py
CHANGED
|
@@ -34,12 +34,53 @@ def restart_space():
|
|
| 34 |
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results.csv'
|
| 35 |
df_m3exam, df_mmlu, df_avg = load_data(csv_path)
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
demo = gr.Blocks(css=custom_css)
|
| 38 |
with demo:
|
| 39 |
gr.HTML(TITLE)
|
| 40 |
-
|
| 41 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 42 |
with gr.TabItem("π
Overall", elem_id="llm-benchmark-Sum", id=0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
leaderboard_table = gr.components.Dataframe(
|
| 44 |
value=df_avg,
|
| 45 |
# value=leaderboard_df[
|
|
|
|
| 34 |
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results.csv'
|
| 35 |
df_m3exam, df_mmlu, df_avg = load_data(csv_path)
|
| 36 |
|
| 37 |
+
# Searching and filtering
|
| 38 |
+
def update_table(
|
| 39 |
+
hidden_df: pd.DataFrame,
|
| 40 |
+
# columns: list,
|
| 41 |
+
# type_query: list,
|
| 42 |
+
# precision_query: str,
|
| 43 |
+
# size_query: list,
|
| 44 |
+
# show_deleted: bool,
|
| 45 |
+
query: str,
|
| 46 |
+
):
|
| 47 |
+
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 48 |
+
# filtered_df = filter_queries(query, filtered_df)
|
| 49 |
+
# df = select_columns(filtered_df, columns)
|
| 50 |
+
df = filter_queries(query, hidden_df)
|
| 51 |
+
return df
|
| 52 |
+
|
| 53 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 54 |
+
return df[(df['Model'].str.contains(query, case=False))]
|
| 55 |
+
|
| 56 |
+
def filter_queries(query: str, df: pd.DataFrame) -> pd.DataFrame:
|
| 57 |
+
final_df = []
|
| 58 |
+
if query != "":
|
| 59 |
+
queries = [q.strip() for q in query.split(";")]
|
| 60 |
+
for _q in queries:
|
| 61 |
+
_q = _q.strip()
|
| 62 |
+
if _q != "":
|
| 63 |
+
temp_filtered_df = search_table(df, _q)
|
| 64 |
+
if len(temp_filtered_df) > 0:
|
| 65 |
+
final_df.append(temp_filtered_df)
|
| 66 |
+
if len(final_df) > 0:
|
| 67 |
+
filtered_df = pd.concat(final_df)
|
| 68 |
+
|
| 69 |
+
return filtered_df
|
| 70 |
+
|
| 71 |
demo = gr.Blocks(css=custom_css)
|
| 72 |
with demo:
|
| 73 |
gr.HTML(TITLE)
|
| 74 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 75 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 76 |
with gr.TabItem("π
Overall", elem_id="llm-benchmark-Sum", id=0):
|
| 77 |
+
with gr.Row():
|
| 78 |
+
search_bar = gr.Textbox(
|
| 79 |
+
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 80 |
+
show_label=False,
|
| 81 |
+
elem_id="search-bar",
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
leaderboard_table = gr.components.Dataframe(
|
| 85 |
value=df_avg,
|
| 86 |
# value=leaderboard_df[
|
src/display/about.py
CHANGED
|
@@ -20,7 +20,8 @@ TITLE = """<h1 align="center" id="space-title">SeaExam Leaderboard</h1>"""
|
|
| 20 |
|
| 21 |
# What does your leaderboard evaluate?
|
| 22 |
INTRODUCTION_TEXT = """
|
| 23 |
-
|
|
|
|
| 24 |
"""
|
| 25 |
|
| 26 |
# Which evaluations are you running? how can people reproduce what you have?
|
|
|
|
| 20 |
|
| 21 |
# What does your leaderboard evaluate?
|
| 22 |
INTRODUCTION_TEXT = """
|
| 23 |
+
π’: pre-trained
|
| 24 |
+
πΆ: fine-tuned
|
| 25 |
"""
|
| 26 |
|
| 27 |
# Which evaluations are you running? how can people reproduce what you have?
|