File size: 7,745 Bytes
6f65703
 
7223d40
 
6f65703
 
 
 
7223d40
 
 
 
 
 
 
 
6f65703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7223d40
6f65703
 
 
 
 
 
 
 
 
 
 
7223d40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f65703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7223d40
6f65703
 
 
 
 
7223d40
6f65703
 
 
7223d40
6f65703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr
import threading
from util import process_image_edit, get_country_info_safe
from nfsw import NSFWDetector

IP_Dict = {}
NSFW_Dict = {}  # 记录每个IP的NSFW违规次数

# 初始化NSFW检测器(从Hugging Face下载)
try:
    nsfw_detector = NSFWDetector()  # 自动从Hugging Face下载falconsai_yolov9_nsfw_model_quantized.pt
    print("✅ NSFW检测器初始化成功")
except Exception as e:
    print(f"❌ NSFW检测器初始化失败: {e}")
    nsfw_detector = None

def edit_image_interface(input_image, prompt, request: gr.Request, progress=gr.Progress()):
    """
    Interface function for processing image editing
    """
    # 提取用户IP
    client_ip = request.client.host
    x_forwarded_for = dict(request.headers).get('x-forwarded-for')
    if x_forwarded_for:
        client_ip = x_forwarded_for   
    if client_ip not in IP_Dict:
        IP_Dict[client_ip] = 0
    IP_Dict[client_ip] += 1

    # 获取IP属地信息
    country_info = get_country_info_safe(client_ip)
    
    # 检查IP是否因NSFW违规过多而被屏蔽 3 
    if client_ip in NSFW_Dict and NSFW_Dict[client_ip] >= 3:
        print(f"❌ IP blocked due to excessive NSFW violations - IP: {client_ip}({country_info}), violations: {NSFW_Dict[client_ip]}")
        return None, f"❌ Your ip {client_ip},your region has been blocked"
    
    if input_image is None:
        return None, "Please upload an image first"
    
    if not prompt or prompt.strip() == "":
        return None, "Please enter editing prompt"
    
    # 检查prompt长度是否大于3个字符
    if len(prompt.strip()) <= 3:
        return None, "❌ Editing prompt must be more than 3 characters"
    
    # 检查图片是否包含NSFW内容
    nsfw_result = None
    if nsfw_detector is not None:
        try:
            nsfw_result = nsfw_detector.predict_label_only(input_image)
            if nsfw_result.lower() == "nsfw":
                # 记录NSFW违规次数
                if client_ip not in NSFW_Dict:
                    NSFW_Dict[client_ip] = 0
                NSFW_Dict[client_ip] += 1
                print(f"❌ NSFW image detected - IP: {client_ip}({country_info}), violations: {NSFW_Dict[client_ip]}")
                return None, f"❌ Your ip {client_ip},your region has been blocked"
        except Exception as e:
            print(f"⚠️ NSFW检测失败: {e}")
            # 检测失败时允许继续处理
    
    if IP_Dict[client_ip]>8 and country_info.lower() in ["印度", "巴基斯坦"]:
        print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
        return None, "❌ Content not allowed. Please modify your prompt"
    if IP_Dict[client_ip]>18 and country_info.lower() in ["中国"]:
        print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
        return None, "❌ Content not allowed. Please modify your prompt"
        
    if client_ip.lower() in ["221.194.171.230", "101.126.56.37", "101.126.56.44"]:
        print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
        return None, "❌ Content not allowed. Please modify your prompt"
        

    result_url = None
    status_message = ""
    
    def progress_callback(message):
        nonlocal status_message
        status_message = message
        progress(0.5, desc=message)
    
    try:
        # 打印成功访问的信息
        print(f"✅ Processing started - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}", flush=True)
        
        # Call image editing processing function
        result_url, message = process_image_edit(input_image, prompt.strip(), progress_callback)
        
        if result_url:
            print(f"✅ Processing completed successfully - IP: {client_ip}({country_info}), result_url: {result_url}", flush=True)
            progress(1.0, desc="Processing completed")
            return result_url, "✅ " + message
        else:
            print(f"❌ Processing failed - IP: {client_ip}({country_info}), error: {message}", flush=True)
            return None, "❌ " + message
            
    except Exception as e:
        return None, f"❌ Error occurred during processing: {str(e)}"

# Create Gradio interface
def create_app():
    with gr.Blocks(
        title="AI Image Editor",
        theme=gr.themes.Soft(),
        css="""
        .main-container {
            max-width: 1200px;
            margin: 0 auto;
        }
        .upload-area {
            border: 2px dashed #ccc;
            border-radius: 10px;
            padding: 20px;
            text-align: center;
        }
        .result-area {
            margin-top: 20px;
            padding: 20px;
            border-radius: 10px;
            background-color: #f8f9fa;
        }
        """
    ) as app:
        
        gr.Markdown(
            """
            # 🎨 AI Image Editor
            """,
            elem_classes=["main-container"]
        )
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### 📸 Upload Image")
                input_image = gr.Image(
                    label="Select image to edit",
                    type="filepath",
                    height=400,
                    elem_classes=["upload-area"]
                )
                
                gr.Markdown("### ✍️ Editing Instructions")
                prompt_input = gr.Textbox(
                    label="Enter editing prompt",
                    placeholder="For example: change background to beach, add rainbow, remove background, etc...",
                    lines=3,
                    max_lines=5
                )
                
                edit_button = gr.Button(
                    "🚀 Start Editing",
                    variant="primary",
                    size="lg"
                )
            
            with gr.Column(scale=1):
                gr.Markdown("### 🎯 Editing Result")
                output_image = gr.Image(
                    label="Edited image",
                    height=400,
                    elem_classes=["result-area"]
                )
                
                status_output = gr.Textbox(
                    label="Processing status",
                    lines=2,
                    max_lines=3,
                    interactive=False
                )
        
        # Example area
        gr.Markdown("### 💡 Prompt Examples")
        with gr.Row():
            example_prompts = [
                "Change the character's background to a sunny seaside with blue waves.",
                "Change the character's background to New York at night with neon lights.",
                "Change the character's background to a fairytale castle with bright colors.",
                "Change background to forest",
                "Change background to snow mountain"
            ]
            
            for prompt in example_prompts:
                gr.Button(
                    prompt,
                    size="sm"
                ).click(
                    lambda p=prompt: p,
                    outputs=prompt_input
                )
        
        # Bind button click event
        edit_button.click(
            fn=edit_image_interface,
            inputs=[input_image, prompt_input],
            outputs=[output_image, status_output],
            show_progress=True
        )
    
    return app

if __name__ == "__main__":
    app = create_app()
    app.queue()  # Enable queue to handle concurrent requests
    app.launch()