Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 7,745 Bytes
			
			6f65703 7223d40 6f65703 7223d40 6f65703 7223d40 6f65703 7223d40 6f65703 7223d40 6f65703 7223d40 6f65703 7223d40 6f65703  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207  | 
								import gradio as gr
import threading
from util import process_image_edit, get_country_info_safe
from nfsw import NSFWDetector
IP_Dict = {}
NSFW_Dict = {}  # 记录每个IP的NSFW违规次数
# 初始化NSFW检测器(从Hugging Face下载)
try:
    nsfw_detector = NSFWDetector()  # 自动从Hugging Face下载falconsai_yolov9_nsfw_model_quantized.pt
    print("✅ NSFW检测器初始化成功")
except Exception as e:
    print(f"❌ NSFW检测器初始化失败: {e}")
    nsfw_detector = None
def edit_image_interface(input_image, prompt, request: gr.Request, progress=gr.Progress()):
    """
    Interface function for processing image editing
    """
    # 提取用户IP
    client_ip = request.client.host
    x_forwarded_for = dict(request.headers).get('x-forwarded-for')
    if x_forwarded_for:
        client_ip = x_forwarded_for   
    if client_ip not in IP_Dict:
        IP_Dict[client_ip] = 0
    IP_Dict[client_ip] += 1
    # 获取IP属地信息
    country_info = get_country_info_safe(client_ip)
    
    # 检查IP是否因NSFW违规过多而被屏蔽 3 
    if client_ip in NSFW_Dict and NSFW_Dict[client_ip] >= 3:
        print(f"❌ IP blocked due to excessive NSFW violations - IP: {client_ip}({country_info}), violations: {NSFW_Dict[client_ip]}")
        return None, f"❌ Your ip {client_ip},your region has been blocked"
    
    if input_image is None:
        return None, "Please upload an image first"
    
    if not prompt or prompt.strip() == "":
        return None, "Please enter editing prompt"
    
    # 检查prompt长度是否大于3个字符
    if len(prompt.strip()) <= 3:
        return None, "❌ Editing prompt must be more than 3 characters"
    
    # 检查图片是否包含NSFW内容
    nsfw_result = None
    if nsfw_detector is not None:
        try:
            nsfw_result = nsfw_detector.predict_label_only(input_image)
            if nsfw_result.lower() == "nsfw":
                # 记录NSFW违规次数
                if client_ip not in NSFW_Dict:
                    NSFW_Dict[client_ip] = 0
                NSFW_Dict[client_ip] += 1
                print(f"❌ NSFW image detected - IP: {client_ip}({country_info}), violations: {NSFW_Dict[client_ip]}")
                return None, f"❌ Your ip {client_ip},your region has been blocked"
        except Exception as e:
            print(f"⚠️ NSFW检测失败: {e}")
            # 检测失败时允许继续处理
    
    if IP_Dict[client_ip]>8 and country_info.lower() in ["印度", "巴基斯坦"]:
        print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
        return None, "❌ Content not allowed. Please modify your prompt"
    if IP_Dict[client_ip]>18 and country_info.lower() in ["中国"]:
        print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
        return None, "❌ Content not allowed. Please modify your prompt"
        
    if client_ip.lower() in ["221.194.171.230", "101.126.56.37", "101.126.56.44"]:
        print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
        return None, "❌ Content not allowed. Please modify your prompt"
        
    result_url = None
    status_message = ""
    
    def progress_callback(message):
        nonlocal status_message
        status_message = message
        progress(0.5, desc=message)
    
    try:
        # 打印成功访问的信息
        print(f"✅ Processing started - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}", flush=True)
        
        # Call image editing processing function
        result_url, message = process_image_edit(input_image, prompt.strip(), progress_callback)
        
        if result_url:
            print(f"✅ Processing completed successfully - IP: {client_ip}({country_info}), result_url: {result_url}", flush=True)
            progress(1.0, desc="Processing completed")
            return result_url, "✅ " + message
        else:
            print(f"❌ Processing failed - IP: {client_ip}({country_info}), error: {message}", flush=True)
            return None, "❌ " + message
            
    except Exception as e:
        return None, f"❌ Error occurred during processing: {str(e)}"
# Create Gradio interface
def create_app():
    with gr.Blocks(
        title="AI Image Editor",
        theme=gr.themes.Soft(),
        css="""
        .main-container {
            max-width: 1200px;
            margin: 0 auto;
        }
        .upload-area {
            border: 2px dashed #ccc;
            border-radius: 10px;
            padding: 20px;
            text-align: center;
        }
        .result-area {
            margin-top: 20px;
            padding: 20px;
            border-radius: 10px;
            background-color: #f8f9fa;
        }
        """
    ) as app:
        
        gr.Markdown(
            """
            # 🎨 AI Image Editor
            """,
            elem_classes=["main-container"]
        )
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### 📸 Upload Image")
                input_image = gr.Image(
                    label="Select image to edit",
                    type="filepath",
                    height=400,
                    elem_classes=["upload-area"]
                )
                
                gr.Markdown("### ✍️ Editing Instructions")
                prompt_input = gr.Textbox(
                    label="Enter editing prompt",
                    placeholder="For example: change background to beach, add rainbow, remove background, etc...",
                    lines=3,
                    max_lines=5
                )
                
                edit_button = gr.Button(
                    "🚀 Start Editing",
                    variant="primary",
                    size="lg"
                )
            
            with gr.Column(scale=1):
                gr.Markdown("### 🎯 Editing Result")
                output_image = gr.Image(
                    label="Edited image",
                    height=400,
                    elem_classes=["result-area"]
                )
                
                status_output = gr.Textbox(
                    label="Processing status",
                    lines=2,
                    max_lines=3,
                    interactive=False
                )
        
        # Example area
        gr.Markdown("### 💡 Prompt Examples")
        with gr.Row():
            example_prompts = [
                "Change the character's background to a sunny seaside with blue waves.",
                "Change the character's background to New York at night with neon lights.",
                "Change the character's background to a fairytale castle with bright colors.",
                "Change background to forest",
                "Change background to snow mountain"
            ]
            
            for prompt in example_prompts:
                gr.Button(
                    prompt,
                    size="sm"
                ).click(
                    lambda p=prompt: p,
                    outputs=prompt_input
                )
        
        # Bind button click event
        edit_button.click(
            fn=edit_image_interface,
            inputs=[input_image, prompt_input],
            outputs=[output_image, status_output],
            show_progress=True
        )
    
    return app
if __name__ == "__main__":
    app = create_app()
    app.queue()  # Enable queue to handle concurrent requests
    app.launch()
 |