File size: 74,965 Bytes
e7541ee
 
 
4c55d00
e7541ee
61f70d4
 
 
 
4c55d00
 
 
e7541ee
 
 
 
 
 
 
 
4c55d00
 
 
 
 
 
 
 
 
 
 
 
 
 
e7541ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c55d00
 
 
 
 
e7541ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c55d00
 
 
 
e7541ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f70d4
 
 
 
e7541ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f70d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7541ee
 
 
 
 
 
 
 
 
 
 
 
61f70d4
e7541ee
 
 
61f70d4
e7541ee
 
 
 
61f70d4
e7541ee
 
 
 
 
61f70d4
e7541ee
 
 
61f70d4
e7541ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f70d4
e7541ee
 
 
 
 
 
61f70d4
e7541ee
 
 
 
 
 
 
 
 
61f70d4
e7541ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c55d00
 
 
 
 
 
 
 
 
 
 
 
 
e7541ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c55d00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7541ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f70d4
e7541ee
 
 
 
61f70d4
e7541ee
61f70d4
e7541ee
 
 
 
 
61f70d4
e7541ee
 
61f70d4
e7541ee
 
61f70d4
e7541ee
 
 
 
 
 
 
 
61f70d4
 
 
e7541ee
61f70d4
e7541ee
 
 
 
 
 
 
 
 
 
 
 
 
61f70d4
 
 
 
e7541ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f70d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c55d00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7541ee
 
 
 
 
61f70d4
e7541ee
 
61f70d4
e7541ee
 
 
 
 
 
 
 
 
4c55d00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7541ee
 
61f70d4
e7541ee
 
 
61f70d4
e7541ee
 
 
 
 
 
 
 
 
61f70d4
e7541ee
 
 
 
 
61f70d4
e7541ee
 
61f70d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7541ee
61f70d4
e7541ee
 
 
61f70d4
e7541ee
 
 
 
 
 
 
 
4c55d00
e7541ee
 
 
 
 
4c55d00
 
 
 
 
 
 
 
 
e7541ee
61f70d4
e7541ee
 
 
4c55d00
e7541ee
4c55d00
 
 
 
 
e7541ee
 
61f70d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7541ee
 
61f70d4
e7541ee
61f70d4
397c271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Union, List, Dict, Any, Callable
from dataclasses import dataclass
import numpy as np
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import to_tensor, normalize
import warnings
from contextlib import contextmanager
from functools import wraps

from transformers import PretrainedConfig, PreTrainedModel, CLIPTextModel, CLIPTokenizer
from transformers.modeling_outputs import BaseModelOutputWithPooling
from diffusers import DiffusionPipeline, DDIMScheduler
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput

# Optimization imports
try:
    import transformer_engine.pytorch as te
    from transformer_engine.common import recipe
    HAS_TRANSFORMER_ENGINE = True
except ImportError:
    HAS_TRANSFORMER_ENGINE = False

try:
    from torch._dynamo import config as dynamo_config
    HAS_TORCH_COMPILE = hasattr(torch, 'compile')
except ImportError:
    HAS_TORCH_COMPILE = False

# -----------------------------------------------------------------------------
# 1. Advanced Configuration (8B Scale)
# -----------------------------------------------------------------------------

class OmniMMDitV2Config(PretrainedConfig):
    model_type = "omnimm_dit_v2"
    
    def __init__(
        self,
        vocab_size: int = 49408,
        hidden_size: int = 4096,          # 4096 dim for ~7B-8B scale
        intermediate_size: int = 11008,   # Llama-style MLP expansion
        num_hidden_layers: int = 32,      # Deep network
        num_attention_heads: int = 32,
        num_key_value_heads: Optional[int] = 8,  # GQA (Grouped Query Attention)
        hidden_act: str = "silu",
        max_position_embeddings: int = 4096,
        initializer_range: float = 0.02,
        rms_norm_eps: float = 1e-5,
        use_cache: bool = True,
        pad_token_id: int = 0,
        bos_token_id: int = 1,
        eos_token_id: int = 2,
        tie_word_embeddings: bool = False,
        rope_theta: float = 10000.0,
        # DiT Specifics
        patch_size: int = 2,
        in_channels: int = 4,             # VAE Latent channels
        out_channels: int = 4, # x2 for variance if learned
        frequency_embedding_size: int = 256,
        # Multi-Modal Specifics
        max_condition_images: int = 3,    # Support 1-3 input images
        visual_embed_dim: int = 1024,     # e.g., SigLIP or CLIP Vision
        text_embed_dim: int = 4096,       # T5-XXL or similar
        use_temporal_attention: bool = True, # For Video generation
        # Optimization Configs
        use_fp8_quantization: bool = False,
        use_compilation: bool = False,
        compile_mode: str = "reduce-overhead",
        use_flash_attention: bool = True,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.patch_size = patch_size
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.frequency_embedding_size = frequency_embedding_size
        self.max_condition_images = max_condition_images
        self.visual_embed_dim = visual_embed_dim
        self.text_embed_dim = text_embed_dim
        self.use_temporal_attention = use_temporal_attention
        self.use_fp8_quantization = use_fp8_quantization
        self.use_compilation = use_compilation
        self.compile_mode = compile_mode
        self.use_flash_attention = use_flash_attention
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

# -----------------------------------------------------------------------------
# 2. Professional Building Blocks (RoPE, SwiGLU, AdaLN)
# -----------------------------------------------------------------------------

class OmniRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

class OmniRotaryEmbedding(nn.Module):
    """Complex implementation of Rotary Positional Embeddings for DiT"""
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()
        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, x, seq_len=None):
        t = torch.arange(seq_len or x.shape[1], device=x.device).type_as(self.inv_freq)
        freqs = torch.outer(t, self.inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)
        return emb.cos(), emb.sin()

class OmniSwiGLU(nn.Module):
    """Swish-Gated Linear Unit for High-Performance FFN"""
    def __init__(self, config: OmniMMDitV2Config):
        super().__init__()
        self.w1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.w2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
        self.w3 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)

    def forward(self, x):
        return self.w2(F.silu(self.w1(x)) * self.w3(x))

class TimestepEmbedder(nn.Module):
    """Fourier feature embedding for timesteps"""
    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        half = dim // 2
        freqs = torch.exp(
            -torch.log(torch.tensor(max_period)) * torch.arange(start=0, end=half, dtype=torch.float32) / half
        ).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t, dtype):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
        return self.mlp(t_freq)

# -----------------------------------------------------------------------------
# 2.5. Data Processing Utilities
# -----------------------------------------------------------------------------

class OmniImageProcessor:
    """Advanced image preprocessing for multi-modal diffusion models"""
    
    def __init__(
        self,
        image_mean: List[float] = [0.485, 0.456, 0.406],
        image_std: List[float] = [0.229, 0.224, 0.225],
        size: Tuple[int, int] = (512, 512),
        interpolation: str = "bicubic",
        do_normalize: bool = True,
        do_center_crop: bool = False,
    ):
        self.image_mean = image_mean
        self.image_std = image_std
        self.size = size
        self.do_normalize = do_normalize
        self.do_center_crop = do_center_crop
        
        # Build transform pipeline
        transforms_list = []
        if do_center_crop:
            transforms_list.append(T.CenterCrop(min(size)))
        
        interp_mode = {
            "bilinear": T.InterpolationMode.BILINEAR,
            "bicubic": T.InterpolationMode.BICUBIC,
            "lanczos": T.InterpolationMode.LANCZOS,
        }.get(interpolation, T.InterpolationMode.BICUBIC)
        
        transforms_list.append(T.Resize(size, interpolation=interp_mode, antialias=True))
        self.transform = T.Compose(transforms_list)
    
    def preprocess(
        self,
        images: Union[Image.Image, np.ndarray, torch.Tensor, List[Union[Image.Image, np.ndarray, torch.Tensor]]],
        return_tensors: str = "pt",
    ) -> torch.Tensor:
        """
        Preprocess images for model input.
        
        Args:
            images: Single image or list of images (PIL, numpy, or torch)
            return_tensors: Return type ("pt" for PyTorch)
            
        Returns:
            Preprocessed image tensor [B, C, H, W]
        """
        if not isinstance(images, list):
            images = [images]
        
        processed = []
        for img in images:
            # Convert to PIL if needed
            if isinstance(img, np.ndarray):
                if img.dtype == np.uint8:
                    img = Image.fromarray(img)
                else:
                    img = Image.fromarray((img * 255).astype(np.uint8))
            elif isinstance(img, torch.Tensor):
                img = T.ToPILImage()(img)
            
            # Apply transforms
            img = self.transform(img)
            
            # Convert to tensor
            if not isinstance(img, torch.Tensor):
                img = to_tensor(img)
            
            # Normalize
            if self.do_normalize:
                img = normalize(img, self.image_mean, self.image_std)
            
            processed.append(img)
        
        # Stack into batch
        if return_tensors == "pt":
            return torch.stack(processed, dim=0)
        
        return processed
    
    def postprocess(
        self,
        images: torch.Tensor,
        output_type: str = "pil",
    ) -> Union[List[Image.Image], np.ndarray, torch.Tensor]:
        """
        Postprocess model output to desired format.
        
        Args:
            images: Model output tensor [B, C, H, W]
            output_type: "pil", "np", or "pt"
            
        Returns:
            Processed images in requested format
        """
        # Denormalize if needed
        if self.do_normalize:
            mean = torch.tensor(self.image_mean).view(1, 3, 1, 1).to(images.device)
            std = torch.tensor(self.image_std).view(1, 3, 1, 1).to(images.device)
            images = images * std + mean
        
        # Clamp to valid range
        images = torch.clamp(images, 0, 1)
        
        if output_type == "pil":
            images = images.cpu().permute(0, 2, 3, 1).numpy()
            images = (images * 255).round().astype(np.uint8)
            return [Image.fromarray(img) for img in images]
        elif output_type == "np":
            return images.cpu().numpy()
        else:
            return images


class OmniVideoProcessor:
    """Video frame processing for temporal diffusion models"""
    
    def __init__(
        self,
        image_processor: OmniImageProcessor,
        num_frames: int = 16,
        frame_stride: int = 1,
    ):
        self.image_processor = image_processor
        self.num_frames = num_frames
        self.frame_stride = frame_stride
    
    def preprocess_video(
        self,
        video_frames: Union[List[Image.Image], np.ndarray, torch.Tensor],
        temporal_interpolation: bool = True,
    ) -> torch.Tensor:
        """
        Preprocess video frames for temporal model.
        
        Args:
            video_frames: List of PIL images, numpy array [T, H, W, C], or tensor [T, C, H, W]
            temporal_interpolation: Whether to interpolate to target frame count
            
        Returns:
            Preprocessed video tensor [B, C, T, H, W]
        """
        # Convert to list of PIL images
        if isinstance(video_frames, np.ndarray):
            if video_frames.ndim == 4:  # [T, H, W, C]
                video_frames = [Image.fromarray(frame) for frame in video_frames]
            else:
                raise ValueError(f"Expected 4D numpy array, got shape {video_frames.shape}")
        elif isinstance(video_frames, torch.Tensor):
            if video_frames.ndim == 4:  # [T, C, H, W]
                video_frames = [T.ToPILImage()(frame) for frame in video_frames]
            else:
                raise ValueError(f"Expected 4D tensor, got shape {video_frames.shape}")
        
        # Sample frames if needed
        total_frames = len(video_frames)
        if temporal_interpolation and total_frames != self.num_frames:
            indices = np.linspace(0, total_frames - 1, self.num_frames, dtype=int)
            video_frames = [video_frames[i] for i in indices]
        
        # Process each frame
        processed_frames = []
        for frame in video_frames[:self.num_frames]:
            frame_tensor = self.image_processor.preprocess(frame, return_tensors="pt")[0]
            processed_frames.append(frame_tensor)
        
        # Stack: [T, C, H, W] -> [1, C, T, H, W]
        video_tensor = torch.stack(processed_frames, dim=1).unsqueeze(0)
        return video_tensor
    
    def postprocess_video(
        self,
        video_tensor: torch.Tensor,
        output_type: str = "pil",
    ) -> Union[List[Image.Image], np.ndarray, torch.Tensor]:
        """
        Postprocess video output.
        
        Args:
            video_tensor: Model output [B, C, T, H, W] or [B, T, C, H, W]
            output_type: "pil", "np", or "pt"
            
        Returns:
            Processed video frames
        """
        # Normalize dimensions to [B, T, C, H, W]
        if video_tensor.ndim == 5:
            if video_tensor.shape[1] in [3, 4]:  # [B, C, T, H, W]
                video_tensor = video_tensor.permute(0, 2, 1, 3, 4)
        
        batch_size, num_frames = video_tensor.shape[:2]
        
        # Process each frame
        all_frames = []
        for b in range(batch_size):
            frames = []
            for t in range(num_frames):
                frame = video_tensor[b, t]  # [C, H, W]
                frame = frame.unsqueeze(0)  # [1, C, H, W]
                processed = self.image_processor.postprocess(frame, output_type=output_type)
                frames.extend(processed)
            all_frames.append(frames)
        
        return all_frames[0] if batch_size == 1 else all_frames


class OmniLatentProcessor:
    """VAE latent space encoding/decoding with scaling and normalization"""
    
    def __init__(
        self,
        vae: Any,
        scaling_factor: float = 0.18215,
        do_normalize_latents: bool = True,
    ):
        self.vae = vae
        self.scaling_factor = scaling_factor
        self.do_normalize_latents = do_normalize_latents
    
    @torch.no_grad()
    def encode(
        self,
        images: torch.Tensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = False,
    ) -> torch.Tensor:
        """
        Encode images to latent space.
        
        Args:
            images: Input images [B, C, H, W] in range [-1, 1]
            generator: Random generator for sampling
            return_dict: Whether to return dict or tensor
            
        Returns:
            Latent codes [B, 4, H//8, W//8]
        """
        # VAE expects input in [-1, 1]
        if images.min() >= 0:
            images = images * 2.0 - 1.0
        
        # Encode
        latent_dist = self.vae.encode(images).latent_dist
        latents = latent_dist.sample(generator=generator)
        
        # Scale latents
        latents = latents * self.scaling_factor
        
        # Additional normalization for stability
        if self.do_normalize_latents:
            latents = (latents - latents.mean()) / (latents.std() + 1e-6)
        
        return latents if not return_dict else {"latents": latents}
    
    @torch.no_grad()
    def decode(
        self,
        latents: torch.Tensor,
        return_dict: bool = False,
    ) -> torch.Tensor:
        """
        Decode latents to image space.
        
        Args:
            latents: Latent codes [B, 4, H//8, W//8]
            return_dict: Whether to return dict or tensor
            
        Returns:
            Decoded images [B, 3, H, W] in range [-1, 1]
        """
        # Denormalize if needed
        if self.do_normalize_latents:
            # Assume identity transform for simplicity in decoding
            pass
        
        # Unscale
        latents = latents / self.scaling_factor
        
        # Decode
        images = self.vae.decode(latents).sample
        
        return images if not return_dict else {"images": images}
    
    @torch.no_grad()
    def encode_video(
        self,
        video_frames: torch.Tensor,
        generator: Optional[torch.Generator] = None,
    ) -> torch.Tensor:
        """
        Encode video frames to latent space.
        
        Args:
            video_frames: Input video [B, C, T, H, W] or [B, T, C, H, W]
            generator: Random generator
            
        Returns:
            Video latents [B, 4, T, H//8, W//8]
        """
        # Reshape to process frames independently
        if video_frames.shape[2] not in [3, 4]:  # [B, T, C, H, W]
            B, T, C, H, W = video_frames.shape
            video_frames = video_frames.reshape(B * T, C, H, W)
            
            # Encode
            latents = self.encode(video_frames, generator=generator)
            
            # Reshape back
            latents = latents.reshape(B, T, *latents.shape[1:])
            latents = latents.permute(0, 2, 1, 3, 4)  # [B, 4, T, H//8, W//8]
        else:  # [B, C, T, H, W]
            B, C, T, H, W = video_frames.shape
            video_frames = video_frames.permute(0, 2, 1, 3, 4).reshape(B * T, C, H, W)
            
            latents = self.encode(video_frames, generator=generator)
            latents = latents.reshape(B, T, *latents.shape[1:])
            latents = latents.permute(0, 2, 1, 3, 4)
        
        return latents

# -----------------------------------------------------------------------------
# 3. Core Architecture: OmniMMDitBlock (3D-Attention + Modulation)
# -----------------------------------------------------------------------------

class OmniMMDitBlock(nn.Module):
    def __init__(self, config: OmniMMDitV2Config, layer_idx: int):
        super().__init__()
        self.layer_idx = layer_idx
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = config.hidden_size // config.num_attention_heads
        
        # Self-Attention with QK-Norm
        self.norm1 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.attn = nn.MultiheadAttention(
            config.hidden_size, config.num_attention_heads, batch_first=True
        )
        
        self.q_norm = OmniRMSNorm(self.head_dim, eps=config.rms_norm_eps)
        self.k_norm = OmniRMSNorm(self.head_dim, eps=config.rms_norm_eps)

        # Cross-Attention for multimodal fusion
        self.norm2 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.cross_attn = nn.MultiheadAttention(
            config.hidden_size, config.num_attention_heads, batch_first=True
        )

        # Feed-Forward Network with SwiGLU activation
        self.norm3 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.ffn = OmniSwiGLU(config)

        # Adaptive Layer Normalization with zero initialization
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(config.hidden_size, 6 * config.hidden_size, bias=True)
        )

    def forward(
        self, 
        hidden_states: torch.Tensor, 
        encoder_hidden_states: torch.Tensor, # Text embeddings
        visual_context: Optional[torch.Tensor], # Reference image embeddings
        timestep_emb: torch.Tensor,
        rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
    ) -> torch.Tensor:
        
        # AdaLN Modulation
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.adaLN_modulation(timestep_emb)[:, None].chunk(6, dim=-1)
        )

        # Self-Attention block
        normed_hidden = self.norm1(hidden_states)
        normed_hidden = normed_hidden * (1 + scale_msa) + shift_msa
        
        attn_output, _ = self.attn(normed_hidden, normed_hidden, normed_hidden)
        hidden_states = hidden_states + gate_msa * attn_output

        # Cross-Attention with multimodal conditioning
        if visual_context is not None:
             context = torch.cat([encoder_hidden_states, visual_context], dim=1)
        else:
             context = encoder_hidden_states
             
        normed_hidden_cross = self.norm2(hidden_states)
        cross_output, _ = self.cross_attn(normed_hidden_cross, context, context)
        hidden_states = hidden_states + cross_output

        # Feed-Forward block
        normed_ffn = self.norm3(hidden_states)
        normed_ffn = normed_ffn * (1 + scale_mlp) + shift_mlp
        ffn_output = self.ffn(normed_ffn)
        hidden_states = hidden_states + gate_mlp * ffn_output

        return hidden_states

# -----------------------------------------------------------------------------
# 4. The Model: OmniMMDitV2
# -----------------------------------------------------------------------------

class OmniMMDitV2(ModelMixin, PreTrainedModel):
    """
    Omni-Modal Multi-Dimensional Diffusion Transformer V2.
    Supports: Text-to-Image, Image-to-Image (Edit), Image-to-Video.
    """
    config_class = OmniMMDitV2Config
    _supports_gradient_checkpointing = True

    def __init__(self, config: OmniMMDitV2Config):
        super().__init__(config)
        self.config = config

        # Initialize optimizer for advanced features
        self.optimizer = ModelOptimizer(
            fp8_config=FP8Config(enabled=config.use_fp8_quantization),
            compilation_config=CompilationConfig(
                enabled=config.use_compilation,
                mode=config.compile_mode,
            ),
            mixed_precision_config=MixedPrecisionConfig(
                enabled=True,
                dtype="bfloat16",
            ),
        )

        # Input Latent Projection (Patchify)
        self.x_embedder = nn.Linear(config.in_channels * config.patch_size * config.patch_size, config.hidden_size, bias=True)
        
        # Time & Vector Embeddings
        self.t_embedder = TimestepEmbedder(config.hidden_size, config.frequency_embedding_size)
        
        # Visual Condition Projector (Handles 1-3 images)
        self.visual_projector = nn.Sequential(
            nn.Linear(config.visual_embed_dim, config.hidden_size),
            nn.LayerNorm(config.hidden_size),
            nn.Linear(config.hidden_size, config.hidden_size)
        )
        
        # Positional Embeddings (Absolute + RoPE dynamically handled)
        self.pos_embed = nn.Parameter(torch.zeros(1, config.max_position_embeddings, config.hidden_size), requires_grad=False)

        # Transformer Backbone
        self.blocks = nn.ModuleList([
            OmniMMDitBlock(config, i) for i in range(config.num_hidden_layers)
        ])
        
        # Final Layer (AdaLN-Zero + Linear)
        self.final_layer = nn.Sequential(
            OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps),
            nn.Linear(config.hidden_size, config.patch_size * config.patch_size * config.out_channels, bias=True)
        )
        
        self.initialize_weights()
        
        # Apply optimizations if enabled
        if config.use_fp8_quantization or config.use_compilation:
            self._apply_optimizations()
    
    def _apply_optimizations(self):
        """Apply FP8 quantization and compilation optimizations"""
        # Quantize transformer blocks
        if self.config.use_fp8_quantization:
            for i, block in enumerate(self.blocks):
                self.blocks[i] = self.optimizer.optimize_model(
                    block,
                    apply_compilation=False,
                    apply_quantization=True,
                    apply_mixed_precision=True,
                )
        
        # Compile forward method
        if self.config.use_compilation and HAS_TORCH_COMPILE:
            self.forward = torch.compile(
                self.forward,
                mode=self.config.compile_mode,
                dynamic=True,
            )

    def initialize_weights(self):
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

    def unpatchify(self, x, h, w):
        c = self.config.out_channels
        p = self.config.patch_size
        h_ = h // p
        w_ = w // p
        x = x.reshape(shape=(x.shape[0], h_, w_, p, p, c))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], c, h, w))
        return imgs

    def forward(
        self,
        hidden_states: torch.Tensor, # Noisy Latents [B, C, H, W] or [B, C, F, H, W]
        timestep: torch.LongTensor,
        encoder_hidden_states: torch.Tensor, # Text Embeddings
        visual_conditions: Optional[List[torch.Tensor]] = None, # List of [B, L, D]
        video_frames: Optional[int] = None, # If generating video
        return_dict: bool = True,
    ) -> Union[torch.Tensor, BaseOutput]:
        
        batch_size, channels, _, _ = hidden_states.shape
        
        # Patchify input latents
        p = self.config.patch_size
        h, w = hidden_states.shape[-2], hidden_states.shape[-1]
        x = hidden_states.unfold(2, p, p).unfold(3, p, p)
        x = x.permute(0, 2, 3, 1, 4, 5).contiguous()
        x = x.view(batch_size, -1, channels * p * p)
        
        # Positional and temporal embeddings
        x = self.x_embedder(x)
        x = x + self.pos_embed[:, :x.shape[1], :]
        
        t = self.t_embedder(timestep, x.dtype)
        
        # Process visual conditioning
        visual_emb = None
        if visual_conditions is not None:
            concat_visuals = torch.cat(visual_conditions, dim=1)
            visual_emb = self.visual_projector(concat_visuals)

        # Transformer blocks
        for block in self.blocks:
            x = block(
                hidden_states=x, 
                encoder_hidden_states=encoder_hidden_states,
                visual_context=visual_emb,
                timestep_emb=t
            )

        # Output projection
        x = self.final_layer[0](x)
        x = self.final_layer[1](x)
        
        # Unpatchify to image space
        output = self.unpatchify(x, h, w)

        if not return_dict:
            return (output,)

        return BaseOutput(sample=output)

# -----------------------------------------------------------------------------
# 5. The "Fancy" Pipeline
# -----------------------------------------------------------------------------

class OmniMMDitV2Pipeline(DiffusionPipeline):
    """
    Omni-Modal Diffusion Transformer Pipeline.
    
    Supports text-guided image editing and video generation with
    multi-image conditioning and advanced guidance techniques.
    """
    model: OmniMMDitV2
    tokenizer: CLIPTokenizer
    text_encoder: CLIPTextModel
    vae: Any # AutoencoderKL
    scheduler: DDIMScheduler
    
    _optional_components = ["visual_encoder"]

    def __init__(
        self,
        model: OmniMMDitV2,
        vae: Any,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        scheduler: DDIMScheduler,
        visual_encoder: Optional[Any] = None,
    ):
        super().__init__()
        self.register_modules(
            model=model,
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            scheduler=scheduler,
            visual_encoder=visual_encoder
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        
        # Initialize data processors
        self.image_processor = OmniImageProcessor(
            size=(512, 512),
            interpolation="bicubic",
            do_normalize=True,
        )
        self.video_processor = OmniVideoProcessor(
            image_processor=self.image_processor,
            num_frames=16,
        )
        self.latent_processor = OmniLatentProcessor(
            vae=vae,
            scaling_factor=0.18215,
        )
        
        # Initialize model optimizer
        self.model_optimizer = ModelOptimizer(
            fp8_config=FP8Config(enabled=False),  # Can be enabled via enable_fp8()
            compilation_config=CompilationConfig(enabled=False),  # Can be enabled via compile()
            mixed_precision_config=MixedPrecisionConfig(enabled=True, dtype="bfloat16"),
        )
        
        self._is_compiled = False
        self._is_fp8_enabled = False
    
    def enable_fp8_quantization(self):
        """Enable FP8 quantization for faster inference"""
        if not HAS_TRANSFORMER_ENGINE:
            warnings.warn("Transformer Engine not available. Install with: pip install transformer-engine")
            return self
        
        self.model_optimizer.fp8_config.enabled = True
        self.model = self.model_optimizer.optimize_model(
            self.model,
            apply_compilation=False,
            apply_quantization=True,
            apply_mixed_precision=False,
        )
        self._is_fp8_enabled = True
        return self
    
    def compile_model(
        self,
        mode: str = "reduce-overhead",
        fullgraph: bool = False,
        dynamic: bool = True,
    ):
        """
        Compile model using torch.compile for faster inference.
        
        Args:
            mode: Compilation mode - "default", "reduce-overhead", "max-autotune"
            fullgraph: Whether to compile the entire model as one graph
            dynamic: Whether to enable dynamic shapes
        """
        if not HAS_TORCH_COMPILE:
            warnings.warn("torch.compile not available. Upgrade to PyTorch 2.0+")
            return self
        
        self.model_optimizer.compilation_config = CompilationConfig(
            enabled=True,
            mode=mode,
            fullgraph=fullgraph,
            dynamic=dynamic,
        )
        
        self.model = self.model_optimizer._compile_model(self.model)
        self._is_compiled = True
        return self
    
    def enable_optimizations(
        self,
        enable_fp8: bool = False,
        enable_compilation: bool = False,
        compilation_mode: str = "reduce-overhead",
    ):
        """
        Enable all optimizations at once.
        
        Args:
            enable_fp8: Enable FP8 quantization
            enable_compilation: Enable torch.compile
            compilation_mode: Compilation mode for torch.compile
        """
        if enable_fp8:
            self.enable_fp8_quantization()
        
        if enable_compilation:
            self.compile_model(mode=compilation_mode)
        
        return self

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        input_images: Optional[List[Union[torch.Tensor, Any]]] = None,
        height: Optional[int] = 1024,
        width: Optional[int] = 1024,
        num_frames: Optional[int] = 1,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        image_guidance_scale: float = 1.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
        callback_steps: int = 1,
        use_optimized_inference: bool = True,
        **kwargs,
    ):
        # Use optimized inference context
        with optimized_inference_mode(
            enable_cudnn_benchmark=use_optimized_inference,
            enable_tf32=use_optimized_inference,
            enable_flash_sdp=use_optimized_inference,
        ):
            return self._forward_impl(
                prompt=prompt,
                input_images=input_images,
                height=height,
                width=width,
                num_frames=num_frames,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                image_guidance_scale=image_guidance_scale,
                negative_prompt=negative_prompt,
                eta=eta,
                generator=generator,
                latents=latents,
                output_type=output_type,
                return_dict=return_dict,
                callback=callback,
                callback_steps=callback_steps,
                **kwargs,
            )
    
    def _forward_impl(
        self,
        prompt: Union[str, List[str]] = None,
        input_images: Optional[List[Union[torch.Tensor, Any]]] = None,
        height: Optional[int] = 1024,
        width: Optional[int] = 1024,
        num_frames: Optional[int] = 1,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        image_guidance_scale: float = 1.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
        callback_steps: int = 1,
        **kwargs,
    ):
        # Validate and set default dimensions
        height = height or self.model.config.sample_size * self.vae_scale_factor
        width = width or self.model.config.sample_size * self.vae_scale_factor

        # Encode text prompts
        if isinstance(prompt, str):
            prompt = [prompt]
        batch_size = len(prompt)
        
        text_inputs = self.tokenizer(
            prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt"
        )
        text_embeddings = self.text_encoder(text_inputs.input_ids.to(self.device))[0]

        # Encode visual conditions with preprocessing
        visual_embeddings_list = []
        if input_images:
            if not isinstance(input_images, list):
                input_images = [input_images]
            if len(input_images) > 3:
                raise ValueError("Maximum 3 reference images supported")
            
            for img in input_images:
                # Preprocess image
                if not isinstance(img, torch.Tensor):
                    img_tensor = self.image_processor.preprocess(img, return_tensors="pt")
                else:
                    img_tensor = img
                
                img_tensor = img_tensor.to(device=self.device, dtype=text_embeddings.dtype)
                
                # Encode with visual encoder
                if self.visual_encoder is not None:
                    vis_emb = self.visual_encoder(img_tensor).last_hidden_state
                else:
                    # Fallback: use VAE encoder + projection
                    with torch.no_grad():
                        latent_features = self.vae.encode(img_tensor * 2 - 1).latent_dist.mode()
                        B, C, H, W = latent_features.shape
                        # Flatten spatial dims and project
                        vis_emb = latent_features.flatten(2).transpose(1, 2)  # [B, H*W, C]
                        # Simple projection to visual_embed_dim
                        if vis_emb.shape[-1] != self.model.config.visual_embed_dim:
                            proj = nn.Linear(vis_emb.shape[-1], self.model.config.visual_embed_dim).to(self.device)
                            vis_emb = proj(vis_emb)
                
                visual_embeddings_list.append(vis_emb)

        # Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=self.device)
        timesteps = self.scheduler.timesteps

        # Initialize latent space
        num_channels_latents = self.model.config.in_channels
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if num_frames > 1:
            shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor)

        latents = torch.randn(shape, generator=generator, device=self.device, dtype=text_embeddings.dtype)
        latents = latents * self.scheduler.init_noise_sigma

        # Denoising loop with optimizations
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1.0 else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                
                # Use mixed precision autocast
                with self.model_optimizer.autocast_context():
                    noise_pred = self.model(
                        hidden_states=latent_model_input,
                        timestep=t,
                        encoder_hidden_states=torch.cat([text_embeddings] * 2),
                        visual_conditions=visual_embeddings_list * 2 if visual_embeddings_list else None,
                        video_frames=num_frames
                    ).sample

                # Apply classifier-free guidance
                if guidance_scale > 1.0:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
                
                latents = self.scheduler.step(noise_pred, t, latents, eta=eta).prev_sample
                
                # Call callback if provided
                if callback is not None and i % callback_steps == 0:
                    callback(i, t, latents)
                
                progress_bar.update()

        # Decode latents with proper post-processing
        if output_type == "latent":
            output_images = latents
        else:
            # Decode latents to pixel space
            with torch.no_grad():
                if num_frames > 1:
                    # Video decoding: process frame by frame
                    B, C, T, H, W = latents.shape
                    latents_2d = latents.permute(0, 2, 1, 3, 4).reshape(B * T, C, H, W)
                    decoded = self.latent_processor.decode(latents_2d)
                    decoded = decoded.reshape(B, T, 3, H * 8, W * 8)
                    
                    # Convert to [0, 1] range
                    decoded = (decoded / 2 + 0.5).clamp(0, 1)
                    
                    # Post-process video
                    if output_type == "pil":
                        output_images = self.video_processor.postprocess_video(decoded, output_type="pil")
                    elif output_type == "np":
                        output_images = decoded.cpu().numpy()
                    else:
                        output_images = decoded
                else:
                    # Image decoding
                    decoded = self.latent_processor.decode(latents)
                    decoded = (decoded / 2 + 0.5).clamp(0, 1)
                    
                    # Post-process images
                    if output_type == "pil":
                        output_images = self.image_processor.postprocess(decoded, output_type="pil")
                    elif output_type == "np":
                        output_images = decoded.cpu().numpy()
                    else:
                        output_images = decoded

        if not return_dict:
            return (output_images,)

        return BaseOutput(images=output_images)

# -----------------------------------------------------------------------------
# 6. Advanced Multi-Modal Window Attention Block (Audio + Video + Image)
# -----------------------------------------------------------------------------

@dataclass
class MultiModalInput:
    """Container for multi-modal inputs"""
    image_embeds: Optional[torch.Tensor] = None      # [B, L_img, D]
    video_embeds: Optional[torch.Tensor] = None      # [B, T_video, L_vid, D]
    audio_embeds: Optional[torch.Tensor] = None      # [B, T_audio, L_aud, D]
    attention_mask: Optional[torch.Tensor] = None    # [B, total_length]


class TemporalWindowPartition(nn.Module):
    """
    Partition temporal sequences into windows for efficient attention.
    Supports both uniform and adaptive windowing strategies.
    """
    def __init__(
        self,
        window_size: int = 8,
        shift_size: int = 0,
        use_adaptive_window: bool = False,
    ):
        super().__init__()
        self.window_size = window_size
        self.shift_size = shift_size
        self.use_adaptive_window = use_adaptive_window
    
    def partition(self, x: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, Any]]:
        """
        Partition sequence into windows.
        
        Args:
            x: Input tensor [B, T, L, D] or [B, L, D]
            
        Returns:
            windowed: [B * num_windows, window_size, L, D]
            info: Dictionary with partition information
        """
        if x.ndim == 3:  # Static input (image)
            return x, {"is_temporal": False, "original_shape": x.shape}
        
        B, T, L, D = x.shape
        
        # Apply temporal shift for shifted window attention (Swin-Transformer style)
        if self.shift_size > 0:
            x = torch.roll(x, shifts=-self.shift_size, dims=1)
        
        # Pad if necessary
        pad_t = (self.window_size - T % self.window_size) % self.window_size
        if pad_t > 0:
            x = F.pad(x, (0, 0, 0, 0, 0, pad_t))
        
        T_padded = T + pad_t
        num_windows = T_padded // self.window_size
        
        # Reshape into windows: [B, num_windows, window_size, L, D]
        x_windowed = x.view(B, num_windows, self.window_size, L, D)
        
        # Merge batch and window dims: [B * num_windows, window_size, L, D]
        x_windowed = x_windowed.view(B * num_windows, self.window_size, L, D)
        
        info = {
            "is_temporal": True,
            "original_shape": (B, T, L, D),
            "num_windows": num_windows,
            "pad_t": pad_t,
        }
        
        return x_windowed, info
    
    def merge(self, x_windowed: torch.Tensor, info: Dict[str, Any]) -> torch.Tensor:
        """
        Merge windows back to original sequence.
        
        Args:
            x_windowed: Windowed tensor [B * num_windows, window_size, L, D]
            info: Partition information from partition()
            
        Returns:
            x: Merged tensor [B, T, L, D] or [B, L, D]
        """
        if not info["is_temporal"]:
            return x_windowed
        
        B, T, L, D = info["original_shape"]
        num_windows = info["num_windows"]
        pad_t = info["pad_t"]
        
        # Reshape: [B * num_windows, window_size, L, D] -> [B, num_windows, window_size, L, D]
        x = x_windowed.view(B, num_windows, self.window_size, L, D)
        
        # Merge windows: [B, T_padded, L, D]
        x = x.view(B, num_windows * self.window_size, L, D)
        
        # Remove padding
        if pad_t > 0:
            x = x[:, :-pad_t, :, :]
        
        # Reverse temporal shift
        if self.shift_size > 0:
            x = torch.roll(x, shifts=self.shift_size, dims=1)
        
        return x


class WindowCrossAttention(nn.Module):
    """
    Window-based Cross Attention with support for temporal sequences.
    Performs attention within local windows for computational efficiency.
    """
    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        window_size: int = 8,
        qkv_bias: bool = True,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        use_relative_position_bias: bool = True,
    ):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        
        # Query, Key, Value projections
        self.q_proj = nn.Linear(dim, dim, bias=qkv_bias)
        self.k_proj = nn.Linear(dim, dim, bias=qkv_bias)
        self.v_proj = nn.Linear(dim, dim, bias=qkv_bias)
        
        # QK Normalization for stability
        self.q_norm = OmniRMSNorm(self.head_dim)
        self.k_norm = OmniRMSNorm(self.head_dim)
        
        # Attention dropout
        self.attn_drop = nn.Dropout(attn_drop)
        
        # Output projection
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        
        # Relative position bias (for temporal coherence)
        self.use_relative_position_bias = use_relative_position_bias
        if use_relative_position_bias:
            # Temporal relative position bias
            self.relative_position_bias_table = nn.Parameter(
                torch.zeros((2 * window_size - 1), num_heads)
            )
            nn.init.trunc_normal_(self.relative_position_bias_table, std=0.02)
            
            # Get relative position index
            coords = torch.arange(window_size)
            relative_coords = coords[:, None] - coords[None, :]  # [window_size, window_size]
            relative_coords += window_size - 1  # Shift to start from 0
            self.register_buffer("relative_position_index", relative_coords)
    
    def get_relative_position_bias(self, window_size: int) -> torch.Tensor:
        """Generate relative position bias for attention"""
        if not self.use_relative_position_bias:
            return None
        
        relative_position_bias = self.relative_position_bias_table[
            self.relative_position_index[:window_size, :window_size].reshape(-1)
        ].reshape(window_size, window_size, -1)
        
        # Permute to [num_heads, window_size, window_size]
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
        return relative_position_bias
    
    def forward(
        self,
        query: torch.Tensor,      # [B, T_q, L_q, D] or [B, L_q, D]
        key: torch.Tensor,        # [B, T_k, L_k, D] or [B, L_k, D]
        value: torch.Tensor,      # [B, T_v, L_v, D] or [B, L_v, D]
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """
        Perform windowed cross attention.
        
        Args:
            query: Query tensor
            key: Key tensor  
            value: Value tensor
            attention_mask: Optional attention mask
            
        Returns:
            Output tensor with same shape as query
        """
        # Handle both temporal and non-temporal inputs
        is_temporal = query.ndim == 4
        
        if is_temporal:
            B, T_q, L_q, D = query.shape
            _, T_k, L_k, _ = key.shape
            
            # Flatten temporal and spatial dims for cross attention
            query_flat = query.reshape(B, T_q * L_q, D)
            key_flat = key.reshape(B, T_k * L_k, D)
            value_flat = value.reshape(B, T_k * L_k, D)
        else:
            B, L_q, D = query.shape
            _, L_k, _ = key.shape
            query_flat = query
            key_flat = key
            value_flat = value
        
        # Project to Q, K, V
        q = self.q_proj(query_flat)  # [B, N_q, D]
        k = self.k_proj(key_flat)    # [B, N_k, D]
        v = self.v_proj(value_flat)  # [B, N_v, D]
        
        # Reshape for multi-head attention
        q = q.reshape(B, -1, self.num_heads, self.head_dim).transpose(1, 2)  # [B, H, N_q, head_dim]
        k = k.reshape(B, -1, self.num_heads, self.head_dim).transpose(1, 2)  # [B, H, N_k, head_dim]
        v = v.reshape(B, -1, self.num_heads, self.head_dim).transpose(1, 2)  # [B, H, N_v, head_dim]
        
        # Apply QK normalization
        q = self.q_norm(q)
        k = self.k_norm(k)
        
        # Scaled dot-product attention
        attn = (q @ k.transpose(-2, -1)) * self.scale  # [B, H, N_q, N_k]
        
        # Add relative position bias if temporal
        if is_temporal and self.use_relative_position_bias:
            # Apply per-window bias
            rel_bias = self.get_relative_position_bias(min(T_q, self.window_size))
            if rel_bias is not None:
                # Broadcast bias across spatial dimensions
                attn = attn + rel_bias.unsqueeze(0).unsqueeze(2)
        
        # Apply attention mask
        if attention_mask is not None:
            attn = attn.masked_fill(attention_mask.unsqueeze(1).unsqueeze(2) == 0, float('-inf'))
        
        # Softmax and dropout
        attn = F.softmax(attn, dim=-1)
        attn = self.attn_drop(attn)
        
        # Apply attention to values
        out = (attn @ v).transpose(1, 2).reshape(B, -1, D)  # [B, N_q, D]
        
        # Output projection
        out = self.proj(out)
        out = self.proj_drop(out)
        
        # Reshape back to original shape
        if is_temporal:
            out = out.reshape(B, T_q, L_q, D)
        else:
            out = out.reshape(B, L_q, D)
        
        return out


class MultiModalFusionLayer(nn.Module):
    """
    Fuses multiple modalities (audio, video, image) with learnable fusion weights.
    """
    def __init__(
        self,
        dim: int,
        num_modalities: int = 3,
        fusion_type: str = "weighted",  # "weighted", "gated", "adaptive"
    ):
        super().__init__()
        self.dim = dim
        self.num_modalities = num_modalities
        self.fusion_type = fusion_type
        
        if fusion_type == "weighted":
            # Learnable fusion weights
            self.fusion_weights = nn.Parameter(torch.ones(num_modalities) / num_modalities)
        
        elif fusion_type == "gated":
            # Gated fusion with cross-modal interactions
            self.gate_proj = nn.Sequential(
                nn.Linear(dim * num_modalities, dim * 2),
                nn.GELU(),
                nn.Linear(dim * 2, num_modalities),
                nn.Softmax(dim=-1)
            )
        
        elif fusion_type == "adaptive":
            # Adaptive fusion with per-token gating
            self.adaptive_gate = nn.Sequential(
                nn.Linear(dim, dim // 2),
                nn.GELU(),
                nn.Linear(dim // 2, num_modalities),
                nn.Sigmoid()
            )
    
    def forward(self, modality_features: List[torch.Tensor]) -> torch.Tensor:
        """
        Fuse multiple modality features.
        
        Args:
            modality_features: List of [B, L, D] tensors for each modality
            
        Returns:
            fused: Fused features [B, L, D]
        """
        if self.fusion_type == "weighted":
            # Simple weighted sum
            weights = F.softmax(self.fusion_weights, dim=0)
            fused = sum(w * feat for w, feat in zip(weights, modality_features))
        
        elif self.fusion_type == "gated":
            # Concatenate and compute gates
            concat_features = torch.cat(modality_features, dim=-1)  # [B, L, D * num_modalities]
            gates = self.gate_proj(concat_features)  # [B, L, num_modalities]
            
            # Apply gates
            stacked = torch.stack(modality_features, dim=-1)  # [B, L, D, num_modalities]
            fused = (stacked * gates.unsqueeze(2)).sum(dim=-1)  # [B, L, D]
        
        elif self.fusion_type == "adaptive":
            # Adaptive per-token fusion
            fused_list = []
            for feat in modality_features:
                gate = self.adaptive_gate(feat)  # [B, L, num_modalities]
                fused_list.append(feat.unsqueeze(-1) * gate.unsqueeze(2))
            
            fused = torch.cat(fused_list, dim=-1).sum(dim=-1)  # [B, L, D]
        
        return fused


class FancyMultiModalWindowAttentionBlock(nn.Module):
    """
    🎯 Fancy Multi-Modal Window Attention Block
    
    A state-of-the-art block that processes audio, video, and image embeddings
    with temporal window-based cross-attention for efficient multi-modal fusion.
    
    Features:
    - ✨ Temporal windowing for audio and video (frame-by-frame processing)
    - πŸͺŸ Shifted window attention for better temporal coherence (Swin-style)
    - πŸ”„ Cross-modal attention between all modality pairs
    - 🎭 Adaptive multi-modal fusion with learnable gates
    - πŸš€ Efficient computation with window partitioning
    - πŸ’Ž QK normalization for training stability
    
    Architecture:
        1. Temporal Partitioning (audio/video frames β†’ windows)
        2. Intra-Modal Self-Attention (within each modality)
        3. Inter-Modal Cross-Attention (audio ↔ video ↔ image)
        4. Multi-Modal Fusion (adaptive weighted combination)
        5. Feed-Forward Network (SwiGLU activation)
        6. Window Merging (reconstruct temporal sequences)
    """
    
    def __init__(
        self,
        dim: int = 1024,
        num_heads: int = 16,
        window_size: int = 8,
        shift_size: int = 4,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = True,
        drop: float = 0.0,
        attn_drop: float = 0.0,
        drop_path: float = 0.1,
        use_relative_position_bias: bool = True,
        fusion_type: str = "adaptive",  # "weighted", "gated", "adaptive"
        use_shifted_window: bool = True,
    ):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size if use_shifted_window else 0
        self.mlp_ratio = mlp_ratio
        
        # =============== Temporal Window Partitioning ===============
        self.window_partition = TemporalWindowPartition(
            window_size=window_size,
            shift_size=self.shift_size,
        )
        
        # =============== Intra-Modal Self-Attention ===============
        self.norm_audio_self = OmniRMSNorm(dim)
        self.norm_video_self = OmniRMSNorm(dim)
        self.norm_image_self = OmniRMSNorm(dim)
        
        self.audio_self_attn = WindowCrossAttention(
            dim=dim,
            num_heads=num_heads,
            window_size=window_size,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop,
            use_relative_position_bias=use_relative_position_bias,
        )
        
        self.video_self_attn = WindowCrossAttention(
            dim=dim,
            num_heads=num_heads,
            window_size=window_size,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop,
            use_relative_position_bias=use_relative_position_bias,
        )
        
        self.image_self_attn = WindowCrossAttention(
            dim=dim,
            num_heads=num_heads,
            window_size=window_size,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop,
            use_relative_position_bias=False,  # No temporal bias for static images
        )
        
        # =============== Inter-Modal Cross-Attention ===============
        # Audio β†’ Video/Image
        self.norm_audio_cross = OmniRMSNorm(dim)
        self.audio_to_visual = WindowCrossAttention(
            dim=dim, num_heads=num_heads, window_size=window_size,
            qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
        )
        
        # Video β†’ Audio/Image
        self.norm_video_cross = OmniRMSNorm(dim)
        self.video_to_others = WindowCrossAttention(
            dim=dim, num_heads=num_heads, window_size=window_size,
            qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
        )
        
        # Image β†’ Audio/Video
        self.norm_image_cross = OmniRMSNorm(dim)
        self.image_to_temporal = WindowCrossAttention(
            dim=dim, num_heads=num_heads, window_size=window_size,
            qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
        )
        
        # =============== Multi-Modal Fusion ===============
        self.multimodal_fusion = MultiModalFusionLayer(
            dim=dim,
            num_modalities=3,
            fusion_type=fusion_type,
        )
        
        # =============== Feed-Forward Network ===============
        self.norm_ffn = OmniRMSNorm(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.ffn = nn.Sequential(
            nn.Linear(dim, mlp_hidden_dim, bias=False),
            nn.GELU(),
            nn.Dropout(drop),
            nn.Linear(mlp_hidden_dim, dim, bias=False),
            nn.Dropout(drop),
        )
        
        # =============== Stochastic Depth (Drop Path) ===============
        self.drop_path = nn.Identity() if drop_path <= 0. else nn.Dropout(drop_path)
        
        # =============== Output Projections ===============
        self.output_projection = nn.ModuleDict({
            'audio': nn.Linear(dim, dim),
            'video': nn.Linear(dim, dim),
            'image': nn.Linear(dim, dim),
        })
    
    def forward(
        self,
        audio_embeds: Optional[torch.Tensor] = None,  # [B, T_audio, L_audio, D]
        video_embeds: Optional[torch.Tensor] = None,  # [B, T_video, L_video, D]
        image_embeds: Optional[torch.Tensor] = None,  # [B, L_image, D]
        attention_mask: Optional[torch.Tensor] = None,
        return_intermediates: bool = False,
    ) -> Dict[str, torch.Tensor]:
        """
        Forward pass of the Fancy Multi-Modal Window Attention Block.
        
        Args:
            audio_embeds: Audio embeddings [B, T_audio, L_audio, D]
                         T_audio: number of audio frames
                         L_audio: sequence length per frame
            video_embeds: Video embeddings [B, T_video, L_video, D]
                         T_video: number of video frames
                         L_video: sequence length per frame (e.g., patches)
            image_embeds: Image embeddings [B, L_image, D]
                         L_image: sequence length (e.g., image patches)
            attention_mask: Optional attention mask
            return_intermediates: Whether to return intermediate features
            
        Returns:
            outputs: Dictionary containing processed embeddings for each modality
                - 'audio': [B, T_audio, L_audio, D]
                - 'video': [B, T_video, L_video, D]
                - 'image': [B, L_image, D]
                - 'fused': [B, L_total, D] (optional)
        """
        intermediates = {} if return_intermediates else None
        
        # ========== Stage 1: Temporal Window Partitioning ==========
        partitioned_audio, audio_info = None, None
        partitioned_video, video_info = None, None
        
        if audio_embeds is not None:
            partitioned_audio, audio_info = self.window_partition.partition(audio_embeds)
            if return_intermediates:
                intermediates['audio_windows'] = partitioned_audio
        
        if video_embeds is not None:
            partitioned_video, video_info = self.window_partition.partition(video_embeds)
            if return_intermediates:
                intermediates['video_windows'] = partitioned_video
        
        # ========== Stage 2: Intra-Modal Self-Attention ==========
        audio_self_out, video_self_out, image_self_out = None, None, None
        
        if audio_embeds is not None:
            audio_normed = self.norm_audio_self(partitioned_audio)
            audio_self_out = self.audio_self_attn(audio_normed, audio_normed, audio_normed)
            audio_self_out = partitioned_audio + self.drop_path(audio_self_out)
        
        if video_embeds is not None:
            video_normed = self.norm_video_self(partitioned_video)
            video_self_out = self.video_self_attn(video_normed, video_normed, video_normed)
            video_self_out = partitioned_video + self.drop_path(video_self_out)
        
        if image_embeds is not None:
            image_normed = self.norm_image_self(image_embeds)
            image_self_out = self.image_self_attn(image_normed, image_normed, image_normed)
            image_self_out = image_embeds + self.drop_path(image_self_out)
        
        # ========== Stage 3: Inter-Modal Cross-Attention ==========
        audio_cross_out, video_cross_out, image_cross_out = None, None, None
        
        # Prepare context (merge windows temporarily for cross-attention)
        if audio_self_out is not None:
            audio_merged = self.window_partition.merge(audio_self_out, audio_info)
        if video_self_out is not None:
            video_merged = self.window_partition.merge(video_self_out, video_info)
        
        # Audio attends to Video and Image
        if audio_embeds is not None:
            audio_q = self.norm_audio_cross(audio_merged)
            
            # Create key-value context from other modalities
            kv_list = []
            if video_embeds is not None:
                kv_list.append(video_merged)
            if image_embeds is not None:
                # Expand image to match temporal dimension
                B, L_img, D = image_self_out.shape
                T_audio = audio_merged.shape[1]
                image_expanded = image_self_out.unsqueeze(1).expand(B, T_audio, L_img, D)
                kv_list.append(image_expanded)
            
            if kv_list:
                # Concatenate along sequence dimension
                kv_context = torch.cat([kv.flatten(1, 2) for kv in kv_list], dim=1)
                kv_context = kv_context.reshape(B, -1, D)
                
                audio_cross_out = self.audio_to_visual(
                    audio_q.flatten(1, 2),
                    kv_context,
                    kv_context,
                    attention_mask
                )
                audio_cross_out = audio_cross_out.reshape_as(audio_merged)
                audio_cross_out = audio_merged + self.drop_path(audio_cross_out)
            else:
                audio_cross_out = audio_merged
        
        # Video attends to Audio and Image
        if video_embeds is not None:
            video_q = self.norm_video_cross(video_merged)
            
            kv_list = []
            if audio_embeds is not None:
                kv_list.append(audio_merged if audio_cross_out is None else audio_cross_out)
            if image_embeds is not None:
                B, L_img, D = image_self_out.shape
                T_video = video_merged.shape[1]
                image_expanded = image_self_out.unsqueeze(1).expand(B, T_video, L_img, D)
                kv_list.append(image_expanded)
            
            if kv_list:
                kv_context = torch.cat([kv.flatten(1, 2) for kv in kv_list], dim=1)
                kv_context = kv_context.reshape(B, -1, D)
                
                video_cross_out = self.video_to_others(
                    video_q.flatten(1, 2),
                    kv_context,
                    kv_context,
                    attention_mask
                )
                video_cross_out = video_cross_out.reshape_as(video_merged)
                video_cross_out = video_merged + self.drop_path(video_cross_out)
            else:
                video_cross_out = video_merged
        
        # Image attends to Audio and Video
        if image_embeds is not None:
            image_q = self.norm_image_cross(image_self_out)
            
            kv_list = []
            if audio_embeds is not None:
                # Average pool audio over time for image
                audio_pooled = (audio_merged if audio_cross_out is None else audio_cross_out).mean(dim=1)
                kv_list.append(audio_pooled)
            if video_embeds is not None:
                # Average pool video over time for image
                video_pooled = (video_merged if video_cross_out is None else video_cross_out).mean(dim=1)
                kv_list.append(video_pooled)
            
            if kv_list:
                kv_context = torch.cat(kv_list, dim=1)
                
                image_cross_out = self.image_to_temporal(
                    image_q,
                    kv_context,
                    kv_context,
                    attention_mask
                )
                image_cross_out = image_self_out + self.drop_path(image_cross_out)
            else:
                image_cross_out = image_self_out
        
        # ========== Stage 4: Multi-Modal Fusion ==========
        # Collect features from all modalities for fusion
        fusion_features = []
        if audio_cross_out is not None:
            audio_flat = audio_cross_out.flatten(1, 2)  # [B, T*L, D]
            fusion_features.append(audio_flat)
        if video_cross_out is not None:
            video_flat = video_cross_out.flatten(1, 2)  # [B, T*L, D]
            fusion_features.append(video_flat)
        if image_cross_out is not None:
            fusion_features.append(image_cross_out)  # [B, L, D]
        
        # Pad/align sequence lengths for fusion
        if len(fusion_features) > 1:
            max_len = max(f.shape[1] for f in fusion_features)
            aligned_features = []
            for feat in fusion_features:
                if feat.shape[1] < max_len:
                    pad_len = max_len - feat.shape[1]
                    feat = F.pad(feat, (0, 0, 0, pad_len))
                aligned_features.append(feat)
            
            # Fuse modalities
            fused_features = self.multimodal_fusion(aligned_features)
        else:
            fused_features = fusion_features[0] if fusion_features else None
        
        # ========== Stage 5: Feed-Forward Network ==========
        if fused_features is not None:
            fused_normed = self.norm_ffn(fused_features)
            fused_ffn = self.ffn(fused_normed)
            fused_features = fused_features + self.drop_path(fused_ffn)
        
        # ========== Stage 6: Prepare Outputs ==========
        outputs = {}
        
        # Project back to original shapes
        if audio_embeds is not None and audio_cross_out is not None:
            # Partition again for consistency
            audio_final, _ = self.window_partition.partition(audio_cross_out)
            audio_final = self.output_projection['audio'](audio_final)
            audio_final = self.window_partition.merge(audio_final, audio_info)
            outputs['audio'] = audio_final
        
        if video_embeds is not None and video_cross_out is not None:
            video_final, _ = self.window_partition.partition(video_cross_out)
            video_final = self.output_projection['video'](video_final)
            video_final = self.window_partition.merge(video_final, video_info)
            outputs['video'] = video_final
        
        if image_embeds is not None and image_cross_out is not None:
            image_final = self.output_projection['image'](image_cross_out)
            outputs['image'] = image_final
        
        if fused_features is not None:
            outputs['fused'] = fused_features
        
        if return_intermediates:
            outputs['intermediates'] = intermediates
        
        return outputs


# -----------------------------------------------------------------------------
# 7. Optimization Utilities (FP8, Compilation, Mixed Precision)
# -----------------------------------------------------------------------------

@dataclass
class FP8Config:
    """Configuration for FP8 quantization"""
    enabled: bool = False
    margin: int = 0
    fp8_format: str = "hybrid"  # "e4m3", "e5m2", "hybrid"
    amax_history_len: int = 1024
    amax_compute_algo: str = "max"


@dataclass  
class CompilationConfig:
    """Configuration for torch.compile"""
    enabled: bool = False
    mode: str = "reduce-overhead"  # "default", "reduce-overhead", "max-autotune"
    fullgraph: bool = False
    dynamic: bool = True
    backend: str = "inductor"


@dataclass
class MixedPrecisionConfig:
    """Configuration for mixed precision training/inference"""
    enabled: bool = True
    dtype: str = "bfloat16"  # "float16", "bfloat16"
    use_amp: bool = True


class ModelOptimizer:
    """
    Unified model optimizer supporting FP8 quantization, torch.compile, 
    and mixed precision inference.
    """
    def __init__(
        self,
        fp8_config: Optional[FP8Config] = None,
        compilation_config: Optional[CompilationConfig] = None,
        mixed_precision_config: Optional[MixedPrecisionConfig] = None,
    ):
        self.fp8_config = fp8_config or FP8Config()
        self.compilation_config = compilation_config or CompilationConfig()
        self.mixed_precision_config = mixed_precision_config or MixedPrecisionConfig()
        
        # Setup mixed precision
        self._setup_mixed_precision()
    
    def _setup_mixed_precision(self):
        """Setup mixed precision context"""
        if self.mixed_precision_config.enabled:
            dtype_map = {
                "float16": torch.float16,
                "bfloat16": torch.bfloat16,
            }
            self.dtype = dtype_map.get(self.mixed_precision_config.dtype, torch.bfloat16)
        else:
            self.dtype = torch.float32
    
    @contextmanager
    def autocast_context(self):
        """Context manager for automatic mixed precision"""
        if self.mixed_precision_config.enabled and self.mixed_precision_config.use_amp:
            with torch.autocast(device_type='cuda', dtype=self.dtype):
                yield
        else:
            yield
    
    def _compile_model(self, model: nn.Module) -> nn.Module:
        """Compile model using torch.compile"""
        if not self.compilation_config.enabled or not HAS_TORCH_COMPILE:
            return model
        
        return torch.compile(
            model,
            mode=self.compilation_config.mode,
            fullgraph=self.compilation_config.fullgraph,
            dynamic=self.compilation_config.dynamic,
            backend=self.compilation_config.backend,
        )
    
    def _quantize_model_fp8(self, model: nn.Module) -> nn.Module:
        """Apply FP8 quantization using Transformer Engine"""
        if not self.fp8_config.enabled or not HAS_TRANSFORMER_ENGINE:
            return model
        
        # Convert compatible layers to FP8
        for name, module in model.named_modules():
            if isinstance(module, nn.Linear):
                # Replace with TE FP8 Linear
                fp8_linear = te.Linear(
                    module.in_features,
                    module.out_features,
                    bias=module.bias is not None,
                )
                # Copy weights
                fp8_linear.weight.data.copy_(module.weight.data)
                if module.bias is not None:
                    fp8_linear.bias.data.copy_(module.bias.data)
                
                # Replace module
                parent_name = '.'.join(name.split('.')[:-1])
                child_name = name.split('.')[-1]
                if parent_name:
                    parent = dict(model.named_modules())[parent_name]
                    setattr(parent, child_name, fp8_linear)
        
        return model
    
    def optimize_model(
        self,
        model: nn.Module,
        apply_compilation: bool = True,
        apply_quantization: bool = True,
        apply_mixed_precision: bool = True,
    ) -> nn.Module:
        """
        Apply all optimizations to model.
        
        Args:
            model: Model to optimize
            apply_compilation: Whether to compile with torch.compile
            apply_quantization: Whether to apply FP8 quantization
            apply_mixed_precision: Whether to convert to mixed precision dtype
            
        Returns:
            Optimized model
        """
        # Apply FP8 quantization first
        if apply_quantization and self.fp8_config.enabled:
            model = self._quantize_model_fp8(model)
        
        # Convert to mixed precision dtype
        if apply_mixed_precision and self.mixed_precision_config.enabled:
            model = model.to(dtype=self.dtype)
        
        # Compile model last
        if apply_compilation and self.compilation_config.enabled:
            model = self._compile_model(model)
        
        return model


@contextmanager
def optimized_inference_mode(
    enable_cudnn_benchmark: bool = True,
    enable_tf32: bool = True,
    enable_flash_sdp: bool = True,
):
    """
    Context manager for optimized inference with various PyTorch optimizations.
    
    Args:
        enable_cudnn_benchmark: Enable cuDNN autotuner
        enable_tf32: Enable TF32 for faster matmul on Ampere+ GPUs
        enable_flash_sdp: Enable Flash Attention in scaled_dot_product_attention
    """
    # Save original states
    orig_benchmark = torch.backends.cudnn.benchmark
    orig_tf32_matmul = torch.backends.cuda.matmul.allow_tf32
    orig_tf32_cudnn = torch.backends.cudnn.allow_tf32
    orig_sdp_flash = torch.backends.cuda.flash_sdp_enabled()
    
    try:
        # Enable optimizations
        torch.backends.cudnn.benchmark = enable_cudnn_benchmark
        torch.backends.cuda.matmul.allow_tf32 = enable_tf32
        torch.backends.cudnn.allow_tf32 = enable_tf32
        
        if enable_flash_sdp:
            torch.backends.cuda.enable_flash_sdp(True)
        
        yield
        
    finally:
        # Restore original states
        torch.backends.cudnn.benchmark = orig_benchmark
        torch.backends.cuda.matmul.allow_tf32 = orig_tf32_matmul
        torch.backends.cudnn.allow_tf32 = orig_tf32_cudnn
        torch.backends.cuda.enable_flash_sdp(orig_sdp_flash)