Spaces:
Running
Running
| import os | |
| from PIL import Image | |
| import numpy as np | |
| import onnxruntime as ort | |
| import json | |
| from huggingface_hub import hf_hub_download | |
| class NSFWDetector: | |
| """ | |
| NSFW检测器类,使用YOLOv9模型进行图像分类 | |
| """ | |
| def __init__(self, repo_id="Falconsai/nsfw_image_detection", | |
| model_filename="falconsai_yolov9_nsfw_model_quantized.pt", | |
| labels_filename="labels.json", | |
| input_size=(224, 224)): | |
| """ | |
| 初始化NSFW检测器 | |
| Args: | |
| repo_id (str): Hugging Face仓库ID | |
| model_filename (str): 模型文件名 | |
| labels_filename (str): 标签文件名 | |
| input_size (tuple): 模型输入尺寸 (height, width) | |
| """ | |
| self.repo_id = repo_id | |
| self.model_filename = model_filename | |
| self.labels_filename = labels_filename | |
| self.input_size = input_size | |
| # 从Hugging Face下载文件 | |
| self.model_path = self._download_model() | |
| self.labels_path = self._download_labels() | |
| # 加载标签 | |
| self.labels = self._load_labels() | |
| # 加载模型 | |
| self.session = self._load_model() | |
| self.input_name = self.session.get_inputs()[0].name | |
| self.output_name = self.session.get_outputs()[0].name | |
| def _download_model(self): | |
| """ | |
| 从Hugging Face下载模型文件 | |
| Returns: | |
| str: 下载的模型文件路径 | |
| """ | |
| try: | |
| print(f"正在从 {self.repo_id} 下载模型文件: {self.model_filename}") | |
| model_path = hf_hub_download( | |
| repo_id=self.repo_id, | |
| filename=self.model_filename, | |
| cache_dir="./hf_cache" | |
| ) | |
| print(f"✅ 模型下载成功: {model_path}") | |
| return model_path | |
| except Exception as e: | |
| raise RuntimeError(f"模型下载失败: {e}") | |
| def _download_labels(self): | |
| """ | |
| 从Hugging Face下载标签文件 | |
| Returns: | |
| str: 下载的标签文件路径 | |
| """ | |
| try: | |
| print(f"正在从 {self.repo_id} 下载标签文件: {self.labels_filename}") | |
| labels_path = hf_hub_download( | |
| repo_id=self.repo_id, | |
| filename=self.labels_filename, | |
| cache_dir="./hf_cache" | |
| ) | |
| print(f"✅ 标签文件下载成功: {labels_path}") | |
| return labels_path | |
| except Exception as e: | |
| raise RuntimeError(f"标签文件下载失败: {e}") | |
| def _load_labels(self): | |
| """ | |
| 加载类别标签 | |
| Returns: | |
| dict: 标签字典 | |
| """ | |
| try: | |
| with open(self.labels_path, "r") as f: | |
| return json.load(f) | |
| except FileNotFoundError: | |
| raise FileNotFoundError(f"标签文件未找到: {self.labels_path}") | |
| except json.JSONDecodeError: | |
| raise ValueError(f"标签文件格式错误: {self.labels_path}") | |
| def _load_model(self): | |
| """ | |
| 加载ONNX模型 | |
| Returns: | |
| onnxruntime.InferenceSession: 模型会话 | |
| """ | |
| try: | |
| return ort.InferenceSession(self.model_path) | |
| except Exception as e: | |
| raise RuntimeError(f"模型加载失败: {self.model_path}, 错误: {e}") | |
| def _preprocess_image(self, image_path): | |
| """ | |
| 图像预处理 | |
| Args: | |
| image_path (str): 图像文件路径 | |
| Returns: | |
| tuple: (预处理后的张量, 原始图像) | |
| """ | |
| try: | |
| # 加载并转换图像 | |
| original_image = Image.open(image_path).convert("RGB") | |
| # 调整尺寸 | |
| image_resized = original_image.resize(self.input_size, Image.Resampling.BILINEAR) | |
| # 转换为numpy数组并归一化 | |
| image_np = np.array(image_resized, dtype=np.float32) / 255.0 | |
| # 调整维度顺序 [H, W, C] -> [C, H, W] | |
| image_np = np.transpose(image_np, (2, 0, 1)) | |
| # 添加批次维度 [C, H, W] -> [1, C, H, W] | |
| input_tensor = np.expand_dims(image_np, axis=0).astype(np.float32) | |
| return input_tensor, original_image | |
| except FileNotFoundError: | |
| raise FileNotFoundError(f"图像文件未找到: {image_path}") | |
| except Exception as e: | |
| raise RuntimeError(f"图像预处理失败: {e}") | |
| def _postprocess_predictions(self, predictions): | |
| """ | |
| 后处理预测结果 | |
| Args: | |
| predictions: 模型预测输出 | |
| Returns: | |
| str: 预测的类别标签 | |
| """ | |
| predicted_index = np.argmax(predictions) | |
| predicted_label = self.labels[str(predicted_index)] | |
| return predicted_label | |
| def predict(self, image_path): | |
| """ | |
| 对单张图像进行NSFW检测 | |
| Args: | |
| image_path (str): 图像文件路径 | |
| Returns: | |
| tuple: (预测标签, 原始图像) | |
| """ | |
| # 预处理图像 | |
| input_tensor, original_image = self._preprocess_image(image_path) | |
| # 运行推理 | |
| outputs = self.session.run([self.output_name], {self.input_name: input_tensor}) | |
| predictions = outputs[0] | |
| # 后处理结果 | |
| predicted_label = self._postprocess_predictions(predictions) | |
| return predicted_label, original_image | |
| def predict_label_only(self, image_path): | |
| """ | |
| 只返回预测标签(不返回图像) | |
| Args: | |
| image_path (str): 图像文件路径 | |
| Returns: | |
| str: 预测的类别标签 | |
| """ | |
| predicted_label, _ = self.predict(image_path) | |
| return predicted_label | |
| def predict_from_pil(self, pil_image): | |
| """ | |
| 直接从PIL Image对象进行NSFW检测 | |
| Args: | |
| pil_image (PIL.Image): PIL图像对象 | |
| Returns: | |
| tuple: (预测标签, 原始图像) | |
| """ | |
| try: | |
| # 确保是RGB格式 | |
| if pil_image.mode != "RGB": | |
| pil_image = pil_image.convert("RGB") | |
| # 调整尺寸 | |
| image_resized = pil_image.resize(self.input_size, Image.Resampling.BILINEAR) | |
| # 转换为numpy数组并归一化 | |
| image_np = np.array(image_resized, dtype=np.float32) / 255.0 | |
| # 调整维度顺序 [H, W, C] -> [C, H, W] | |
| image_np = np.transpose(image_np, (2, 0, 1)) | |
| # 添加批次维度 [C, H, W] -> [1, C, H, W] | |
| input_tensor = np.expand_dims(image_np, axis=0).astype(np.float32) | |
| # 运行推理 | |
| outputs = self.session.run([self.output_name], {self.input_name: input_tensor}) | |
| predictions = outputs[0] | |
| # 后处理结果 | |
| predicted_label = self._postprocess_predictions(predictions) | |
| return predicted_label, pil_image | |
| except Exception as e: | |
| raise RuntimeError(f"PIL图像预测失败: {e}") | |
| def predict_pil_label_only(self, pil_image): | |
| """ | |
| 从PIL Image对象只返回预测标签 | |
| Args: | |
| pil_image (PIL.Image): PIL图像对象 | |
| Returns: | |
| str: 预测的类别标签 | |
| """ | |
| predicted_label, _ = self.predict_from_pil(pil_image) | |
| return predicted_label | |
| # --- 使用示例 --- | |
| if __name__ == "__main__": | |
| # 配置参数 | |
| single_image_path = "datas/bad01.jpg" | |
| try: | |
| # 创建检测器实例(自动从Hugging Face下载) | |
| detector = NSFWDetector() | |
| # 检查图像文件是否存在 | |
| if os.path.exists(single_image_path): | |
| # 进行预测 | |
| predicted_label = detector.predict_label_only(single_image_path) | |
| print(f"图像文件: {single_image_path}") | |
| print(f"预测结果: {predicted_label}") | |
| else: | |
| print(f"错误: 指定的图像文件不存在: {single_image_path}") | |
| except Exception as e: | |
| print(f"初始化检测器时发生错误: {e}") |