import gradio as gr
import threading
import os
import shutil
import tempfile
import time
from util import process_image_edit, process_local_image_edit, download_and_check_result_nsfw
from nfsw import NSFWDetector
# Configuration parameters
TIP_TRY_N = 5 # Show like button tip after 12 tries
FREE_TRY_N = 10 # Free phase: first 15 tries without restrictions
SLOW_TRY_N = 16 # Slow phase start: 25 tries
SLOW2_TRY_N = 24 # Slow phase start: 32 tries
RATE_LIMIT_60 = 32 # Full restriction: blocked after 40 tries
# Time window configuration (minutes)
PHASE_1_WINDOW = 2 # 15-25 tries: 5 minutes
PHASE_2_WINDOW = 10 # 25-32 tries: 10 minutes
PHASE_3_WINDOW = 20 # 32-40 tries: 20 minutes
MAX_IMAGES_PER_WINDOW = 2 # Max images per time window
IP_Dict = {}
# IP generation statistics and time window tracking
IP_Generation_Count = {} # Record total generation count for each IP
IP_Rate_Limit_Track = {} # Record generation count and timestamp in current time window for each IP
def get_ip_generation_count(client_ip):
"""
Get IP generation count
"""
if client_ip not in IP_Generation_Count:
IP_Generation_Count[client_ip] = 0
return IP_Generation_Count[client_ip]
def increment_ip_generation_count(client_ip):
"""
Increment IP generation count
"""
if client_ip not in IP_Generation_Count:
IP_Generation_Count[client_ip] = 0
IP_Generation_Count[client_ip] += 1
return IP_Generation_Count[client_ip]
def get_ip_phase(client_ip):
"""
Get current phase for IP
Returns:
str: 'free', 'rate_limit_1', 'rate_limit_2', 'rate_limit_3', 'blocked'
"""
count = get_ip_generation_count(client_ip)
if count < FREE_TRY_N:
return 'free'
elif count < SLOW_TRY_N:
return 'rate_limit_1' # NSFW blur + 5 minutes 2 images
elif count < SLOW2_TRY_N:
return 'rate_limit_2' # NSFW blur + 10 minutes 2 images
elif count < RATE_LIMIT_60:
return 'rate_limit_3' # NSFW blur + 20 minutes 2 images
else:
return 'blocked' # Generation blocked
def check_rate_limit_for_phase(client_ip, phase):
"""
Check rate limit for specific phase
Returns:
tuple: (is_limited, wait_time_minutes, current_count)
"""
if phase not in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3']:
return False, 0, 0
# Determine time window
if phase == 'rate_limit_1':
window_minutes = PHASE_1_WINDOW
elif phase == 'rate_limit_2':
window_minutes = PHASE_2_WINDOW
else: # rate_limit_3
window_minutes = PHASE_3_WINDOW
current_time = time.time()
window_key = f"{client_ip}_{phase}"
# Clean expired records
if window_key in IP_Rate_Limit_Track:
track_data = IP_Rate_Limit_Track[window_key]
# Check if within current time window
if current_time - track_data['start_time'] > window_minutes * 60:
# Time window expired, reset
IP_Rate_Limit_Track[window_key] = {
'count': 0,
'start_time': current_time,
'last_generation': current_time
}
else:
# Initialize
IP_Rate_Limit_Track[window_key] = {
'count': 0,
'start_time': current_time,
'last_generation': current_time
}
track_data = IP_Rate_Limit_Track[window_key]
# Check if exceeded limit
if track_data['count'] >= MAX_IMAGES_PER_WINDOW:
# Calculate remaining wait time
elapsed = current_time - track_data['start_time']
wait_time = (window_minutes * 60) - elapsed
wait_minutes = max(0, wait_time / 60)
return True, wait_minutes, track_data['count']
return False, 0, track_data['count']
def record_generation_attempt(client_ip, phase):
"""
Record generation attempt
"""
# Increment total count
increment_ip_generation_count(client_ip)
# Record time window count
if phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3']:
window_key = f"{client_ip}_{phase}"
current_time = time.time()
if window_key in IP_Rate_Limit_Track:
IP_Rate_Limit_Track[window_key]['count'] += 1
IP_Rate_Limit_Track[window_key]['last_generation'] = current_time
else:
IP_Rate_Limit_Track[window_key] = {
'count': 1,
'start_time': current_time,
'last_generation': current_time
}
def apply_gaussian_blur_to_image_url(image_url, blur_strength=50):
"""
Apply Gaussian blur to image URL
Args:
image_url (str): Original image URL
blur_strength (int): Blur strength, default 50 (heavy blur)
Returns:
PIL.Image: Blurred PIL Image object
"""
try:
import requests
from PIL import Image, ImageFilter
import io
# Download image
response = requests.get(image_url, timeout=30)
if response.status_code != 200:
return None
# Convert to PIL Image
image_data = io.BytesIO(response.content)
image = Image.open(image_data)
# Apply heavy Gaussian blur
blurred_image = image.filter(ImageFilter.GaussianBlur(radius=blur_strength))
return blurred_image
except Exception as e:
print(f"⚠️ Failed to apply Gaussian blur: {e}")
return None
# Initialize NSFW detector (download from Hugging Face)
try:
nsfw_detector = NSFWDetector() # Auto download falconsai_yolov9_nsfw_model_quantized.pt from Hugging Face
print("✅ NSFW detector initialized successfully")
except Exception as e:
print(f"❌ NSFW detector initialization failed: {e}")
nsfw_detector = None
def edit_image_interface(input_image, prompt, request: gr.Request, progress=gr.Progress()):
"""
Interface function for processing image editing with phase-based limitations
"""
try:
# Extract user IP
client_ip = request.client.host
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
if x_forwarded_for:
client_ip = x_forwarded_for
if client_ip not in IP_Dict:
IP_Dict[client_ip] = 0
IP_Dict[client_ip] += 1
if input_image is None:
return None, "Please upload an image first", gr.update(visible=False)
if not prompt or prompt.strip() == "":
return None, "Please enter editing prompt", gr.update(visible=False)
# Check if prompt length is greater than 3 characters
if len(prompt.strip()) <= 3:
return None, "❌ Editing prompt must be more than 3 characters", gr.update(visible=False)
except Exception as e:
print(f"⚠️ Request preprocessing error: {e}")
return None, "❌ Request processing error", gr.update(visible=False)
# Get user current phase
current_phase = get_ip_phase(client_ip)
current_count = get_ip_generation_count(client_ip)
print(f"📊 User phase info - IP: {client_ip}, current phase: {current_phase}, generation count: {current_count}")
# Check if user reached the like button tip threshold
show_like_tip = (current_count >= TIP_TRY_N)
# Check if completely blocked
if current_phase == 'blocked':
# Generate blocked limit button
blocked_button_html = f"""
"""
return None, f"❌ You have reached Hugging Face's free generation limit. Please visit https://omnicreator.net/#generator for unlimited generation", gr.update(value=blocked_button_html, visible=True)
# Check rate limit (applies to rate_limit phases)
if current_phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3']:
is_limited, wait_minutes, window_count = check_rate_limit_for_phase(client_ip, current_phase)
if is_limited:
wait_minutes_int = int(wait_minutes) + 1
# Generate rate limit button
rate_limit_button_html = f"""
"""
return None, f"❌ You have reached Hugging Face's free generation limit. Please visit https://omnicreator.net/#generator for unlimited generation, or wait {wait_minutes_int} minutes before generating again", gr.update(value=rate_limit_button_html, visible=True)
# Handle NSFW detection based on phase
is_nsfw_task = False # Track if this task involves NSFW content
# Skip NSFW detection in free phase
if current_phase != 'free' and nsfw_detector is not None and input_image is not None:
try:
nsfw_result = nsfw_detector.predict_pil_label_only(input_image)
if nsfw_result.lower() == "nsfw":
is_nsfw_task = True
print(f"🔍 Input NSFW detected in {current_phase} phase: ❌❌❌ {nsfw_result} - IP: {client_ip} (will blur result)")
else:
print(f"🔍 Input NSFW check passed: ✅✅✅ {nsfw_result} - IP: {client_ip}")
except Exception as e:
print(f"⚠️ Input NSFW detection failed: {e}")
# Allow continuation when detection fails
result_url = None
status_message = ""
def progress_callback(message):
try:
nonlocal status_message
status_message = message
# Add error handling to prevent progress update failure
if progress is not None:
# Enhanced progress display with better formatting
if "Queue:" in message or "tasks ahead" in message:
# Queue status - show with different progress value to indicate waiting
progress(0.1, desc=message)
elif "Processing" in message or "AI is processing" in message:
# Processing status
progress(0.7, desc=message)
elif "Generating" in message or "Almost done" in message:
# Generation status
progress(0.9, desc=message)
else:
# Default status
progress(0.5, desc=message)
except Exception as e:
print(f"⚠️ Progress update failed: {e}")
try:
# Record generation attempt (before actual generation to ensure correct count)
record_generation_attempt(client_ip, current_phase)
updated_count = get_ip_generation_count(client_ip)
print(f"✅ Processing started - IP: {client_ip}, phase: {current_phase}, total count: {updated_count}, prompt: {prompt.strip()}", flush=True)
# Call image editing processing function
result_url, message, task_uuid = process_image_edit(input_image, prompt.strip(), None, progress_callback)
if result_url:
print(f"✅ Processing completed successfully - IP: {client_ip}, result_url: {result_url}, task_uuid: {task_uuid}", flush=True)
# Detect result image NSFW content (only in rate limit phases)
if nsfw_detector is not None and current_phase != 'free':
try:
if progress is not None:
progress(0.9, desc="Checking result image...")
is_nsfw, nsfw_error = download_and_check_result_nsfw(result_url, nsfw_detector)
if nsfw_error:
print(f"⚠️ Result image NSFW detection error - IP: {client_ip}, error: {nsfw_error}")
elif is_nsfw:
is_nsfw_task = True # Mark task as NSFW
print(f"🔍 Result image NSFW detected in {current_phase} phase: ❌❌❌ - IP: {client_ip} (will blur result)")
else:
print(f"🔍 Result image NSFW check passed: ✅✅✅ - IP: {client_ip}")
except Exception as e:
print(f"⚠️ Result image NSFW detection exception - IP: {client_ip}, error: {str(e)}")
# Apply blur if this is an NSFW task in rate limit phases
should_blur = False
if current_phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3'] and is_nsfw_task:
should_blur = True
# Apply blur processing
if should_blur:
if progress is not None:
progress(0.95, desc="Applying content filter...")
blurred_image = apply_gaussian_blur_to_image_url(result_url)
if blurred_image is not None:
final_result = blurred_image # Return PIL Image object
final_message = f"⚠️ NSFW content detected, content filter applied. NSFW content is prohibited by Hugging Face, but you can generate unlimited content at our official website https://omnicreator.net/#generator"
print(f"🔒 Applied Gaussian blur for NSFW content - IP: {client_ip}")
else:
# Blur failed, return original URL with warning
final_result = result_url
final_message = f"⚠️ NSFW content detected, but content filter failed. Please visit https://omnicreator.net/#generator for better experience"
# Generate NSFW button for blurred content
nsfw_action_buttons_html = f"""
"""
return final_result, final_message, gr.update(value=nsfw_action_buttons_html, visible=True)
else:
final_result = result_url
final_message = "✅ " + message
try:
if progress is not None:
progress(1.0, desc="Processing completed")
except Exception as e:
print(f"⚠️ Final progress update failed: {e}")
# Generate action buttons HTML like Trump AI Voice
action_buttons_html = ""
if task_uuid:
task_detail_url = f"https://omnicreator.net/my-creations/task/{task_uuid}"
action_buttons_html = f"""
"""
# Add popup script if needed (using different approach)
if show_like_tip:
action_buttons_html += """
👉 Click the ❤️ Like button to unlock more free trial attempts!
"""
return final_result, final_message, gr.update(value=action_buttons_html, visible=True)
else:
print(f"❌ Processing failed - IP: {client_ip}, error: {message}", flush=True)
return None, "❌ " + message, gr.update(visible=False)
except Exception as e:
print(f"❌ Processing exception - IP: {client_ip}, error: {str(e)}")
return None, f"❌ Error occurred during processing: {str(e)}", gr.update(visible=False)
def local_edit_interface(image_dict, prompt, reference_image, request: gr.Request, progress=gr.Progress()):
"""
Handle local editing requests (with phase-based limitations)
"""
try:
# Extract user IP
client_ip = request.client.host
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
if x_forwarded_for:
client_ip = x_forwarded_for
if client_ip not in IP_Dict:
IP_Dict[client_ip] = 0
IP_Dict[client_ip] += 1
if image_dict is None:
return None, "Please upload an image and draw the area to edit", gr.update(visible=False)
# Handle different input formats for ImageEditor
if isinstance(image_dict, dict):
# ImageEditor dict format
if "background" not in image_dict or "layers" not in image_dict:
return None, "Please draw the area to edit on the image", gr.update(visible=False)
base_image = image_dict["background"]
layers = image_dict["layers"]
# Special handling: if background is None but composite exists, use composite
if base_image is None and "composite" in image_dict and image_dict["composite"] is not None:
print("🔧 Background is None, using composite instead")
base_image = image_dict["composite"]
else:
# Simple case: Direct PIL Image (from example)
base_image = image_dict
layers = []
# Check for special example case - bypass mask requirement
is_example_case = prompt and prompt.startswith("EXAMPLE_PANDA_CAT_")
# Debug: check current state
if is_example_case:
print(f"🔍 Example case detected - base_image is None: {base_image is None}")
# Special handling for example case: load image directly from file
if is_example_case and base_image is None:
try:
from PIL import Image
import os
main_path = "datas/panda01.jpeg"
print(f"🔍 Trying to load: {main_path}, exists: {os.path.exists(main_path)}")
if os.path.exists(main_path):
base_image = Image.open(main_path)
print(f"✅ Successfully loaded example image: {base_image.size}")
else:
return None, f"❌ Example image not found: {main_path}", gr.update(visible=False)
except Exception as e:
return None, f"❌ Failed to load example image: {str(e)}", gr.update(visible=False)
# Additional check for base_image
if base_image is None:
if is_example_case:
print(f"❌ Example case but base_image still None!")
return None, "❌ No image found. Please upload an image first.", gr.update(visible=False)
if not layers and not is_example_case:
return None, "Please draw the area to edit on the image", gr.update(visible=False)
if not prompt or prompt.strip() == "":
return None, "Please enter editing prompt", gr.update(visible=False)
# Check prompt length
if len(prompt.strip()) <= 3:
return None, "❌ Editing prompt must be more than 3 characters", gr.update(visible=False)
except Exception as e:
print(f"⚠️ Local edit request preprocessing error: {e}")
return None, "❌ Request processing error", gr.update(visible=False)
# Get user current phase
current_phase = get_ip_phase(client_ip)
current_count = get_ip_generation_count(client_ip)
print(f"📊 Local edit user phase info - IP: {client_ip}, current phase: {current_phase}, generation count: {current_count}")
# Check if user reached the like button tip threshold
show_like_tip = (current_count >= TIP_TRY_N)
# Check if completely blocked
if current_phase == 'blocked':
# Generate blocked limit button
blocked_button_html = f"""
"""
return None, f"❌ You have reached Hugging Face's free generation limit. Please visit https://omnicreator.net/#generator for unlimited generation", gr.update(value=blocked_button_html, visible=True)
# Check rate limit (applies to rate_limit phases)
if current_phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3']:
is_limited, wait_minutes, window_count = check_rate_limit_for_phase(client_ip, current_phase)
if is_limited:
wait_minutes_int = int(wait_minutes) + 1
# Generate rate limit button
rate_limit_button_html = f"""
"""
return None, f"❌ You have reached Hugging Face's free generation limit. Please visit https://omnicreator.net/#generator for unlimited generation, or wait {wait_minutes_int} minutes before generating again", gr.update(value=rate_limit_button_html, visible=True)
# Handle NSFW detection based on phase
is_nsfw_task = False # Track if this task involves NSFW content
# Skip NSFW detection in free phase
if current_phase != 'free' and nsfw_detector is not None and base_image is not None:
try:
nsfw_result = nsfw_detector.predict_pil_label_only(base_image)
if nsfw_result.lower() == "nsfw":
is_nsfw_task = True
print(f"🔍 Local edit input NSFW detected in {current_phase} phase: ❌❌❌ {nsfw_result} - IP: {client_ip} (will blur result)")
else:
print(f"🔍 Local edit input NSFW check passed: ✅✅✅ {nsfw_result} - IP: {client_ip}")
except Exception as e:
print(f"⚠️ Local edit input NSFW detection failed: {e}")
# Allow continuation when detection fails
result_url = None
status_message = ""
def progress_callback(message):
try:
nonlocal status_message
status_message = message
# Add error handling to prevent progress update failure
if progress is not None:
# Enhanced progress display with better formatting for local editing
if "Queue:" in message or "tasks ahead" in message:
# Queue status - show with different progress value to indicate waiting
progress(0.1, desc=message)
elif "Processing" in message or "AI is processing" in message:
# Processing status
progress(0.7, desc=message)
elif "Generating" in message or "Almost done" in message:
# Generation status
progress(0.9, desc=message)
else:
# Default status
progress(0.5, desc=message)
except Exception as e:
print(f"⚠️ Local edit progress update failed: {e}")
try:
# Record generation attempt (before actual generation to ensure correct count)
record_generation_attempt(client_ip, current_phase)
updated_count = get_ip_generation_count(client_ip)
print(f"✅ Local editing started - IP: {client_ip}, phase: {current_phase}, total count: {updated_count}, prompt: {prompt.strip()}", flush=True)
# Clean prompt for API call
clean_prompt = prompt.strip()
if clean_prompt.startswith("EXAMPLE_PANDA_CAT_"):
clean_prompt = clean_prompt[18:] # Remove the prefix
# Call local image editing processing function
if is_example_case:
# For example case, pass special flag to use local mask file
result_url, message, task_uuid = process_local_image_edit(base_image, layers, clean_prompt, reference_image, progress_callback, use_example_mask="datas/panda01m.jpeg")
else:
# Normal case
result_url, message, task_uuid = process_local_image_edit(base_image, layers, clean_prompt, reference_image, progress_callback)
if result_url:
print(f"✅ Local editing completed successfully - IP: {client_ip}, result_url: {result_url}, task_uuid: {task_uuid}", flush=True)
# Detect result image NSFW content (only in rate limit phases)
if nsfw_detector is not None and current_phase != 'free':
try:
if progress is not None:
progress(0.9, desc="Checking result image...")
is_nsfw, nsfw_error = download_and_check_result_nsfw(result_url, nsfw_detector)
if nsfw_error:
print(f"⚠️ Local edit result image NSFW detection error - IP: {client_ip}, error: {nsfw_error}")
elif is_nsfw:
is_nsfw_task = True # Mark task as NSFW
print(f"🔍 Local edit result image NSFW detected in {current_phase} phase: ❌❌❌ - IP: {client_ip} (will blur result)")
else:
print(f"🔍 Local edit result image NSFW check passed: ✅✅✅ - IP: {client_ip}")
except Exception as e:
print(f"⚠️ Local edit result image NSFW detection exception - IP: {client_ip}, error: {str(e)}")
# Apply blur if this is an NSFW task in rate limit phases
should_blur = False
if current_phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3'] and is_nsfw_task:
should_blur = True
# Apply blur processing
if should_blur:
if progress is not None:
progress(0.95, desc="Applying content filter...")
blurred_image = apply_gaussian_blur_to_image_url(result_url)
if blurred_image is not None:
final_result = blurred_image # Return PIL Image object
final_message = f"⚠️ NSFW content detected, content filter applied. NSFW content is prohibited by Hugging Face, but you can generate unlimited content at our official website https://omnicreator.net/#generator"
print(f"🔒 Local edit applied Gaussian blur for NSFW content - IP: {client_ip}")
else:
# Blur failed, return original URL with warning
final_result = result_url
final_message = f"⚠️ NSFW content detected, but content filter failed. Please visit https://omnicreator.net/#generator for better experience"
# Generate NSFW button for blurred content
nsfw_action_buttons_html = f"""
"""
return final_result, final_message, gr.update(value=nsfw_action_buttons_html, visible=True)
else:
final_result = result_url
final_message = "✅ " + message
try:
if progress is not None:
progress(1.0, desc="Processing completed")
except Exception as e:
print(f"⚠️ Local edit final progress update failed: {e}")
# Generate action buttons HTML like Trump AI Voice
action_buttons_html = ""
if task_uuid:
task_detail_url = f"https://omnicreator.net/my-creations/task/{task_uuid}"
action_buttons_html = f"""
"""
# Add popup script if needed (using different approach)
if show_like_tip:
action_buttons_html += """
👉 Click the ❤️ Like button to unlock more free trial attempts!
"""
return final_result, final_message, gr.update(value=action_buttons_html, visible=True)
else:
print(f"❌ Local editing processing failed - IP: {client_ip}, error: {message}", flush=True)
return None, "❌ " + message, gr.update(visible=False)
except Exception as e:
print(f"❌ Local editing exception - IP: {client_ip}, error: {str(e)}")
return None, f"❌ Error occurred during processing: {str(e)}", gr.update(visible=False)
# Create Gradio interface
def create_app():
with gr.Blocks(
title="AI Image Editor",
theme=gr.themes.Soft(),
css="""
.main-container {
max-width: 1200px;
margin: 0 auto;
}
.upload-area {
border: 2px dashed #ccc;
border-radius: 10px;
padding: 20px;
text-align: center;
}
.result-area {
margin-top: 20px;
padding: 20px;
border-radius: 10px;
background-color: #f8f9fa;
}
.use-as-input-btn {
margin-top: 10px;
width: 100%;
}
""",
# Improve concurrency performance configuration
head="""
"""
) as app:
# Main title - styled like Trump AI Voice
gr.HTML("""
🎨 AI Image Editor
""", padding=False)
# 🌟 NEW: Multi-Image Editing Announcement Banner with breathing effect
gr.HTML("""
""", padding=False)
with gr.Tabs():
with gr.Tab("🌍 Global Editor"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📸 Upload Image")
input_image = gr.Image(
label="Select image to edit",
type="pil",
height=512,
elem_classes=["upload-area"]
)
gr.Markdown("### ✍️ Editing Instructions")
prompt_input = gr.Textbox(
label="Enter editing prompt",
placeholder="For example: change background to beach, add rainbow, remove background, etc...",
lines=3,
max_lines=5
)
edit_button = gr.Button(
"🚀 Start Editing",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.Markdown("### 🎯 Editing Result")
output_image = gr.Image(
label="Edited image",
height=320,
elem_classes=["result-area"]
)
use_as_input_btn = gr.Button(
"🔄 Use as Input",
variant="secondary",
size="sm",
elem_classes=["use-as-input-btn"]
)
status_output = gr.Textbox(
label="Processing status",
lines=2,
max_lines=3,
interactive=False
)
action_buttons = gr.HTML(visible=False)
gr.Markdown("### 💡 Prompt Examples")
with gr.Row():
example_prompts = [
"Set the background to a grand opera stage with red curtains",
"Change the outfit into a traditional Chinese hanfu with flowing sleeves",
"Give the character blue dragon-like eyes with glowing pupils",
"Change lighting to soft dreamy pastel glow",
"Change pose to sitting cross-legged on the ground"
]
for prompt in example_prompts:
gr.Button(
prompt,
size="sm"
).click(
lambda p=prompt: p,
outputs=prompt_input
)
edit_button.click(
fn=edit_image_interface,
inputs=[input_image, prompt_input],
outputs=[output_image, status_output, action_buttons],
show_progress=True,
concurrency_limit=10,
api_name="global_edit"
)
def simple_use_as_input(output_img):
if output_img is not None:
return output_img
return None
use_as_input_btn.click(
fn=simple_use_as_input,
inputs=[output_image],
outputs=[input_image]
)
with gr.Tab("🖌️ Local Inpaint"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📸 Upload Image and Draw Mask")
local_input_image = gr.ImageEditor(
label="Upload image and draw mask",
type="pil",
height=512,
brush=gr.Brush(colors=["#ff0000"], default_size=180),
elem_classes=["upload-area"]
)
gr.Markdown("### 🖼️ Reference Image(Optional)")
local_reference_image = gr.Image(
label="Upload reference image (optional)",
type="pil",
height=256
)
gr.Markdown("### ✍️ Editing Instructions")
local_prompt_input = gr.Textbox(
label="Enter local editing prompt",
placeholder="For example: change selected area hair to golden, add patterns to selected object, change selected area color, etc...",
lines=3,
max_lines=5
)
local_edit_button = gr.Button(
"🎯 Start Local Editing",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.Markdown("### 🎯 Editing Result")
local_output_image = gr.Image(
label="Local edited image",
height=320,
elem_classes=["result-area"]
)
local_use_as_input_btn = gr.Button(
"🔄 Use as Input",
variant="secondary",
size="sm",
elem_classes=["use-as-input-btn"]
)
local_status_output = gr.Textbox(
label="Processing status",
lines=2,
max_lines=3,
interactive=False
)
local_action_buttons = gr.HTML(visible=False)
local_edit_button.click(
fn=local_edit_interface,
inputs=[local_input_image, local_prompt_input, local_reference_image],
outputs=[local_output_image, local_status_output, local_action_buttons],
show_progress=True,
concurrency_limit=8,
api_name="local_edit"
)
def simple_local_use_as_input(output_img):
if output_img is not None:
return {
"background": output_img,
"layers": [],
"composite": output_img
}
return None
local_use_as_input_btn.click(
fn=simple_local_use_as_input,
inputs=[local_output_image],
outputs=[local_input_image]
)
# Local inpaint example
gr.Markdown("### 💡 Local Inpaint Example")
def load_local_example():
"""Load panda to cat transformation example - simplified, mask handled in backend"""
try:
from PIL import Image
import os
# Check file paths
main_path = "datas/panda01.jpeg"
ref_path = "datas/cat01.webp"
# Load main image
if not os.path.exists(main_path):
return None, None, "EXAMPLE_PANDA_CAT_let the cat ride on the panda"
main_img = Image.open(main_path)
# Load reference image
if not os.path.exists(ref_path):
ref_img = None
else:
ref_img = Image.open(ref_path)
# ImageEditor format
editor_data = {
"background": main_img,
"layers": [],
"composite": main_img
}
# Special prompt to indicate this is the example case
prompt = "EXAMPLE_PANDA_CAT_let the cat ride on the panda"
# Return just the PIL image instead of dict format to avoid UI state issues
return main_img, ref_img, prompt
except Exception as e:
return None, None, "EXAMPLE_PANDA_CAT_Transform the panda head into a cute cat head, keeping the body"
# Example display
gr.Markdown("#### 🐼➡️🐱 Example: Panda to Cat Transformation")
with gr.Row():
with gr.Column(scale=2):
# Preview images for local example
with gr.Row():
try:
gr.Image("datas/panda01.jpeg", label="Main Image", height=120, width=120, show_label=True, interactive=False)
gr.Image("datas/panda01m.jpeg", label="Mask", height=120, width=120, show_label=True, interactive=False)
gr.Image("datas/cat01.webp", label="Reference", height=120, width=120, show_label=True, interactive=False)
except:
gr.Markdown("*Preview images not available*")
gr.Markdown("**Prompt**: let the cat ride on the panda \n**Note**: Mask will be automatically applied when you submit this example")
with gr.Column(scale=1):
gr.Button(
"🎨 Load Panda Example",
size="lg",
variant="secondary"
).click(
fn=load_local_example,
outputs=[local_input_image, local_reference_image, local_prompt_input]
)
# Add a refresh button to fix UI state issues
gr.Button(
"🔄 Refresh Image Editor",
size="sm",
variant="secondary"
).click(
fn=lambda: gr.update(),
outputs=[local_input_image]
)
# SEO Content Section
gr.HTML("""
🎨 Unlimited AI Image Generation & Editing
Experience the ultimate freedom in AI image creation! Generate and edit unlimited images without restrictions,
including NSFW content, with our premium AI image editing platform.
Join thousands of creators who trust Omni Creator for unrestricted AI image generation!
⭐ Professional AI Image Editor - No Restrictions
Transform your creative vision into reality with our advanced AI image editing platform. Whether you're creating
art, editing photos, designing content, or working with any type of imagery - our powerful AI removes all limitations
and gives you complete creative freedom.
🎯 Unlimited Generation
Premium users enjoy unlimited image generation without daily limits, rate restrictions, or content barriers.
Create as many images as you need, whenever you need them.
🔓 No Content Restrictions
Generate and edit any type of content without NSFW filters or content limitations. Complete creative
freedom for artists, designers, and content creators.
⚡ Lightning Fast Processing
Advanced AI infrastructure delivers high-quality results in seconds. No waiting in queues,
no processing delays - just instant, professional-grade image editing.
🎨 Advanced Editing Tools
Global transformations, precision local editing, style transfer, object removal, background replacement,
and dozens of other professional editing capabilities.
💎 Premium Quality
State-of-the-art AI models trained on millions of images deliver exceptional quality and realism.
Professional results suitable for commercial use and high-end projects.
🌍 Multi-Modal Support
Support for all image formats, styles, and use cases. From photorealistic portraits to artistic creations,
product photography to digital art - we handle everything.
💎 Why Choose Omni Creator Premium?
🚫 No Rate Limits
Generate unlimited images without waiting periods or daily restrictions
🎭 Unrestricted Content
Create any type of content without NSFW filters or censorship
⚡ Priority Processing
Skip queues and get instant results with dedicated processing power
🎨 Advanced Features
Access to latest AI models and cutting-edge editing capabilities
💡 Pro Tips for Best Results
📝 Clear Descriptions:
Use detailed, specific prompts for better results. Describe colors, styles, lighting, and composition clearly.
🎯 Local Editing:
Use precise brush strokes to select areas for local editing. Smaller, focused edits often yield better results.
⚡ Iterative Process:
Use "Use as Input" feature to refine results. Multiple iterations can achieve complex transformations.
🖼 Image Quality:
Higher resolution input images (up to 10MB) generally produce better editing results and finer details.
🚀 Perfect For Every Creative Need
🎨 Digital Art
- Character design
- Concept art
- Style transfer
- Artistic effects
📸 Photography
- Background replacement
- Object removal
- Lighting adjustment
- Portrait enhancement
🛍️ E-commerce
- Product photography
- Lifestyle shots
- Color variations
- Context placement
📱 Social Media
- Content creation
- Meme generation
- Brand visuals
- Viral content
Powered by Omni Creator
The ultimate AI image generation and editing platform • Unlimited creativity, zero restrictions
""", padding=False)
return app
if __name__ == "__main__":
app = create_app()
# Improve queue configuration to handle high concurrency and prevent SSE connection issues
app.queue(
default_concurrency_limit=20, # Default concurrency limit
max_size=50, # Maximum queue size
api_open=False # Close API access to reduce resource consumption
)
app.launch(
server_name="0.0.0.0",
show_error=True, # Show detailed error information
quiet=False, # Keep log output
max_threads=40, # Increase thread pool size
height=800,
favicon_path=None # Reduce resource loading
)