File size: 8,887 Bytes
8896c98
 
 
 
1b040a6
8896c98
ab7f4cc
8896c98
1b040a6
bc2dc39
d8c3dc6
bc2dc39
73b92aa
bc2dc39
ab7f4cc
429a3fa
8896c98
79c2e3d
1b040a6
 
 
 
79c2e3d
1b040a6
9567589
1b040a6
 
d8c3dc6
1b040a6
 
d8c3dc6
1b040a6
c1f995a
9567589
 
d8c3dc6
 
 
1b040a6
 
429a3fa
d8c3dc6
 
 
 
429a3fa
 
d8c3dc6
 
 
 
 
 
 
 
 
429a3fa
d8c3dc6
 
 
 
1b040a6
d8c3dc6
 
 
 
 
 
1b040a6
8896c98
429a3fa
d8c3dc6
 
2da7553
cc8251a
2da7553
cc8251a
1b040a6
d8c3dc6
429a3fa
d8c3dc6
 
 
429a3fa
 
70f82e1
429a3fa
 
d8c3dc6
429a3fa
 
d8c3dc6
 
 
 
 
 
 
 
 
 
 
429a3fa
 
d8c3dc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b040a6
d8c3dc6
 
 
 
 
 
429a3fa
 
 
 
 
d8c3dc6
 
 
 
429a3fa
 
 
 
 
d8c3dc6
 
 
 
 
 
79c2e3d
d8c3dc6
1b040a6
 
8896c98
373edff
 
 
c74c4e2
 
 
373edff
c74c4e2
373edff
c74c4e2
373edff
c74c4e2
 
373edff
c74c4e2
373edff
7b86f41
 
 
 
 
 
 
 
 
 
 
 
 
373edff
c74c4e2
d8c3dc6
 
8896c98
c74c4e2
373edff
c74c4e2
373edff
c74c4e2
373edff
c74c4e2
373edff
c74c4e2
 
 
7b86f41
c74c4e2
 
429a3fa
c74c4e2
 
 
 
 
8896c98
c74c4e2
 
 
 
 
 
 
 
 
 
 
 
7b86f41
 
 
c74c4e2
 
 
 
 
 
 
429a3fa
c74c4e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import pandas as pd
import plotly.express as px
from datasets import load_dataset
import gradio as gr
import yfinance as yf

# --- LOAD DATASET ---
df = pd.DataFrame(load_dataset("SelmaNajih001/NewsSentiment")["train"])
df = df[df["Company"].isin(["Tesla", "Microsoft", "Apple", "Facebook", "Google"])]

# --- CONVERT DATE TO DATETIME ---
df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
df['Year'] = df['Date'].dt.year
df['Month'] = df['Date'].dt.to_period('M')
df['Day'] = df['Date'].dt.date
df = df[df['Year'] >= 2015]

# --- TICKERS ---
TICKERS = {
    "Tesla": "TSLA",
    "Microsoft": "MSFT",
    "Apple": "AAPL",
    "Facebook": "META",
    "Google": "GOOGL",
    "NASDAQ": "^IXIC"
}

# --- FETCH STOCK PRICES ---
prices = {}
for company, ticker in TICKERS.items():
    start_date = "2015-01-01"
    end_date = pd.Timestamp.today()
    df_prices = yf.download(ticker, start=start_date, end=end_date)
    if isinstance(df_prices.columns, pd.MultiIndex):
        df_prices.columns = ['_'.join([str(c) for c in col]).strip() for col in df_prices.columns]
    df_prices = df_prices.reset_index()[['Date', f'Close_{ticker}']]
    if company == "NASDAQ":
        df_prices = df_prices.rename(columns={f'Close_{ticker}': 'Close_NASDAQ'})
    prices[company] = df_prices

# --- INTERPOLATE PRICES FOR DAY/MONTH ---
def get_prices_for_agg(agg_col):
    df_prices_agg = {}
    for company, df_price in prices.items():
        df_temp = df_price.copy()
        col = 'Close_NASDAQ' if company == 'NASDAQ' else f"Close_{TICKERS[company]}"
        df_temp = df_temp.rename(columns={df_temp.columns[1]: col})

        if agg_col == "Day":
            df_temp = df_temp.set_index('Date').resample('D').mean().interpolate('linear').reset_index()
        elif agg_col == "Month":
            df_temp['Month'] = df_temp['Date'].dt.to_period('M').dt.to_timestamp()
            df_temp = df_temp.groupby('Month')[col].last().reset_index()
        elif agg_col == "Year":
            df_temp['Year'] = df_temp['Date'].dt.year
            df_temp = df_temp.groupby('Year')[col].last().reset_index()

        df_prices_agg[company] = df_temp
    return df_prices_agg

# --- MERGE NEWS CON PREZZI ---
df_merged = df.copy()
for company in df['Company'].unique():
    ticker_col = f"Close_{TICKERS[company]}"
    df_temp = prices[company][['Date', ticker_col]]
    df_merged = df_merged.merge(df_temp, on='Date', how='left')
# NASDAQ per tutte le righe
df_merged = df_merged.merge(prices['NASDAQ'][['Date', 'Close_NASDAQ']], on='Date', how='left')

# --- GRADIO FUNCTION ---
def show_sentiment(selected_companies=None, aggregation="Day", selected_year="All"):
    if not selected_companies:
        selected_companies = ["NASDAQ"]
        
    
    if isinstance(selected_companies, str):
        selected_companies = [selected_companies]

    df_filtered = df_merged.copy()
    if selected_year != "All" and selected_year is not None:
        df_filtered = df_filtered[df_filtered['Year'] == int(selected_year)]

    # colonna aggregazione
    group_col = aggregation
    if aggregation == "Month":
        df_filtered['Month'] = df_filtered['Month'].dt.to_timestamp()
    elif aggregation == "Day":
        df_filtered['Day'] = df_filtered['Date']

    # prezzi interpolati
    prices_agg = get_prices_for_agg(aggregation)

    include_nasdaq = "NASDAQ" in selected_companies
    companies_to_plot = [c for c in selected_companies if c != "NASDAQ"]

    df_grouped_list = []

    # aziende selezionate
    if companies_to_plot:
        df_sent = df_filtered[df_filtered['Company'].isin(companies_to_plot)]
        df_tmp = df_sent.groupby([group_col, 'Company']).agg({'Score':'sum'}).reset_index()
        for c in companies_to_plot:
            if c not in TICKERS:
                continue
            ticker_col = f"Close_{TICKERS[c]}"
            df_price_col = prices_agg[c][[group_col, ticker_col]]
            df_tmp = df_tmp.merge(df_price_col, on=group_col, how='left')
        df_grouped_list.append(df_tmp)

    # NASDAQ con sentiment generale
    if include_nasdaq:
        df_general = df_filtered.groupby(group_col).agg({'Score':'sum'}).reset_index()
        df_general['Company'] = 'General'
        df_general = df_general.merge(prices_agg['NASDAQ'].rename(columns={'Date':group_col}), on=group_col, how='left')
        df_grouped_list.append(df_general)

    # unisci tutto
    df_grouped = pd.concat(df_grouped_list, ignore_index=True, sort=False)
    df_grouped = df_grouped.sort_values([group_col, 'Company'])

    # --- Plot ---
    fig = px.line(df_grouped, x=group_col, y='Score', color='Company',
                  title=f"Sentiment Trend ({aggregation} Aggregation)")

    for c in companies_to_plot:
        ticker_col = f"Close_{TICKERS[c]}"
        df_c = df_grouped[df_grouped['Company'] == c]
        if ticker_col in df_c.columns and df_c[ticker_col].notnull().any():
            fig.add_scatter(
                x=df_c[group_col], y=df_c[ticker_col],
                mode='lines', name=f"{c} Price", yaxis="y2",
                line=dict(dash='dot')
            )

    if include_nasdaq:
        df_c = df_grouped[df_grouped['Company'] == 'General']
        if 'Close_NASDAQ' in df_c.columns and df_c['Close_NASDAQ'].notnull().any():
            fig.add_scatter(
                x=df_c[group_col], y=df_c['Close_NASDAQ'],
                mode='lines', name="NASDAQ Price", yaxis="y2",
                line=dict(dash='dot')
            )

    fig.update_layout(
        yaxis2=dict(
            title="Stock Price",
            overlaying="y",
            side="right"
        )
    )

    return df_grouped.tail(30), fig

import gradio as gr

# Markdown descrittivo adattato al tuo dashboard
import gradio as gr

# --- Markdown descrittivo ---
description_text = """
### Dynamic Sentiment Dashboard

This dashboard allows you to explore the sentiment of news articles related to major tech companies (Apple, Tesla, Microsoft, Meta, Alphabet) and compare it with their stock prices.

- **Dataset structure**: The dataset includes a company column; each row corresponds to a news item for a specific company.
- **Sentiment aggregation**: Select a time aggregation level (Month or Year) to see how sentiment evolves over time.
- **NASDAQ comparison**: Selecting "NASDAQ" shows the general market sentiment alongside the company-specific sentiment.
- **Visual insights**: Top-left graph shows average sentiment score and closing price for the selected company.
"""
# --- Findings from thesis (specific companies and years) ---
findings_text = """
### Key Findings

- Some news articles refer to multiple companies, e.g., the same article may mention Apple and Tesla.  
- Merging news with stock prices allows analyzing correlations between sentiment and stock movements for each company.  
- **Apple (2018, 2019, 2022):** Sentiment trends generally align with closing prices, showing similar monthly patterns.  
- **Tesla (2018, 2019, 2022):** More volatility observed; sentiment aligns with stock movement but is more sensitive to news on Elon Musk’s actions.  
- **Microsoft, Meta, Alphabet:** Across periods, sentiment trends follow stock prices with moderate correlation.  
- The custom sentiment model is more aligned with actual stock movements compared to FinBERT, which is more influenced by word positivity/negativity.  
- Aggregating sentiment by month or year helps identify broader trends while reducing noise from daily fluctuations.  
- Including “NASDAQ” as a general market reference allows comparison of individual companies’ sentiment with overall market sentiment.
"""

# --- Input options ---
companies = sorted(df['Company'].unique().tolist()) + ["NASDAQ"]
years = sorted(df['Year'].dropna().unique().tolist())

# --- Build Gradio Blocks ---
with gr.Blocks() as demo:
    # Markdown in alto
    gr.Markdown("# Dynamic Sentiment Dashboard")
    gr.Markdown(description_text)

    # Input sotto il Markdown
    with gr.Row():
        dropdown_companies = gr.Dropdown(
            choices=companies,
            value=None,
            multiselect=False,
            label="Select Companies"
        )

        radio_aggregation = gr.Radio(
            choices=["Month", "Year"],
            value="Month",
            label="Aggregation Level"
        )

        dropdown_year = gr.Dropdown(
            choices=["All"] + years,
            value="All",
            label="Select Year"
        )

    # Bottone submit
    submit_btn = gr.Button("Submit")

    # Output
    data_table = gr.Dataframe(label="Sentiment Table", type="pandas")
    sentiment_plot = gr.Plot(label="Sentiment Trend")
    
    # Findings section
    gr.Markdown(findings_text)


    submit_btn.click(
        fn=show_sentiment, 
        inputs=[dropdown_companies, radio_aggregation, dropdown_year],
        outputs=[data_table, sentiment_plot]
    )

demo.launch()