Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,23 +12,33 @@ from stable_audio_tools.inference.generation import generate_diffusion_cond
|
|
| 12 |
|
| 13 |
# Load the model outside of the GPU-decorated function
|
| 14 |
def load_model():
|
|
|
|
| 15 |
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
|
|
|
|
| 16 |
return model, model_config
|
| 17 |
|
| 18 |
# Function to set up, generate, and process the audio
|
| 19 |
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
|
| 20 |
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
|
|
|
|
|
|
|
|
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 22 |
|
| 23 |
# Fetch the Hugging Face token from the environment variable
|
| 24 |
hf_token = os.getenv('HF_TOKEN')
|
|
|
|
| 25 |
|
| 26 |
# Use pre-loaded model and configuration
|
| 27 |
model, model_config = load_model()
|
| 28 |
sample_rate = model_config["sample_rate"]
|
| 29 |
sample_size = model_config["sample_size"]
|
| 30 |
|
|
|
|
|
|
|
| 31 |
model = model.to(device)
|
|
|
|
| 32 |
|
| 33 |
# Set up text and timing conditioning
|
| 34 |
conditioning = [{
|
|
@@ -36,8 +46,10 @@ def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
|
| 36 |
"seconds_start": 0,
|
| 37 |
"seconds_total": seconds_total
|
| 38 |
}]
|
|
|
|
| 39 |
|
| 40 |
# Generate stereo audio
|
|
|
|
| 41 |
output = generate_diffusion_cond(
|
| 42 |
model,
|
| 43 |
steps=steps,
|
|
@@ -49,17 +61,23 @@ def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
|
| 49 |
sampler_type="dpmpp-3m-sde",
|
| 50 |
device=device
|
| 51 |
)
|
|
|
|
| 52 |
|
| 53 |
# Rearrange audio batch to a single sequence
|
| 54 |
output = rearrange(output, "b d n -> d (b n)")
|
|
|
|
| 55 |
|
| 56 |
# Peak normalize, clip, convert to int16
|
| 57 |
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
|
|
|
| 58 |
|
| 59 |
# Generate a unique filename for the output
|
| 60 |
unique_filename = f"output_{uuid.uuid4().hex}.wav"
|
|
|
|
|
|
|
| 61 |
# Save to file
|
| 62 |
torchaudio.save(unique_filename, output, sample_rate)
|
|
|
|
| 63 |
|
| 64 |
# Return the path to the generated audio file
|
| 65 |
return unique_filename
|
|
@@ -70,7 +88,7 @@ interface = gr.Interface(
|
|
| 70 |
inputs=[
|
| 71 |
gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
|
| 72 |
gr.Slider(0, 47, value=30, label="Duration in Seconds"),
|
| 73 |
-
gr.Slider(10,
|
| 74 |
gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
|
| 75 |
],
|
| 76 |
outputs=gr.Audio(type="filepath", label="Generated Audio"),
|
|
|
|
| 12 |
|
| 13 |
# Load the model outside of the GPU-decorated function
|
| 14 |
def load_model():
|
| 15 |
+
print("Loading model...")
|
| 16 |
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
|
| 17 |
+
print("Model loaded successfully.")
|
| 18 |
return model, model_config
|
| 19 |
|
| 20 |
# Function to set up, generate, and process the audio
|
| 21 |
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
|
| 22 |
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
| 23 |
+
print(f"Prompt received: {prompt}")
|
| 24 |
+
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
|
| 25 |
+
|
| 26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
+
print(f"Using device: {device}")
|
| 28 |
|
| 29 |
# Fetch the Hugging Face token from the environment variable
|
| 30 |
hf_token = os.getenv('HF_TOKEN')
|
| 31 |
+
print(f"Hugging Face token: {hf_token}")
|
| 32 |
|
| 33 |
# Use pre-loaded model and configuration
|
| 34 |
model, model_config = load_model()
|
| 35 |
sample_rate = model_config["sample_rate"]
|
| 36 |
sample_size = model_config["sample_size"]
|
| 37 |
|
| 38 |
+
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
|
| 39 |
+
|
| 40 |
model = model.to(device)
|
| 41 |
+
print("Model moved to device.")
|
| 42 |
|
| 43 |
# Set up text and timing conditioning
|
| 44 |
conditioning = [{
|
|
|
|
| 46 |
"seconds_start": 0,
|
| 47 |
"seconds_total": seconds_total
|
| 48 |
}]
|
| 49 |
+
print(f"Conditioning: {conditioning}")
|
| 50 |
|
| 51 |
# Generate stereo audio
|
| 52 |
+
print("Generating audio...")
|
| 53 |
output = generate_diffusion_cond(
|
| 54 |
model,
|
| 55 |
steps=steps,
|
|
|
|
| 61 |
sampler_type="dpmpp-3m-sde",
|
| 62 |
device=device
|
| 63 |
)
|
| 64 |
+
print("Audio generated.")
|
| 65 |
|
| 66 |
# Rearrange audio batch to a single sequence
|
| 67 |
output = rearrange(output, "b d n -> d (b n)")
|
| 68 |
+
print("Audio rearranged.")
|
| 69 |
|
| 70 |
# Peak normalize, clip, convert to int16
|
| 71 |
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
| 72 |
+
print("Audio normalized and converted.")
|
| 73 |
|
| 74 |
# Generate a unique filename for the output
|
| 75 |
unique_filename = f"output_{uuid.uuid4().hex}.wav"
|
| 76 |
+
print(f"Saving audio to file: {unique_filename}")
|
| 77 |
+
|
| 78 |
# Save to file
|
| 79 |
torchaudio.save(unique_filename, output, sample_rate)
|
| 80 |
+
print(f"Audio saved: {unique_filename}")
|
| 81 |
|
| 82 |
# Return the path to the generated audio file
|
| 83 |
return unique_filename
|
|
|
|
| 88 |
inputs=[
|
| 89 |
gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
|
| 90 |
gr.Slider(0, 47, value=30, label="Duration in Seconds"),
|
| 91 |
+
gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps"),
|
| 92 |
gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
|
| 93 |
],
|
| 94 |
outputs=gr.Audio(type="filepath", label="Generated Audio"),
|