import random from collections.abc import Mapping from uuid import uuid4 from openai import OpenAI import gradio as gr import base64 import mimetypes import copy import os from theme import apriel from utils import COMMUNITY_POSTFIX_URL, get_model_config, check_format, models_config, \ logged_event_handler, DEBUG_MODE, DEBUG_MODEL, log_debug, log_info, log_error, log_warning from log_chat import log_chat MODEL_TEMPERATURE = 0.8 BUTTON_WIDTH = 160 DEFAULT_OPT_OUT_VALUE = DEBUG_MODE # If DEBUG_MODEL is True, use an alternative model (without reasoning) for testing DEFAULT_MODEL_NAME = "Apriel-1.5-15B-thinker" if not DEBUG_MODEL else "Apriel-1.5-15B-thinker" # "Apriel-5b" BUTTON_ENABLED = gr.update(interactive=True) BUTTON_DISABLED = gr.update(interactive=False) INPUT_ENABLED = gr.update(interactive=True) INPUT_DISABLED = gr.update(interactive=False) DROPDOWN_ENABLED = gr.update(interactive=True) DROPDOWN_DISABLED = gr.update(interactive=False) SEND_BUTTON_ENABLED = gr.update(interactive=True, visible=True) SEND_BUTTON_DISABLED = gr.update(interactive=True, visible=False) STOP_BUTTON_ENABLED = gr.update(interactive=True, visible=True) STOP_BUTTON_DISABLED = gr.update(interactive=True, visible=False) chat_start_count = 0 model_config = {} openai_client = None USE_RANDOM_ENDPOINT = False endpoint_rotation_count = 0 # Maximum number of image messages allowed per request MAX_IMAGE_MESSAGES = 5 def app_loaded(state, request: gr.Request): message_html = setup_model(DEFAULT_MODEL_NAME, intial=False) state['session'] = request.session_hash if request else uuid4().hex log_debug(f"app_loaded() --> Session: {state['session']}") return state, message_html def update_model_and_clear_chat(model_name): actual_model_name = model_name.replace("Model: ", "") desc = setup_model(actual_model_name) return desc, [] def setup_model(model_key, intial=False): global model_config, openai_client, endpoint_rotation_count model_config = get_model_config(model_key) log_debug(f"update_model() --> Model config: {model_config}") url_list = (model_config.get('VLLM_API_URL_LIST') or "").split(",") if USE_RANDOM_ENDPOINT: base_url = random.choice(url_list) if len(url_list) > 0 else model_config.get('VLLM_API_URL') else: base_url = url_list[endpoint_rotation_count % len(url_list)] endpoint_rotation_count += 1 openai_client = OpenAI( api_key=model_config.get('AUTH_TOKEN'), base_url=base_url ) model_config['base_url'] = base_url log_debug(f"Switched to model {model_key} using endpoint {base_url}") _model_hf_name = model_config.get("MODEL_HF_URL").split('https://huggingface.co/')[1] _link = f"{_model_hf_name}" _description = f"We'd love to hear your thoughts on the model. Click here to provide feedback - {_link}" if intial: return else: return _description def chat_started(): # outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn return (DROPDOWN_DISABLED, gr.update(value="", interactive=False), SEND_BUTTON_DISABLED, STOP_BUTTON_ENABLED, BUTTON_DISABLED) def chat_finished(): # outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn return DROPDOWN_ENABLED, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED def stop_chat(state): state["stop_flag"] = True gr.Info("Chat stopped") return state def toggle_opt_out(state, checkbox): state["opt_out"] = checkbox return state def run_chat_inference(history, message, state): global chat_start_count state["is_streaming"] = True state["stop_flag"] = False error = None model_name = model_config.get('MODEL_NAME') # Reinitialize the OpenAI client with a random endpoint from the list setup_model(model_config.get('MODEL_KEY')) log_info("Using model {model_name} with endpoint {model_config.get('base_url')}") if len(history) == 0: state["chat_id"] = uuid4().hex if openai_client is None: log_info("Client UI is stale, letting user know to refresh the page") gr.Warning("Client UI is stale, please refresh the page") return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state # files will be the newly added files from the user files = [] # outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn, session_state log_debug(f"{'-' * 80}") log_debug(f"chat_fn() --> Message: {message}") log_debug(f"chat_fn() --> History: {history}") # We have multimodal input in this case if isinstance(message, Mapping): files = message.get("files") or [] message = message.get("text") or "" log_debug(f"chat_fn() --> Message (text only): {message}") log_debug(f"chat_fn() --> Files: {files}") # Validate that any uploaded files are images if len(files) > 0: invalid_files = [] for path in files: try: mime, _ = mimetypes.guess_type(path) mime = mime or "" if not mime.startswith("image/"): invalid_files.append((os.path.basename(path), mime or "unknown")) except Exception as e: log_error(f"Failed to inspect file '{path}': {e}") invalid_files.append((os.path.basename(path), "unknown")) if invalid_files: msg = "Only image files are allowed. Invalid uploads: " + \ ", ".join([f"{p} (type: {m})" for p, m in invalid_files]) log_warning(msg) gr.Warning(msg) yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state # Enforce maximum number of files/images per request if len(files) > MAX_IMAGE_MESSAGES: gr.Warning(f"Too many images provided; keeping only the first {MAX_IMAGE_MESSAGES} file(s).") files = files[:MAX_IMAGE_MESSAGES] try: # Check if the message is empty if not message.strip() and len(files) == 0: gr.Info("Please enter a message before sending") yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state chat_start_count = chat_start_count + 1 user_messages_count = sum(1 for item in history if isinstance(item, dict) and item.get("role") == "user") log_info(f"chat_start_count: {chat_start_count}, turns: {user_messages_count}, model: {model_name}") is_reasoning = model_config.get("REASONING") # Remove any assistant messages with metadata from history for multiple turns log_debug(f"Initial History: {history}") check_format(history, "messages") # Build UI history: add text (if any) and per-file image placeholders {"path": ...} # Build API parts separately later to avoid Gradio issues with arrays in content if len(files) == 0: history.append({"role": "user", "content": message}) else: if message.strip(): history.append({"role": "user", "content": message}) for path in files: history.append({"role": "user", "content": {"path": path}}) log_debug(f"History with user message: {history}") check_format(history, "messages") # Create the streaming response try: history_no_thoughts = [item for item in history if not (isinstance(item, dict) and item.get("role") == "assistant" and isinstance(item.get("metadata"), dict) and item.get("metadata", {}).get("title") is not None)] log_debug(f"Updated History: {history_no_thoughts}") check_format(history_no_thoughts, "messages") log_debug(f"history_no_thoughts with user message: {history_no_thoughts}") # Build API-specific messages: # - Convert any UI image placeholders {"path": ...} to image_url parts # - Convert any user string content that is a valid file path to image_url parts # - Coalesce consecutive image paths into a single image-only user message api_messages = [] image_parts_buffer = [] def flush_image_buffer(): if len(image_parts_buffer) > 0: api_messages.append({"role": "user", "content": list(image_parts_buffer)}) image_parts_buffer.clear() def to_image_part(path: str): try: mime, _ = mimetypes.guess_type(path) mime = mime or "application/octet-stream" with open(path, "rb") as f: b64 = base64.b64encode(f.read()).decode("utf-8") data_url = f"data:{mime};base64,{b64}" return {"type": "image_url", "image_url": {"url": data_url}} except Exception as e: log_error(f"Failed to load file '{path}': {e}") return None def normalize_msg(msg): # Returns (role, content, as_dict) where as_dict is a message dict suitable to pass through when unmodified if isinstance(msg, dict): return msg.get("role"), msg.get("content"), msg # Gradio ChatMessage-like object role = getattr(msg, "role", None) content = getattr(msg, "content", None) if role is not None: return role, content, {"role": role, "content": content} return None, None, msg for m in copy.deepcopy(history_no_thoughts): role, content, as_dict = normalize_msg(m) # Unknown structure: pass through if role is None: flush_image_buffer() api_messages.append(as_dict) continue # Assistant messages pass through as-is if role == "assistant": flush_image_buffer() api_messages.append(as_dict) continue # Only user messages have potential image paths to convert if role == "user": # Case A: {'path': ...} if isinstance(content, dict) and isinstance(content.get("path"), str): p = content["path"] part = to_image_part(p) if os.path.isfile(p) else None if part: image_parts_buffer.append(part) else: flush_image_buffer() api_messages.append({"role": "user", "content": str(content)}) continue # Case B: string or tuple content that may be a file path if isinstance(content, str): if os.path.isfile(content): part = to_image_part(content) if part: image_parts_buffer.append(part) continue # Not a file path: pass through as text flush_image_buffer() api_messages.append({"role": "user", "content": content}) continue if isinstance(content, tuple): # Common case: a single-element tuple containing a path string tuple_items = list(content) tmp_parts = [] text_accum = [] for item in tuple_items: if isinstance(item, str) and os.path.isfile(item): part = to_image_part(item) if part: tmp_parts.append(part) else: text_accum.append(item) else: text_accum.append(str(item)) if tmp_parts: flush_image_buffer() api_messages.append({"role": "user", "content": tmp_parts}) if not text_accum: continue if text_accum: flush_image_buffer() api_messages.append({"role": "user", "content": "\n".join(text_accum)}) continue # Case C: list content if isinstance(content, list): # If it's already a list of parts, let it pass through all_dicts = all(isinstance(c, dict) for c in content) if all_dicts: flush_image_buffer() api_messages.append({"role": "user", "content": content}) continue # It might be a list of strings (paths/text). Convert string paths to image parts, others to text parts tmp_parts = [] text_accum = [] def flush_text_accum(): if text_accum: api_messages.append({"role": "user", "content": "\n".join(text_accum)}) text_accum.clear() for item in content: if isinstance(item, str) and os.path.isfile(item): part = to_image_part(item) if part: tmp_parts.append(part) else: text_accum.append(item) else: text_accum.append(str(item)) if tmp_parts: flush_image_buffer() api_messages.append({"role": "user", "content": tmp_parts}) if text_accum: flush_text_accum() continue # Fallback: pass through flush_image_buffer() api_messages.append(as_dict) continue # Other roles flush_image_buffer() api_messages.append(as_dict) # Flush any trailing images flush_image_buffer() log_debug(f"sending api_messages to model {model_name}: {api_messages}") # Ensure we don't send too many images (count only messages whose content is a list of parts) image_msg_indices = [ i for i, msg in enumerate(api_messages) if isinstance(msg, dict) and isinstance(msg.get('content'), list) ] image_count = len(image_msg_indices) if image_count > MAX_IMAGE_MESSAGES: # Remove oldest image messages until we have MAX_IMAGE_MESSAGES or fewer to_remove = image_count - MAX_IMAGE_MESSAGES removed = 0 for idx in image_msg_indices: if removed >= to_remove: break # Pop considering prior removals shift indices api_messages.pop(idx - removed) removed += 1 gr.Warning(f"Too many images provided; keeping the latest {MAX_IMAGE_MESSAGES} and dropped {removed} older image message(s).") stream = openai_client.chat.completions.create( model=model_name, messages=api_messages, temperature=MODEL_TEMPERATURE, stream=True ) except Exception as e: log_error(f"Error:\n\t{e}\n\tInference failed for model {model_name} and endpoint {model_config['base_url']}") error = str(e) yield ([{"role": "assistant", "content": "😔 The model is unavailable at the moment. Please try again later."}], INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state) if state["opt_out"] is not True: log_chat(chat_id=state["chat_id"], session_id=state["session"], model_name=model_name, prompt=message, history=history, info={"is_reasoning": model_config.get("REASONING"), "temperature": MODEL_TEMPERATURE, "stopped": True, "error": str(e)}, ) else: log_info(f"User opted out of chat history. Not logging chat. model: {model_name}") return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state if is_reasoning: history.append(gr.ChatMessage( role="assistant", content="Thinking...", metadata={"title": "🧠 Thought"} )) log_debug(f"History added thinking: {history}") check_format(history, "messages") else: history.append(gr.ChatMessage( role="assistant", content="", )) log_debug(f"History added empty assistant: {history}") check_format(history, "messages") output = "" completion_started = False for chunk in stream: if state["stop_flag"]: log_debug(f"chat_fn() --> Stopping streaming...") break # Exit the loop if the stop flag is set # Extract the new content from the delta field content = getattr(chunk.choices[0].delta, "content", "") or "" reasoning_content = getattr(chunk.choices[0].delta, "reasoning_content", "") or "" output += reasoning_content + content if is_reasoning: parts = output.split("[BEGIN FINAL RESPONSE]") if len(parts) > 1: if parts[1].endswith("[END FINAL RESPONSE]"): parts[1] = parts[1].replace("[END FINAL RESPONSE]", "") if parts[1].endswith("[END FINAL RESPONSE]\n<|end|>"): parts[1] = parts[1].replace("[END FINAL RESPONSE]\n<|end|>", "") if parts[1].endswith("[END FINAL RESPONSE]\n<|end|>\n"): parts[1] = parts[1].replace("[END FINAL RESPONSE]\n<|end|>\n", "") if parts[1].endswith("<|end|>"): parts[1] = parts[1].replace("<|end|>", "") if parts[1].endswith("<|end|>\n"): parts[1] = parts[1].replace("<|end|>\n", "") history[-1 if not completion_started else -2] = gr.ChatMessage( role="assistant", content=parts[0], metadata={"title": "🧠 Thought"} ) if completion_started: history[-1] = gr.ChatMessage( role="assistant", content=parts[1] ) elif len(parts) > 1 and not completion_started: completion_started = True history.append(gr.ChatMessage( role="assistant", content=parts[1] )) else: if output.endswith("<|end|>"): output = output.replace("<|end|>", "") if output.endswith("<|end|>\n"): output = output.replace("<|end|>\n", "") history[-1] = gr.ChatMessage( role="assistant", content=output ) # log_message(f"Yielding messages: {history}") yield history, INPUT_DISABLED, SEND_BUTTON_DISABLED, STOP_BUTTON_ENABLED, BUTTON_DISABLED, state log_debug(f"Final History: {history}") check_format(history, "messages") yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state finally: if error is None: log_debug(f"chat_fn() --> Finished streaming. {chat_start_count} chats started.") if state["opt_out"] is not True: log_chat(chat_id=state["chat_id"], session_id=state["session"], model_name=model_name, prompt=message, history=history, info={"is_reasoning": model_config.get("REASONING"), "temperature": MODEL_TEMPERATURE, "stopped": state["stop_flag"]}, ) else: log_info(f"User opted out of chat history. Not logging chat. model: {model_name}") state["is_streaming"] = False state["stop_flag"] = False return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state log_info(f"Gradio version: {gr.__version__}") title = None description = None theme = apriel with open('styles.css', 'r') as f: custom_css = f.read() with gr.Blocks(theme=theme, css=custom_css) as demo: session_state = gr.State(value={ "is_streaming": False, "stop_flag": False, "chat_id": None, "session": None, "opt_out": DEFAULT_OPT_OUT_VALUE, }) # Store session state as a dictionary gr.HTML(f""" """, elem_classes="css-styles") with gr.Row(variant="panel", elem_classes="responsive-row"): with gr.Column(scale=1, min_width=400, elem_classes="model-dropdown-container"): model_dropdown = gr.Dropdown( choices=[f"Model: {model}" for model in models_config.keys()], value=f"Model: {DEFAULT_MODEL_NAME}", label=None, interactive=True, container=False, scale=0, min_width=400 ) with gr.Column(scale=4, min_width=0): feedback_message_html = gr.HTML(description, elem_classes="model-message") chatbot = gr.Chatbot( type="messages", height="calc(100dvh - 310px)", elem_classes="chatbot", ) with gr.Row(): with gr.Column(scale=10, min_width=400, elem_classes="user-input-container"): with gr.Row(): user_input = gr.MultimodalTextbox( interactive=True, container=False, file_count="multiple", placeholder="Type your message here and press Enter or upload file...", show_label=False, sources=["upload"], max_plain_text_length=100000 ) # Original text-only input # user_input = gr.Textbox( # show_label=False, # placeholder="Type your message here and press Enter", # container=False # ) with gr.Column(scale=1, min_width=BUTTON_WIDTH * 2 + 20): with gr.Row(): with gr.Column(scale=1, min_width=BUTTON_WIDTH, elem_classes="send-button-container"): send_btn = gr.Button("Send", variant="primary", elem_classes="control-button") stop_btn = gr.Button("Stop", variant="cancel", elem_classes="control-button", visible=False) with gr.Column(scale=1, min_width=BUTTON_WIDTH, elem_classes="clear-button-container"): clear_btn = gr.ClearButton(chatbot, value="New Chat", variant="secondary", elem_classes="control-button") with gr.Row(): with gr.Column(min_width=400, elem_classes="opt-out-container"): with gr.Row(): gr.HTML( "We may use your chats to improve our AI. You may opt out if you don’t want your conversations saved.", elem_classes="opt-out-message") with gr.Row(): opt_out_checkbox = gr.Checkbox( label="Don’t save my chat history for improvements or training", value=DEFAULT_OPT_OUT_VALUE, elem_classes="opt-out-checkbox", interactive=True, container=False ) gr.on( triggers=[send_btn.click, user_input.submit], fn=run_chat_inference, # this generator streams results. do not use logged_event_handler wrapper inputs=[chatbot, user_input, session_state], outputs=[chatbot, user_input, send_btn, stop_btn, clear_btn, session_state], concurrency_limit=4, api_name=False ).then( fn=chat_finished, inputs=None, outputs=[model_dropdown, user_input, send_btn, stop_btn, clear_btn], queue=False) # In parallel, disable or update the UI controls gr.on( triggers=[send_btn.click, user_input.submit], fn=chat_started, inputs=None, outputs=[model_dropdown, user_input, send_btn, stop_btn, clear_btn], queue=False, show_progress='hidden', api_name=False ) stop_btn.click( fn=stop_chat, inputs=[session_state], outputs=[session_state], api_name=False ) opt_out_checkbox.change(fn=toggle_opt_out, inputs=[session_state, opt_out_checkbox], outputs=[session_state]) # Ensure the model is reset to default on page reload demo.load( fn=logged_event_handler( log_msg="Browser session started", event_handler=app_loaded ), inputs=[session_state], outputs=[session_state, feedback_message_html], queue=True, api_name=False ) model_dropdown.change( fn=update_model_and_clear_chat, inputs=[model_dropdown], outputs=[feedback_message_html, chatbot], api_name=False ) demo.queue(default_concurrency_limit=2).launch(ssr_mode=False, show_api=False, max_file_size="10mb") log_info("Gradio app launched")