Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -292,6 +292,473 @@ df_combined["chaos_score"] = np.log1p(df_combined.get("diag_srl_gamma", 0)) / (d
|
|
| 292 |
_audio_path_cache = {}
|
| 293 |
_cmt_data_cache = {}
|
| 294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
def resolve_audio_path(row: pd.Series) -> str:
|
| 296 |
"""
|
| 297 |
Intelligently reconstructs the full path to an audio file
|
|
@@ -691,13 +1158,191 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan")) a
|
|
| 691 |
default_primary = file_choices[0] if file_choices else ""
|
| 692 |
|
| 693 |
with gr.Tabs():
|
| 694 |
-
with gr.TabItem("
|
| 695 |
-
gr.
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 701 |
|
| 702 |
with gr.TabItem("Interactive Holography"):
|
| 703 |
with gr.Row():
|
|
|
|
| 292 |
_audio_path_cache = {}
|
| 293 |
_cmt_data_cache = {}
|
| 294 |
|
| 295 |
+
# Advanced manifold analysis functions
|
| 296 |
+
def calculate_species_boundary(df_combined):
|
| 297 |
+
"""Calculate the geometric boundary between species using support vector machines."""
|
| 298 |
+
from sklearn.svm import SVC
|
| 299 |
+
|
| 300 |
+
# Prepare data for boundary calculation
|
| 301 |
+
human_data = df_combined[df_combined['source'] == 'Human'][['x', 'y', 'z']].values
|
| 302 |
+
dog_data = df_combined[df_combined['source'] == 'Dog'][['x', 'y', 'z']].values
|
| 303 |
+
|
| 304 |
+
# Create binary classification data
|
| 305 |
+
X = np.vstack([human_data, dog_data])
|
| 306 |
+
y = np.hstack([np.ones(len(human_data)), np.zeros(len(dog_data))])
|
| 307 |
+
|
| 308 |
+
# Fit SVM for boundary
|
| 309 |
+
svm = SVC(kernel='rbf', probability=True)
|
| 310 |
+
svm.fit(X, y)
|
| 311 |
+
|
| 312 |
+
# Create boundary surface
|
| 313 |
+
x_range = np.linspace(X[:, 0].min(), X[:, 0].max(), 20)
|
| 314 |
+
y_range = np.linspace(X[:, 1].min(), X[:, 1].max(), 20)
|
| 315 |
+
z_range = np.linspace(X[:, 2].min(), X[:, 2].max(), 20)
|
| 316 |
+
|
| 317 |
+
xx, yy = np.meshgrid(x_range, y_range)
|
| 318 |
+
boundary_points = []
|
| 319 |
+
|
| 320 |
+
for z_val in z_range:
|
| 321 |
+
grid_points = np.c_[xx.ravel(), yy.ravel(), np.full(xx.ravel().shape, z_val)]
|
| 322 |
+
probabilities = svm.predict_proba(grid_points)[:, 1]
|
| 323 |
+
|
| 324 |
+
# Find points near decision boundary (probability ~ 0.5)
|
| 325 |
+
boundary_mask = np.abs(probabilities - 0.5) < 0.05
|
| 326 |
+
if np.any(boundary_mask):
|
| 327 |
+
boundary_points.extend(grid_points[boundary_mask])
|
| 328 |
+
|
| 329 |
+
return np.array(boundary_points) if boundary_points else None
|
| 330 |
+
|
| 331 |
+
def create_enhanced_manifold_plot(df_filtered, lens_selected, color_scheme, point_size,
|
| 332 |
+
show_boundary, show_trajectories):
|
| 333 |
+
"""Create the main 3D manifold visualization with all advanced features."""
|
| 334 |
+
|
| 335 |
+
# Get CMT diagnostic values for the selected lens
|
| 336 |
+
alpha_col = f"diag_alpha_{lens_selected}"
|
| 337 |
+
srl_col = f"diag_srl_{lens_selected}"
|
| 338 |
+
|
| 339 |
+
# Determine color values based on scheme
|
| 340 |
+
if color_scheme == "Species":
|
| 341 |
+
color_values = [1 if s == "Human" else 0 for s in df_filtered['source']]
|
| 342 |
+
colorscale = [[0, '#1f77b4'], [1, '#ff7f0e']] # Blue for Dog, Orange for Human
|
| 343 |
+
colorbar_title = "Species (Blue=Dog, Orange=Human)"
|
| 344 |
+
elif color_scheme == "Emotion":
|
| 345 |
+
unique_emotions = df_filtered['label'].unique()
|
| 346 |
+
emotion_map = {emotion: i for i, emotion in enumerate(unique_emotions)}
|
| 347 |
+
color_values = [emotion_map[label] for label in df_filtered['label']]
|
| 348 |
+
colorscale = 'Viridis'
|
| 349 |
+
colorbar_title = "Emotional State"
|
| 350 |
+
elif color_scheme == "CMT_Alpha":
|
| 351 |
+
color_values = df_filtered[alpha_col].values
|
| 352 |
+
colorscale = 'Plasma'
|
| 353 |
+
colorbar_title = f"CMT Alpha ({lens_selected})"
|
| 354 |
+
elif color_scheme == "CMT_SRL":
|
| 355 |
+
color_values = df_filtered[srl_col].values
|
| 356 |
+
colorscale = 'Turbo'
|
| 357 |
+
colorbar_title = f"SRL Complexity ({lens_selected})"
|
| 358 |
+
else: # Cluster
|
| 359 |
+
color_values = df_filtered['cluster'].values
|
| 360 |
+
colorscale = 'Set3'
|
| 361 |
+
colorbar_title = "Cluster ID"
|
| 362 |
+
|
| 363 |
+
# Create hover text with rich information
|
| 364 |
+
hover_text = []
|
| 365 |
+
for _, row in df_filtered.iterrows():
|
| 366 |
+
hover_info = f"""
|
| 367 |
+
<b>{row['source']}</b>: {row['label']}<br>
|
| 368 |
+
File: {row['filepath']}<br>
|
| 369 |
+
<b>CMT Diagnostics ({lens_selected}):</b><br>
|
| 370 |
+
Ξ±: {row[alpha_col]:.4f}<br>
|
| 371 |
+
SRL: {row[srl_col]:.4f}<br>
|
| 372 |
+
Coordinates: ({row['x']:.3f}, {row['y']:.3f}, {row['z']:.3f})
|
| 373 |
+
"""
|
| 374 |
+
hover_text.append(hover_info)
|
| 375 |
+
|
| 376 |
+
# Create main scatter plot
|
| 377 |
+
fig = go.Figure()
|
| 378 |
+
|
| 379 |
+
# Add main data points
|
| 380 |
+
fig.add_trace(go.Scatter3d(
|
| 381 |
+
x=df_filtered['x'],
|
| 382 |
+
y=df_filtered['y'],
|
| 383 |
+
z=df_filtered['z'],
|
| 384 |
+
mode='markers',
|
| 385 |
+
marker=dict(
|
| 386 |
+
size=point_size,
|
| 387 |
+
color=color_values,
|
| 388 |
+
colorscale=colorscale,
|
| 389 |
+
showscale=True,
|
| 390 |
+
colorbar=dict(title=colorbar_title),
|
| 391 |
+
opacity=0.8,
|
| 392 |
+
line=dict(width=0.5, color='rgba(50,50,50,0.5)')
|
| 393 |
+
),
|
| 394 |
+
text=hover_text,
|
| 395 |
+
hovertemplate='%{text}<extra></extra>',
|
| 396 |
+
name='Communications'
|
| 397 |
+
))
|
| 398 |
+
|
| 399 |
+
# Add species boundary if requested
|
| 400 |
+
if show_boundary:
|
| 401 |
+
boundary_points = calculate_species_boundary(df_filtered)
|
| 402 |
+
if boundary_points is not None and len(boundary_points) > 0:
|
| 403 |
+
fig.add_trace(go.Scatter3d(
|
| 404 |
+
x=boundary_points[:, 0],
|
| 405 |
+
y=boundary_points[:, 1],
|
| 406 |
+
z=boundary_points[:, 2],
|
| 407 |
+
mode='markers',
|
| 408 |
+
marker=dict(
|
| 409 |
+
size=2,
|
| 410 |
+
color='red',
|
| 411 |
+
opacity=0.3
|
| 412 |
+
),
|
| 413 |
+
name='Species Boundary',
|
| 414 |
+
hovertemplate='Species Boundary<extra></extra>'
|
| 415 |
+
))
|
| 416 |
+
|
| 417 |
+
# Add trajectories if requested
|
| 418 |
+
if show_trajectories:
|
| 419 |
+
# Create trajectories between similar emotional states
|
| 420 |
+
for emotion in df_filtered['label'].unique():
|
| 421 |
+
emotion_data = df_filtered[df_filtered['label'] == emotion]
|
| 422 |
+
if len(emotion_data) > 1:
|
| 423 |
+
# Connect points within each emotional state
|
| 424 |
+
x_coords = emotion_data['x'].values
|
| 425 |
+
y_coords = emotion_data['y'].values
|
| 426 |
+
z_coords = emotion_data['z'].values
|
| 427 |
+
|
| 428 |
+
fig.add_trace(go.Scatter3d(
|
| 429 |
+
x=x_coords,
|
| 430 |
+
y=y_coords,
|
| 431 |
+
z=z_coords,
|
| 432 |
+
mode='lines',
|
| 433 |
+
line=dict(width=2, color='rgba(100,100,100,0.3)'),
|
| 434 |
+
name=f'{emotion} trajectory',
|
| 435 |
+
showlegend=False,
|
| 436 |
+
hovertemplate='%{fullData.name}<extra></extra>'
|
| 437 |
+
))
|
| 438 |
+
|
| 439 |
+
# Update layout
|
| 440 |
+
fig.update_layout(
|
| 441 |
+
title={
|
| 442 |
+
'text': "π Universal Interspecies Communication Manifold<br><sub>First mathematical map of cross-species communication geometry</sub>",
|
| 443 |
+
'x': 0.5,
|
| 444 |
+
'xanchor': 'center'
|
| 445 |
+
},
|
| 446 |
+
scene=dict(
|
| 447 |
+
xaxis_title='Manifold Dimension 1',
|
| 448 |
+
yaxis_title='Manifold Dimension 2',
|
| 449 |
+
zaxis_title='Manifold Dimension 3',
|
| 450 |
+
camera=dict(
|
| 451 |
+
eye=dict(x=1.5, y=1.5, z=1.5)
|
| 452 |
+
),
|
| 453 |
+
bgcolor='rgba(0,0,0,0)',
|
| 454 |
+
aspectmode='cube'
|
| 455 |
+
),
|
| 456 |
+
margin=dict(l=0, r=0, b=0, t=60),
|
| 457 |
+
legend=dict(
|
| 458 |
+
yanchor="top",
|
| 459 |
+
y=0.99,
|
| 460 |
+
xanchor="left",
|
| 461 |
+
x=0.01
|
| 462 |
+
)
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
return fig
|
| 466 |
+
|
| 467 |
+
def create_2d_projection_plot(df_filtered, color_scheme):
|
| 468 |
+
"""Create 2D projection for easier analysis."""
|
| 469 |
+
fig = go.Figure()
|
| 470 |
+
|
| 471 |
+
# Create color mapping
|
| 472 |
+
if color_scheme == "Species":
|
| 473 |
+
color_values = df_filtered['source']
|
| 474 |
+
color_map = {'Human': '#ff7f0e', 'Dog': '#1f77b4'}
|
| 475 |
+
else:
|
| 476 |
+
color_values = df_filtered['label']
|
| 477 |
+
unique_labels = df_filtered['label'].unique()
|
| 478 |
+
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b']
|
| 479 |
+
color_map = {label: colors[i % len(colors)] for i, label in enumerate(unique_labels)}
|
| 480 |
+
|
| 481 |
+
for value in color_values.unique():
|
| 482 |
+
data_subset = df_filtered[color_values == value]
|
| 483 |
+
fig.add_trace(go.Scatter(
|
| 484 |
+
x=data_subset['x'],
|
| 485 |
+
y=data_subset['y'],
|
| 486 |
+
mode='markers',
|
| 487 |
+
marker=dict(
|
| 488 |
+
size=8,
|
| 489 |
+
color=color_map.get(value, '#1f77b4'),
|
| 490 |
+
opacity=0.7
|
| 491 |
+
),
|
| 492 |
+
name=str(value),
|
| 493 |
+
text=[f"{row['source']}: {row['label']}" for _, row in data_subset.iterrows()],
|
| 494 |
+
hovertemplate='%{text}<br>X: %{x:.3f}<br>Y: %{y:.3f}<extra></extra>'
|
| 495 |
+
))
|
| 496 |
+
|
| 497 |
+
fig.update_layout(
|
| 498 |
+
title="2D Manifold Projection (X-Y Plane)",
|
| 499 |
+
xaxis_title="Manifold Dimension 1",
|
| 500 |
+
yaxis_title="Manifold Dimension 2",
|
| 501 |
+
height=400
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
return fig
|
| 505 |
+
|
| 506 |
+
def create_density_heatmap(df_filtered):
|
| 507 |
+
"""Create density heatmap showing communication hotspots."""
|
| 508 |
+
from scipy.stats import gaussian_kde
|
| 509 |
+
|
| 510 |
+
# Create 2D density estimation
|
| 511 |
+
x = df_filtered['x'].values
|
| 512 |
+
y = df_filtered['y'].values
|
| 513 |
+
|
| 514 |
+
# Create grid for density calculation
|
| 515 |
+
x_grid = np.linspace(x.min(), x.max(), 50)
|
| 516 |
+
y_grid = np.linspace(y.min(), y.max(), 50)
|
| 517 |
+
X_grid, Y_grid = np.meshgrid(x_grid, y_grid)
|
| 518 |
+
positions = np.vstack([X_grid.ravel(), Y_grid.ravel()])
|
| 519 |
+
|
| 520 |
+
# Calculate density
|
| 521 |
+
values = np.vstack([x, y])
|
| 522 |
+
kernel = gaussian_kde(values)
|
| 523 |
+
density = np.reshape(kernel(positions).T, X_grid.shape)
|
| 524 |
+
|
| 525 |
+
fig = go.Figure(data=go.Heatmap(
|
| 526 |
+
z=density,
|
| 527 |
+
x=x_grid,
|
| 528 |
+
y=y_grid,
|
| 529 |
+
colorscale='Viridis',
|
| 530 |
+
colorbar=dict(title="Communication Density")
|
| 531 |
+
))
|
| 532 |
+
|
| 533 |
+
# Overlay actual points
|
| 534 |
+
fig.add_trace(go.Scatter(
|
| 535 |
+
x=x, y=y,
|
| 536 |
+
mode='markers',
|
| 537 |
+
marker=dict(size=4, color='white', opacity=0.6),
|
| 538 |
+
name='Actual Communications',
|
| 539 |
+
hovertemplate='X: %{x:.3f}<br>Y: %{y:.3f}<extra></extra>'
|
| 540 |
+
))
|
| 541 |
+
|
| 542 |
+
fig.update_layout(
|
| 543 |
+
title="Communication Density Heatmap",
|
| 544 |
+
xaxis_title="Manifold Dimension 1",
|
| 545 |
+
yaxis_title="Manifold Dimension 2",
|
| 546 |
+
height=400
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
return fig
|
| 550 |
+
|
| 551 |
+
def create_feature_distributions(df_filtered, lens_selected):
|
| 552 |
+
"""Create feature distribution plots comparing species."""
|
| 553 |
+
alpha_col = f"diag_alpha_{lens_selected}"
|
| 554 |
+
srl_col = f"diag_srl_{lens_selected}"
|
| 555 |
+
|
| 556 |
+
fig = make_subplots(
|
| 557 |
+
rows=2, cols=2,
|
| 558 |
+
subplot_titles=[
|
| 559 |
+
f'CMT Alpha Distribution ({lens_selected})',
|
| 560 |
+
f'SRL Distribution ({lens_selected})',
|
| 561 |
+
'Manifold X Coordinate',
|
| 562 |
+
'Manifold Y Coordinate'
|
| 563 |
+
]
|
| 564 |
+
)
|
| 565 |
+
|
| 566 |
+
# Alpha distribution
|
| 567 |
+
for species in ['Human', 'Dog']:
|
| 568 |
+
data = df_filtered[df_filtered['source'] == species][alpha_col]
|
| 569 |
+
fig.add_trace(
|
| 570 |
+
go.Histogram(x=data, name=f'{species} Alpha', opacity=0.7, nbinsx=20),
|
| 571 |
+
row=1, col=1
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
# SRL distribution
|
| 575 |
+
for species in ['Human', 'Dog']:
|
| 576 |
+
data = df_filtered[df_filtered['source'] == species][srl_col]
|
| 577 |
+
fig.add_trace(
|
| 578 |
+
go.Histogram(x=data, name=f'{species} SRL', opacity=0.7, nbinsx=20),
|
| 579 |
+
row=1, col=2
|
| 580 |
+
)
|
| 581 |
+
|
| 582 |
+
# X coordinate distribution
|
| 583 |
+
for species in ['Human', 'Dog']:
|
| 584 |
+
data = df_filtered[df_filtered['source'] == species]['x']
|
| 585 |
+
fig.add_trace(
|
| 586 |
+
go.Histogram(x=data, name=f'{species} X', opacity=0.7, nbinsx=20),
|
| 587 |
+
row=2, col=1
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
# Y coordinate distribution
|
| 591 |
+
for species in ['Human', 'Dog']:
|
| 592 |
+
data = df_filtered[df_filtered['source'] == species]['y']
|
| 593 |
+
fig.add_trace(
|
| 594 |
+
go.Histogram(x=data, name=f'{species} Y', opacity=0.7, nbinsx=20),
|
| 595 |
+
row=2, col=2
|
| 596 |
+
)
|
| 597 |
+
|
| 598 |
+
fig.update_layout(
|
| 599 |
+
height=300,
|
| 600 |
+
title_text="Feature Distributions by Species",
|
| 601 |
+
showlegend=True
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
return fig
|
| 605 |
+
|
| 606 |
+
def create_correlation_matrix(df_filtered, lens_selected):
|
| 607 |
+
"""Create correlation matrix of CMT features."""
|
| 608 |
+
# Select relevant columns for correlation
|
| 609 |
+
feature_cols = ['x', 'y', 'z'] + [col for col in df_filtered.columns if col.startswith('feature_')]
|
| 610 |
+
cmt_cols = [f"diag_alpha_{lens_selected}", f"diag_srl_{lens_selected}"]
|
| 611 |
+
|
| 612 |
+
all_cols = feature_cols + cmt_cols
|
| 613 |
+
available_cols = [col for col in all_cols if col in df_filtered.columns]
|
| 614 |
+
|
| 615 |
+
if len(available_cols) < 2:
|
| 616 |
+
# Fallback with basic columns
|
| 617 |
+
available_cols = ['x', 'y', 'z']
|
| 618 |
+
|
| 619 |
+
# Calculate correlation matrix
|
| 620 |
+
corr_matrix = df_filtered[available_cols].corr()
|
| 621 |
+
|
| 622 |
+
fig = go.Figure(data=go.Heatmap(
|
| 623 |
+
z=corr_matrix.values,
|
| 624 |
+
x=corr_matrix.columns,
|
| 625 |
+
y=corr_matrix.columns,
|
| 626 |
+
colorscale='RdBu',
|
| 627 |
+
zmid=0,
|
| 628 |
+
colorbar=dict(title="Correlation"),
|
| 629 |
+
text=np.round(corr_matrix.values, 2),
|
| 630 |
+
texttemplate="%{text}",
|
| 631 |
+
textfont={"size": 10}
|
| 632 |
+
))
|
| 633 |
+
|
| 634 |
+
fig.update_layout(
|
| 635 |
+
title="Cross-Species Feature Correlations",
|
| 636 |
+
height=300,
|
| 637 |
+
xaxis_title="Features",
|
| 638 |
+
yaxis_title="Features"
|
| 639 |
+
)
|
| 640 |
+
|
| 641 |
+
return fig
|
| 642 |
+
|
| 643 |
+
def calculate_statistics(df_filtered, lens_selected):
|
| 644 |
+
"""Calculate comprehensive statistics for the filtered data."""
|
| 645 |
+
alpha_col = f"diag_alpha_{lens_selected}"
|
| 646 |
+
srl_col = f"diag_srl_{lens_selected}"
|
| 647 |
+
|
| 648 |
+
stats = {}
|
| 649 |
+
|
| 650 |
+
# Overall statistics
|
| 651 |
+
stats['total_points'] = len(df_filtered)
|
| 652 |
+
stats['human_count'] = len(df_filtered[df_filtered['source'] == 'Human'])
|
| 653 |
+
stats['dog_count'] = len(df_filtered[df_filtered['source'] == 'Dog'])
|
| 654 |
+
|
| 655 |
+
# CMT statistics by species
|
| 656 |
+
for species in ['Human', 'Dog']:
|
| 657 |
+
species_data = df_filtered[df_filtered['source'] == species]
|
| 658 |
+
if len(species_data) > 0:
|
| 659 |
+
stats[f'{species.lower()}_alpha_mean'] = species_data[alpha_col].mean()
|
| 660 |
+
stats[f'{species.lower()}_alpha_std'] = species_data[alpha_col].std()
|
| 661 |
+
stats[f'{species.lower()}_srl_mean'] = species_data[srl_col].mean()
|
| 662 |
+
stats[f'{species.lower()}_srl_std'] = species_data[srl_col].std()
|
| 663 |
+
|
| 664 |
+
# Geometric separation
|
| 665 |
+
if stats['human_count'] > 0 and stats['dog_count'] > 0:
|
| 666 |
+
human_center = df_filtered[df_filtered['source'] == 'Human'][['x', 'y', 'z']].mean()
|
| 667 |
+
dog_center = df_filtered[df_filtered['source'] == 'Dog'][['x', 'y', 'z']].mean()
|
| 668 |
+
stats['geometric_separation'] = np.sqrt(((human_center - dog_center) ** 2).sum())
|
| 669 |
+
|
| 670 |
+
return stats
|
| 671 |
+
|
| 672 |
+
def update_manifold_visualization(species_selection, emotion_selection, lens_selection,
|
| 673 |
+
alpha_range, srl_range, feature_range, point_size,
|
| 674 |
+
show_boundary, show_trajectories, color_scheme):
|
| 675 |
+
"""Main update function for the manifold visualization."""
|
| 676 |
+
|
| 677 |
+
# Filter data based on selections
|
| 678 |
+
df_filtered = df_combined.copy()
|
| 679 |
+
|
| 680 |
+
# Species filter
|
| 681 |
+
if species_selection:
|
| 682 |
+
df_filtered = df_filtered[df_filtered['source'].isin(species_selection)]
|
| 683 |
+
|
| 684 |
+
# Emotion filter
|
| 685 |
+
if emotion_selection:
|
| 686 |
+
df_filtered = df_filtered[df_filtered['label'].isin(emotion_selection)]
|
| 687 |
+
|
| 688 |
+
# CMT diagnostic filters
|
| 689 |
+
alpha_col = f"diag_alpha_{lens_selection}"
|
| 690 |
+
srl_col = f"diag_srl_{lens_selection}"
|
| 691 |
+
|
| 692 |
+
if alpha_col in df_filtered.columns:
|
| 693 |
+
df_filtered = df_filtered[
|
| 694 |
+
(df_filtered[alpha_col] >= alpha_range[0]) &
|
| 695 |
+
(df_filtered[alpha_col] <= alpha_range[1])
|
| 696 |
+
]
|
| 697 |
+
|
| 698 |
+
if srl_col in df_filtered.columns:
|
| 699 |
+
df_filtered = df_filtered[
|
| 700 |
+
(df_filtered[srl_col] >= srl_range[0]) &
|
| 701 |
+
(df_filtered[srl_col] <= srl_range[1])
|
| 702 |
+
]
|
| 703 |
+
|
| 704 |
+
# Feature magnitude filter (using first few feature columns if they exist)
|
| 705 |
+
feature_cols = [col for col in df_filtered.columns if col.startswith('feature_')]
|
| 706 |
+
if feature_cols:
|
| 707 |
+
feature_magnitudes = np.sqrt(df_filtered[feature_cols[:3]].pow(2).sum(axis=1))
|
| 708 |
+
df_filtered = df_filtered[
|
| 709 |
+
(feature_magnitudes >= feature_range[0]) &
|
| 710 |
+
(feature_magnitudes <= feature_range[1])
|
| 711 |
+
]
|
| 712 |
+
|
| 713 |
+
# Create visualizations
|
| 714 |
+
if len(df_filtered) == 0:
|
| 715 |
+
empty_fig = go.Figure().add_annotation(
|
| 716 |
+
text="No data points match the current filters",
|
| 717 |
+
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False
|
| 718 |
+
)
|
| 719 |
+
return (empty_fig, empty_fig, empty_fig, empty_fig, empty_fig,
|
| 720 |
+
"No data available", "No data available", "No data available")
|
| 721 |
+
|
| 722 |
+
# Main manifold plot
|
| 723 |
+
manifold_fig = create_enhanced_manifold_plot(
|
| 724 |
+
df_filtered, lens_selection, color_scheme, point_size,
|
| 725 |
+
show_boundary, show_trajectories
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
# Secondary plots
|
| 729 |
+
projection_fig = create_2d_projection_plot(df_filtered, color_scheme)
|
| 730 |
+
density_fig = create_density_heatmap(df_filtered)
|
| 731 |
+
distributions_fig = create_feature_distributions(df_filtered, lens_selection)
|
| 732 |
+
correlation_fig = create_correlation_matrix(df_filtered, lens_selection)
|
| 733 |
+
|
| 734 |
+
# Statistics
|
| 735 |
+
stats = calculate_statistics(df_filtered, lens_selection)
|
| 736 |
+
|
| 737 |
+
# Format statistics HTML
|
| 738 |
+
species_stats_html = f"""
|
| 739 |
+
<h4>π Data Overview</h4>
|
| 740 |
+
<p><b>Total Points:</b> {stats['total_points']}</p>
|
| 741 |
+
<p><b>Human:</b> {stats['human_count']} | <b>Dog:</b> {stats['dog_count']}</p>
|
| 742 |
+
<p><b>Ratio:</b> {stats['human_count']/(stats['dog_count']+1):.2f}:1</p>
|
| 743 |
+
"""
|
| 744 |
+
|
| 745 |
+
boundary_stats_html = f"""
|
| 746 |
+
<h4>π¬ Geometric Analysis</h4>
|
| 747 |
+
<p><b>Lens:</b> {lens_selection.title()}</p>
|
| 748 |
+
{"<p><b>Separation:</b> {:.3f}</p>".format(stats.get('geometric_separation', 0)) if 'geometric_separation' in stats else ""}
|
| 749 |
+
<p><b>Dimensions:</b> 3D UMAP</p>
|
| 750 |
+
"""
|
| 751 |
+
|
| 752 |
+
similarity_html = f"""
|
| 753 |
+
<h4>π Species Comparison</h4>
|
| 754 |
+
<p><b>Human Ξ±:</b> {stats.get('human_alpha_mean', 0):.3f} Β± {stats.get('human_alpha_std', 0):.3f}</p>
|
| 755 |
+
<p><b>Dog Ξ±:</b> {stats.get('dog_alpha_mean', 0):.3f} Β± {stats.get('dog_alpha_std', 0):.3f}</p>
|
| 756 |
+
<p><b>Overlap Index:</b> {1 / (1 + stats.get('geometric_separation', 1)):.3f}</p>
|
| 757 |
+
"""
|
| 758 |
+
|
| 759 |
+
return (manifold_fig, projection_fig, density_fig, distributions_fig, correlation_fig,
|
| 760 |
+
species_stats_html, boundary_stats_html, similarity_html)
|
| 761 |
+
|
| 762 |
def resolve_audio_path(row: pd.Series) -> str:
|
| 763 |
"""
|
| 764 |
Intelligently reconstructs the full path to an audio file
|
|
|
|
| 1158 |
default_primary = file_choices[0] if file_choices else ""
|
| 1159 |
|
| 1160 |
with gr.Tabs():
|
| 1161 |
+
with gr.TabItem("π Universal Manifold Explorer"):
|
| 1162 |
+
gr.Markdown("""
|
| 1163 |
+
# π― **First Universal Interspecies Communication Map**
|
| 1164 |
+
*Discover the hidden mathematical geometry underlying human and dog communication*
|
| 1165 |
+
""")
|
| 1166 |
+
|
| 1167 |
+
with gr.Row():
|
| 1168 |
+
with gr.Column(scale=1):
|
| 1169 |
+
gr.Markdown("### π¬ **Analysis Controls**")
|
| 1170 |
+
|
| 1171 |
+
# Species filtering
|
| 1172 |
+
species_filter = gr.CheckboxGroup(
|
| 1173 |
+
label="Species Selection",
|
| 1174 |
+
choices=["Human", "Dog"],
|
| 1175 |
+
value=["Human", "Dog"],
|
| 1176 |
+
info="Select which species to display"
|
| 1177 |
+
)
|
| 1178 |
+
|
| 1179 |
+
# Emotional state filtering
|
| 1180 |
+
emotion_filter = gr.CheckboxGroup(
|
| 1181 |
+
label="Emotional States",
|
| 1182 |
+
choices=list(df_combined['label'].unique()),
|
| 1183 |
+
value=list(df_combined['label'].unique()),
|
| 1184 |
+
info="Filter by emotional expression"
|
| 1185 |
+
)
|
| 1186 |
+
|
| 1187 |
+
# CMT Lens selection for coloring
|
| 1188 |
+
lens_selector = gr.Dropdown(
|
| 1189 |
+
label="Mathematical Lens View",
|
| 1190 |
+
choices=["gamma", "zeta", "airy", "bessel"],
|
| 1191 |
+
value="gamma",
|
| 1192 |
+
info="Choose which mathematical lens to use for analysis"
|
| 1193 |
+
)
|
| 1194 |
+
|
| 1195 |
+
# Advanced filtering sliders
|
| 1196 |
+
with gr.Accordion("ποΈ Advanced CMT Filters", open=False):
|
| 1197 |
+
alpha_range = gr.RangeSlider(
|
| 1198 |
+
label="CMT Alpha Range (Geometric Consistency)",
|
| 1199 |
+
minimum=0, maximum=1, value=[0, 1], step=0.01,
|
| 1200 |
+
info="Filter by geometric consistency measure"
|
| 1201 |
+
)
|
| 1202 |
+
|
| 1203 |
+
srl_range = gr.RangeSlider(
|
| 1204 |
+
label="SRL Range (Complexity Level)",
|
| 1205 |
+
minimum=0, maximum=100, value=[0, 100], step=1,
|
| 1206 |
+
info="Filter by spike response level (complexity)"
|
| 1207 |
+
)
|
| 1208 |
+
|
| 1209 |
+
feature_magnitude = gr.RangeSlider(
|
| 1210 |
+
label="Feature Magnitude Range",
|
| 1211 |
+
minimum=-3, maximum=3, value=[-3, 3], step=0.1,
|
| 1212 |
+
info="Filter by overall feature strength"
|
| 1213 |
+
)
|
| 1214 |
+
|
| 1215 |
+
# Visualization options
|
| 1216 |
+
with gr.Accordion("π¨ Visualization Options", open=True):
|
| 1217 |
+
point_size = gr.Slider(
|
| 1218 |
+
label="Point Size",
|
| 1219 |
+
minimum=2, maximum=15, value=6, step=1
|
| 1220 |
+
)
|
| 1221 |
+
|
| 1222 |
+
show_species_boundary = gr.Checkbox(
|
| 1223 |
+
label="Show Species Boundary",
|
| 1224 |
+
value=True,
|
| 1225 |
+
info="Display geometric boundary between species"
|
| 1226 |
+
)
|
| 1227 |
+
|
| 1228 |
+
show_trajectories = gr.Checkbox(
|
| 1229 |
+
label="Show Communication Trajectories",
|
| 1230 |
+
value=False,
|
| 1231 |
+
info="Display paths between related vocalizations"
|
| 1232 |
+
)
|
| 1233 |
+
|
| 1234 |
+
color_scheme = gr.Dropdown(
|
| 1235 |
+
label="Color Scheme",
|
| 1236 |
+
choices=["Species", "Emotion", "CMT_Alpha", "CMT_SRL", "Cluster"],
|
| 1237 |
+
value="Species",
|
| 1238 |
+
info="Choose coloring strategy"
|
| 1239 |
+
)
|
| 1240 |
+
|
| 1241 |
+
# Real-time analysis
|
| 1242 |
+
with gr.Accordion("π Real-Time Analysis", open=False):
|
| 1243 |
+
analysis_button = gr.Button("π¬ Analyze Selected Region", variant="primary")
|
| 1244 |
+
|
| 1245 |
+
selected_info = gr.HTML(
|
| 1246 |
+
label="Selection Analysis",
|
| 1247 |
+
value="<i>Select points on the manifold for detailed analysis</i>"
|
| 1248 |
+
)
|
| 1249 |
+
|
| 1250 |
+
with gr.Column(scale=3):
|
| 1251 |
+
# Main 3D manifold plot
|
| 1252 |
+
manifold_plot = gr.Plot(
|
| 1253 |
+
label="Universal Communication Manifold",
|
| 1254 |
+
height=600
|
| 1255 |
+
)
|
| 1256 |
+
|
| 1257 |
+
# Statistics panel below the plot
|
| 1258 |
+
with gr.Row():
|
| 1259 |
+
with gr.Column():
|
| 1260 |
+
species_stats = gr.HTML(
|
| 1261 |
+
label="Species Statistics",
|
| 1262 |
+
value=""
|
| 1263 |
+
)
|
| 1264 |
+
|
| 1265 |
+
with gr.Column():
|
| 1266 |
+
boundary_stats = gr.HTML(
|
| 1267 |
+
label="Boundary Analysis",
|
| 1268 |
+
value=""
|
| 1269 |
+
)
|
| 1270 |
+
|
| 1271 |
+
with gr.Column():
|
| 1272 |
+
similarity_stats = gr.HTML(
|
| 1273 |
+
label="Cross-Species Similarity",
|
| 1274 |
+
value=""
|
| 1275 |
+
)
|
| 1276 |
+
|
| 1277 |
+
# Secondary analysis views
|
| 1278 |
+
with gr.Row():
|
| 1279 |
+
with gr.Column():
|
| 1280 |
+
# 2D projection plot
|
| 1281 |
+
projection_2d = gr.Plot(
|
| 1282 |
+
label="2D Projection View",
|
| 1283 |
+
height=400
|
| 1284 |
+
)
|
| 1285 |
+
|
| 1286 |
+
with gr.Column():
|
| 1287 |
+
# Density heatmap
|
| 1288 |
+
density_plot = gr.Plot(
|
| 1289 |
+
label="Communication Density Map",
|
| 1290 |
+
height=400
|
| 1291 |
+
)
|
| 1292 |
+
|
| 1293 |
+
# Bottom analysis panel
|
| 1294 |
+
with gr.Row():
|
| 1295 |
+
with gr.Column():
|
| 1296 |
+
# Feature distribution plots
|
| 1297 |
+
feature_distributions = gr.Plot(
|
| 1298 |
+
label="CMT Feature Distributions",
|
| 1299 |
+
height=300
|
| 1300 |
+
)
|
| 1301 |
+
|
| 1302 |
+
with gr.Column():
|
| 1303 |
+
# Correlation matrix
|
| 1304 |
+
correlation_matrix = gr.Plot(
|
| 1305 |
+
label="Cross-Species Feature Correlations",
|
| 1306 |
+
height=300
|
| 1307 |
+
)
|
| 1308 |
+
|
| 1309 |
+
# Wire up all the interactive components
|
| 1310 |
+
manifold_inputs = [
|
| 1311 |
+
species_filter, emotion_filter, lens_selector,
|
| 1312 |
+
alpha_range, srl_range, feature_magnitude, point_size,
|
| 1313 |
+
show_species_boundary, show_trajectories, color_scheme
|
| 1314 |
+
]
|
| 1315 |
+
|
| 1316 |
+
manifold_outputs = [
|
| 1317 |
+
manifold_plot, projection_2d, density_plot,
|
| 1318 |
+
feature_distributions, correlation_matrix,
|
| 1319 |
+
species_stats, boundary_stats, similarity_stats
|
| 1320 |
+
]
|
| 1321 |
+
|
| 1322 |
+
# Set up event handlers for real-time updates
|
| 1323 |
+
for component in manifold_inputs:
|
| 1324 |
+
component.change(
|
| 1325 |
+
update_manifold_visualization,
|
| 1326 |
+
inputs=manifold_inputs,
|
| 1327 |
+
outputs=manifold_outputs
|
| 1328 |
+
)
|
| 1329 |
+
|
| 1330 |
+
# Initialize the plots with default values
|
| 1331 |
+
demo.load(
|
| 1332 |
+
lambda: update_manifold_visualization(
|
| 1333 |
+
["Human", "Dog"], # species_selection
|
| 1334 |
+
list(df_combined['label'].unique()), # emotion_selection
|
| 1335 |
+
"gamma", # lens_selection
|
| 1336 |
+
[0, 1], # alpha_range
|
| 1337 |
+
[0, 100], # srl_range
|
| 1338 |
+
[-3, 3], # feature_range
|
| 1339 |
+
6, # point_size
|
| 1340 |
+
True, # show_boundary
|
| 1341 |
+
False, # show_trajectories
|
| 1342 |
+
"Species" # color_scheme
|
| 1343 |
+
),
|
| 1344 |
+
outputs=manifold_outputs
|
| 1345 |
+
)
|
| 1346 |
|
| 1347 |
with gr.TabItem("Interactive Holography"):
|
| 1348 |
with gr.Row():
|