Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import os | |
| import random | |
| import time | |
| import gradio as gr | |
| import numpy as np | |
| import PIL.Image | |
| from huggingface_hub import snapshot_download | |
| from diffusers import DiffusionPipeline | |
| from lcm_scheduler import LCMScheduler | |
| from lcm_ov_pipeline import OVLatentConsistencyModelPipeline | |
| from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel | |
| import os | |
| from tqdm import tqdm | |
| import gradio_user_history as gr_user_history | |
| from concurrent.futures import ThreadPoolExecutor | |
| import uuid | |
| DESCRIPTION = '''# Image Creation | |
| ''' | |
| MAX_SEED = np.iinfo(np.int32).max | |
| CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" | |
| model_id = "deinferno/LCM_Dreamshaper_v7-openvino" | |
| batch_size = 1 | |
| width = int(os.getenv("IMAGE_WIDTH", "512")) | |
| height = int(os.getenv("IMAGE_HEIGHT", "512")) | |
| num_images = int(os.getenv("NUM_IMAGES", "1")) | |
| class CustomOVModelVaeDecoder(OVModelVaeDecoder): | |
| def __init__( | |
| self, model: openvino.runtime.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None, | |
| ): | |
| super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir) | |
| scheduler = LCMScheduler.from_pretrained(model_id, subfolder="scheduler") | |
| pipe = OVLatentConsistencyModelPipeline.from_pretrained(model_id, scheduler = scheduler, compile = False, ov_config = {"CACHE_DIR":""}) | |
| # Inject TAESD | |
| taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino") | |
| pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir) | |
| pipe.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images) | |
| pipe.compile() | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def save_image(img, profile: gr.OAuthProfile | None, metadata: dict): | |
| unique_name = str(uuid.uuid4()) + '.png' | |
| img.save(unique_name) | |
| gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata) | |
| return unique_name | |
| def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict): | |
| paths = [] | |
| with ThreadPoolExecutor() as executor: | |
| paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array))) | |
| return paths | |
| def generate( | |
| prompt: str, | |
| seed: int = 0, | |
| guidance_scale: float = 8.0, | |
| num_inference_steps: int = 4, | |
| randomize_seed: bool = False, | |
| progress = gr.Progress(track_tqdm=True), | |
| profile: gr.OAuthProfile | None = None, | |
| ) -> PIL.Image.Image: | |
| global batch_size | |
| global width | |
| global height | |
| global num_images | |
| seed = randomize_seed_fn(seed, randomize_seed) | |
| np.random.seed(seed) | |
| start_time = time.time() | |
| result = pipe( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| num_images_per_prompt=num_images, | |
| output_type="pil", | |
| ).images | |
| paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps}) | |
| print(time.time() - start_time) | |
| return paths, seed | |
| examples = [ | |
| "portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", | |
| "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", | |
| ] | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| gr.DuplicateButton( | |
| value="Duplicate Space for private use", | |
| elem_id="duplicate-button", | |
| visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
| ) | |
| with gr.Group(): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Gallery( | |
| label="Generated images", show_label=False, elem_id="gallery", | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| randomize=True | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale for base", | |
| minimum=2, | |
| maximum=14, | |
| step=0.1, | |
| value=8.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps for base", | |
| minimum=1, | |
| maximum=8, | |
| step=1, | |
| value=4, | |
| ) | |
| with gr.Accordion("Past generations", open=False): | |
| gr_user_history.render() | |
| gr.Examples( | |
| examples=examples, | |
| inputs=prompt, | |
| outputs=result, | |
| fn=generate, | |
| cache_examples=CACHE_EXAMPLES, | |
| ) | |
| gr.on( | |
| triggers=[ | |
| prompt.submit, | |
| run_button.click, | |
| ], | |
| fn=generate, | |
| inputs=[ | |
| prompt, | |
| seed, | |
| guidance_scale, | |
| num_inference_steps, | |
| randomize_seed | |
| ], | |
| outputs=[result, seed], | |
| api_name="run", | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(api_open=False) | |
| #demo.queue(max_size=3).launch() | |
| demo.launch() | |