Seyomi's picture
Update data/preprocess/preprocess.py
f0488fb verified
import os
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
BASE_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../"))
price_path = os.path.join(BASE_DIR, "data", "raw", "BTC_USD_price.csv")
output_path = os.path.join(BASE_DIR, "data", "processed", "merged_features.csv")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
print(f"πŸ“‚ Reading price data from: {price_path}")
if not os.path.exists(price_path):
raise FileNotFoundError(f"❌ File not found: {price_path}")
price_df = pd.read_csv(price_path)
print("πŸ“Š Available columns in CSV:", list(price_df.columns))
date_col = None
for col in price_df.columns:
if 'date' in col.lower() or 'time' in col.lower():
date_col = col
break
if date_col is None:
raise ValueError("❌ No date/time column found in the CSV.")
price_df[date_col] = pd.to_datetime(price_df[date_col])
price_df = price_df.set_index(date_col).sort_index()
for col in price_df.columns:
price_df[col] = pd.to_numeric(price_df[col], errors='coerce')
price_df = price_df.ffill().dropna()
if price_df.empty:
raise ValueError("❌ DataFrame is empty after cleaning.")
scaler = MinMaxScaler()
scaled_values = scaler.fit_transform(price_df)
normalized_df = pd.DataFrame(scaled_values, columns=price_df.columns, index=price_df.index)
normalized_df.to_csv(output_path)
print(f"βœ… Preprocessed and saved to: {output_path}")