| import torch | |
| import torch.nn as nn | |
| class Autoencoder(nn.Module): | |
| def __init__(self, input_dim): | |
| super(Autoencoder, self).__init__() | |
| self.encoder = nn.Sequential( | |
| nn.Linear(input_dim, 64), | |
| nn.ReLU(), | |
| nn.Linear(64, 32), | |
| nn.ReLU() | |
| ) | |
| self.decoder = nn.Sequential( | |
| nn.Linear(32, 64), | |
| nn.ReLU(), | |
| nn.Linear(64, input_dim) | |
| ) | |
| def forward(self, x): | |
| encoded = self.encoder(x) | |
| decoded = self.decoder(encoded) | |
| return decoded | |