| import torch.nn as nn | |
| class LSTMForecaster(nn.Module): | |
| def __init__(self, input_size, hidden_size, num_layers, output_size): | |
| super(LSTMForecaster, self).__init__() | |
| self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) | |
| self.fc = nn.Linear(hidden_size, output_size) | |
| def forward(self, x): | |
| out, _ = self.lstm(x) | |
| out = out[:, -1, :] | |
| out = self.fc(out) | |
| return out | |