--- title: πŸ“Š Multimodal Financial Forecast emoji: πŸ“ˆ colorFrom: indigo colorTo: green sdk: docker pinned: false --- # πŸ“Š Multimodal Financial Forecast This app predicts future financial values from time series using an LSTM model. Input sequences or upload CSVs to get started. ## πŸ”§ Tech Stack - **Backend**: FastAPI (`app/main.py`) - **ML Model**: PyTorch LSTM - **Deployment**: Hugging Face Spaces (Docker) ## πŸš€ How to Use 1. Input a JSON-like sequence. 2. Or upload a `.csv` file with numerical sequences. 3. Click β€œPredict” to see the model forecast. ## 🧠 How It Works 1. **User Input**: - You can enter sequences directly or upload a `.csv` with your own data. 2. **Model Inference**: - The LSTM model is loaded from `pipeline/trained_models/`. - Input sequences are normalized and passed into the model. - The output is a forecast of future values. 3. **Output**: - The results are displayed directly on the webpage. - Graph removed (clean, console-style output). --- ## πŸ›  Tech Stack | Layer | Tech | |-------------|-------------| | Backend | FastAPI | | ML Model | PyTorch LSTM| | Frontend | HTML + CSS | | Deployment | Docker + Hugging Face Spaces | --- ## πŸ“‚ Project Structure multimodal-financial-forecast/ β”œβ”€β”€ app/ β”‚ β”œβ”€β”€ main.py # FastAPI backend β”‚ β”œβ”€β”€ templates/ β”‚ β”‚ └── index.html # User interface β”‚ └── static/ β”‚ └── style.css # Stylesheet β”‚ β”œβ”€β”€ pipeline/ β”‚ β”œβ”€β”€ inference_pipeline.py # Model loading and inference β”‚ └── trained_models/ β”‚ β”œβ”€β”€ lstm_forecaster.pt # Trained LSTM model β”‚ └── config.json # Input/output config β”‚ β”œβ”€β”€ requirements.txt # Python dependencies β”œβ”€β”€ Dockerfile # Docker config β”œβ”€β”€ README.md # Project overview └── .gitignore ## βœ… Requirements Install dependencies locally (for testing): ```bash pip install -r requirements.txt ## Run the app locally: uvicorn app.main:app --reload ## πŸ“ Example CSV Format Sample input file (for upload): 0.1,0.2,0.3,0.4,0.5 0.5,0.6,0.7,0.8,0.9 ## 🐳 Docker Deployment FROM python:3.10-slim WORKDIR /app COPY . . RUN pip install --upgrade pip && pip install -r requirements.txt EXPOSE 7860 CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"] ## Build and Run Locally docker build -t multimodal-forecast . docker run -p 7860:7860 multimodal-forecast