import os import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler BASE_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")) price_path = os.path.join(BASE_DIR, "data", "raw", "BTC_USD_price.csv") output_path = os.path.join(BASE_DIR, "data", "processed", "merged_features.csv") os.makedirs(os.path.dirname(output_path), exist_ok=True) print(f"📂 Reading price data from: {price_path}") if not os.path.exists(price_path): raise FileNotFoundError(f"❌ File not found: {price_path}") price_df = pd.read_csv(price_path) print("📊 Available columns in CSV:", list(price_df.columns)) date_col = None for col in price_df.columns: if 'date' in col.lower() or 'time' in col.lower(): date_col = col break if date_col is None: raise ValueError("❌ No date/time column found in the CSV.") price_df[date_col] = pd.to_datetime(price_df[date_col]) price_df = price_df.set_index(date_col).sort_index() for col in price_df.columns: price_df[col] = pd.to_numeric(price_df[col], errors='coerce') price_df = price_df.ffill().dropna() if price_df.empty: raise ValueError("❌ DataFrame is empty after cleaning.") scaler = MinMaxScaler() scaled_values = scaler.fit_transform(price_df) normalized_df = pd.DataFrame(scaled_values, columns=price_df.columns, index=price_df.index) normalized_df.to_csv(output_path) print(f"✅ Preprocessed and saved to: {output_path}")