Spaces:
Running
Running
Update extract_red_text.py
Browse files- extract_red_text.py +117 -16
extract_red_text.py
CHANGED
|
@@ -68,21 +68,33 @@ def get_table_context(tbl):
|
|
| 68 |
}
|
| 69 |
|
| 70 |
def calculate_schema_match_score(schema_name, spec, context):
|
| 71 |
-
"""Enhanced calculate match score
|
| 72 |
score = 0
|
| 73 |
reasons = []
|
| 74 |
|
| 75 |
-
# π―
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
if "Summary" in schema_name and "details" in " ".join(context['headers']).lower():
|
| 77 |
-
score += 100
|
| 78 |
reasons.append(f"Summary schema with DETAILS column - perfect match")
|
| 79 |
|
| 80 |
-
# π― CRITICAL: Heavily penalize non-Summary schemas when DETAILS column is present
|
| 81 |
if "Summary" not in schema_name and "details" in " ".join(context['headers']).lower():
|
| 82 |
-
score -= 75
|
| 83 |
reasons.append(f"Non-summary schema penalized for DETAILS column presence")
|
| 84 |
|
| 85 |
-
#
|
| 86 |
if spec.get("context_exclusions"):
|
| 87 |
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
|
| 88 |
for exclusion in spec["context_exclusions"]:
|
|
@@ -90,7 +102,7 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 90 |
score -= 50
|
| 91 |
reasons.append(f"Context exclusion penalty: '{exclusion}' found")
|
| 92 |
|
| 93 |
-
#
|
| 94 |
if spec.get("context_keywords"):
|
| 95 |
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
|
| 96 |
keyword_matches = 0
|
|
@@ -99,7 +111,7 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 99 |
keyword_matches += 1
|
| 100 |
|
| 101 |
if keyword_matches > 0:
|
| 102 |
-
score += keyword_matches * 15
|
| 103 |
reasons.append(f"Context keyword matches: {keyword_matches}/{len(spec['context_keywords'])}")
|
| 104 |
|
| 105 |
# Direct first cell match
|
|
@@ -115,7 +127,7 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 115 |
reasons.append(f"Heading match: '{context['heading']}'")
|
| 116 |
break
|
| 117 |
|
| 118 |
-
# Column header matching
|
| 119 |
if spec.get("columns"):
|
| 120 |
cols = [normalize_text(col) for col in spec["columns"]]
|
| 121 |
matches = 0
|
|
@@ -123,10 +135,10 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 123 |
if any(col.upper() in h.upper() for h in context['headers']):
|
| 124 |
matches += 1
|
| 125 |
if matches == len(cols):
|
| 126 |
-
score += 60
|
| 127 |
reasons.append(f"All column headers match: {cols}")
|
| 128 |
elif matches > 0:
|
| 129 |
-
score += matches * 20
|
| 130 |
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
|
| 131 |
|
| 132 |
# Label matching for left-oriented tables
|
|
@@ -140,18 +152,23 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 140 |
score += (matches / len(labels)) * 30
|
| 141 |
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
|
| 142 |
|
| 143 |
-
# Label matching for row1-oriented tables
|
| 144 |
elif spec.get("orientation") == "row1":
|
| 145 |
labels = [normalize_text(lbl) for lbl in spec["labels"]]
|
| 146 |
matches = 0
|
| 147 |
for lbl in labels:
|
|
|
|
| 148 |
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']):
|
| 149 |
matches += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
if matches > 0:
|
| 151 |
-
score += (matches / len(labels)) *
|
| 152 |
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
|
| 153 |
|
| 154 |
-
# Special handling for Declaration tables
|
| 155 |
if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME":
|
| 156 |
if "OPERATOR DECLARATION" in context['heading'].upper():
|
| 157 |
score += 80
|
|
@@ -162,7 +179,7 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 162 |
|
| 163 |
if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME":
|
| 164 |
if any("MANAGER" in cell.upper() for cell in context['all_cells']):
|
| 165 |
-
score -= 50
|
| 166 |
reasons.append("Penalty: Manager found (not auditor)")
|
| 167 |
|
| 168 |
return score, reasons
|
|
@@ -228,13 +245,97 @@ def extract_multi_schema_table(tbl, schemas):
|
|
| 228 |
return result
|
| 229 |
|
| 230 |
def extract_table_data(tbl, schema_name, spec):
|
| 231 |
-
"""Extract red text data from table based on schema"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
labels = spec["labels"] + [schema_name]
|
| 233 |
collected = {lbl: [] for lbl in labels}
|
| 234 |
seen = {lbl: set() for lbl in labels}
|
| 235 |
by_col = (spec["orientation"] == "row1")
|
| 236 |
start_row = 1 if by_col else 0
|
| 237 |
rows = tbl.rows[start_row:]
|
|
|
|
| 238 |
for ri, row in enumerate(rows):
|
| 239 |
for ci, cell in enumerate(row.cells):
|
| 240 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
|
|
|
| 68 |
}
|
| 69 |
|
| 70 |
def calculate_schema_match_score(schema_name, spec, context):
|
| 71 |
+
"""Enhanced calculate match score - IMPROVED for Vehicle Registration tables"""
|
| 72 |
score = 0
|
| 73 |
reasons = []
|
| 74 |
|
| 75 |
+
# π― VEHICLE REGISTRATION BOOST
|
| 76 |
+
if "Vehicle Registration" in schema_name:
|
| 77 |
+
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"]
|
| 78 |
+
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
|
| 79 |
+
|
| 80 |
+
keyword_matches = sum(1 for keyword in vehicle_keywords if keyword in table_text)
|
| 81 |
+
if keyword_matches >= 2:
|
| 82 |
+
score += 150 # Very high boost for vehicle tables
|
| 83 |
+
reasons.append(f"Vehicle Registration keywords: {keyword_matches}/5")
|
| 84 |
+
elif keyword_matches >= 1:
|
| 85 |
+
score += 75 # Medium boost
|
| 86 |
+
reasons.append(f"Some Vehicle Registration keywords: {keyword_matches}/5")
|
| 87 |
+
|
| 88 |
+
# π― SUMMARY TABLE BOOST (existing logic)
|
| 89 |
if "Summary" in schema_name and "details" in " ".join(context['headers']).lower():
|
| 90 |
+
score += 100
|
| 91 |
reasons.append(f"Summary schema with DETAILS column - perfect match")
|
| 92 |
|
|
|
|
| 93 |
if "Summary" not in schema_name and "details" in " ".join(context['headers']).lower():
|
| 94 |
+
score -= 75
|
| 95 |
reasons.append(f"Non-summary schema penalized for DETAILS column presence")
|
| 96 |
|
| 97 |
+
# Context exclusions
|
| 98 |
if spec.get("context_exclusions"):
|
| 99 |
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
|
| 100 |
for exclusion in spec["context_exclusions"]:
|
|
|
|
| 102 |
score -= 50
|
| 103 |
reasons.append(f"Context exclusion penalty: '{exclusion}' found")
|
| 104 |
|
| 105 |
+
# Context keywords
|
| 106 |
if spec.get("context_keywords"):
|
| 107 |
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
|
| 108 |
keyword_matches = 0
|
|
|
|
| 111 |
keyword_matches += 1
|
| 112 |
|
| 113 |
if keyword_matches > 0:
|
| 114 |
+
score += keyword_matches * 15
|
| 115 |
reasons.append(f"Context keyword matches: {keyword_matches}/{len(spec['context_keywords'])}")
|
| 116 |
|
| 117 |
# Direct first cell match
|
|
|
|
| 127 |
reasons.append(f"Heading match: '{context['heading']}'")
|
| 128 |
break
|
| 129 |
|
| 130 |
+
# Column header matching
|
| 131 |
if spec.get("columns"):
|
| 132 |
cols = [normalize_text(col) for col in spec["columns"]]
|
| 133 |
matches = 0
|
|
|
|
| 135 |
if any(col.upper() in h.upper() for h in context['headers']):
|
| 136 |
matches += 1
|
| 137 |
if matches == len(cols):
|
| 138 |
+
score += 60
|
| 139 |
reasons.append(f"All column headers match: {cols}")
|
| 140 |
elif matches > 0:
|
| 141 |
+
score += matches * 20
|
| 142 |
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
|
| 143 |
|
| 144 |
# Label matching for left-oriented tables
|
|
|
|
| 152 |
score += (matches / len(labels)) * 30
|
| 153 |
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
|
| 154 |
|
| 155 |
+
# π― ENHANCED Label matching for row1-oriented tables (Vehicle Registration)
|
| 156 |
elif spec.get("orientation") == "row1":
|
| 157 |
labels = [normalize_text(lbl) for lbl in spec["labels"]]
|
| 158 |
matches = 0
|
| 159 |
for lbl in labels:
|
| 160 |
+
# More flexible matching for vehicle tables
|
| 161 |
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']):
|
| 162 |
matches += 1
|
| 163 |
+
# Also check for partial keyword matches
|
| 164 |
+
elif any(word.upper() in " ".join(context['headers']).upper() for word in lbl.split() if len(word) > 3):
|
| 165 |
+
matches += 0.5 # Partial credit
|
| 166 |
+
|
| 167 |
if matches > 0:
|
| 168 |
+
score += (matches / len(labels)) * 40 # Higher weight for row1 tables
|
| 169 |
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
|
| 170 |
|
| 171 |
+
# Special handling for Declaration tables (existing logic)
|
| 172 |
if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME":
|
| 173 |
if "OPERATOR DECLARATION" in context['heading'].upper():
|
| 174 |
score += 80
|
|
|
|
| 179 |
|
| 180 |
if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME":
|
| 181 |
if any("MANAGER" in cell.upper() for cell in context['all_cells']):
|
| 182 |
+
score -= 50
|
| 183 |
reasons.append("Penalty: Manager found (not auditor)")
|
| 184 |
|
| 185 |
return score, reasons
|
|
|
|
| 245 |
return result
|
| 246 |
|
| 247 |
def extract_table_data(tbl, schema_name, spec):
|
| 248 |
+
"""Extract red text data from table based on schema - ENHANCED for Vehicle Registration"""
|
| 249 |
+
|
| 250 |
+
# π― SPECIAL HANDLING for Vehicle Registration tables
|
| 251 |
+
if "Vehicle Registration" in schema_name:
|
| 252 |
+
print(f" π EXTRACTION FIX: Processing Vehicle Registration table")
|
| 253 |
+
|
| 254 |
+
labels = spec["labels"]
|
| 255 |
+
collected = {lbl: [] for lbl in labels}
|
| 256 |
+
seen = {lbl: set() for lbl in labels}
|
| 257 |
+
|
| 258 |
+
# For Vehicle Registration, orientation is "row1" - headers in first row
|
| 259 |
+
if len(tbl.rows) < 2:
|
| 260 |
+
print(f" β Vehicle table has less than 2 rows")
|
| 261 |
+
return {}
|
| 262 |
+
|
| 263 |
+
# Map header cells to labels
|
| 264 |
+
header_row = tbl.rows[0]
|
| 265 |
+
column_mapping = {}
|
| 266 |
+
|
| 267 |
+
print(f" π Mapping {len(header_row.cells)} header cells to labels")
|
| 268 |
+
|
| 269 |
+
for col_idx, cell in enumerate(header_row.cells):
|
| 270 |
+
header_text = normalize_text(cell.text).strip()
|
| 271 |
+
if not header_text:
|
| 272 |
+
continue
|
| 273 |
+
|
| 274 |
+
print(f" Column {col_idx}: '{header_text}'")
|
| 275 |
+
|
| 276 |
+
# Find best matching label
|
| 277 |
+
best_match = None
|
| 278 |
+
best_score = 0
|
| 279 |
+
|
| 280 |
+
for label in labels:
|
| 281 |
+
# Direct match
|
| 282 |
+
if header_text.upper() == label.upper():
|
| 283 |
+
best_match = label
|
| 284 |
+
best_score = 1.0
|
| 285 |
+
break
|
| 286 |
+
|
| 287 |
+
# Partial keyword matching
|
| 288 |
+
header_words = set(word.upper() for word in header_text.split() if len(word) > 2)
|
| 289 |
+
label_words = set(word.upper() for word in label.split() if len(word) > 2)
|
| 290 |
+
|
| 291 |
+
if header_words and label_words:
|
| 292 |
+
common_words = header_words.intersection(label_words)
|
| 293 |
+
if common_words:
|
| 294 |
+
score = len(common_words) / max(len(header_words), len(label_words))
|
| 295 |
+
if score > best_score and score >= 0.4: # Lower threshold for vehicle tables
|
| 296 |
+
best_score = score
|
| 297 |
+
best_match = label
|
| 298 |
+
|
| 299 |
+
if best_match:
|
| 300 |
+
column_mapping[col_idx] = best_match
|
| 301 |
+
print(f" β
Mapped to: '{best_match}' (score: {best_score:.2f})")
|
| 302 |
+
else:
|
| 303 |
+
print(f" β οΈ No mapping found for '{header_text}'")
|
| 304 |
+
|
| 305 |
+
print(f" π Total column mappings: {len(column_mapping)}")
|
| 306 |
+
|
| 307 |
+
# Extract red text from data rows (skip header)
|
| 308 |
+
for row_idx in range(1, len(tbl.rows)):
|
| 309 |
+
row = tbl.rows[row_idx]
|
| 310 |
+
print(f" π Processing data row {row_idx}")
|
| 311 |
+
|
| 312 |
+
for col_idx, cell in enumerate(row.cells):
|
| 313 |
+
if col_idx in column_mapping:
|
| 314 |
+
label = column_mapping[col_idx]
|
| 315 |
+
|
| 316 |
+
# Extract red text
|
| 317 |
+
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 318 |
+
|
| 319 |
+
if red_txt:
|
| 320 |
+
print(f" π΄ Found red text in '{label}': '{red_txt}'")
|
| 321 |
+
|
| 322 |
+
if red_txt not in seen[label]:
|
| 323 |
+
seen[label].add(red_txt)
|
| 324 |
+
collected[label].append(red_txt)
|
| 325 |
+
|
| 326 |
+
# Return only non-empty collections
|
| 327 |
+
result = {k: v for k, v in collected.items() if v}
|
| 328 |
+
print(f" β
Vehicle Registration extracted: {len(result)} columns with data")
|
| 329 |
+
return result
|
| 330 |
+
|
| 331 |
+
# π― ORIGINAL CODE for all other tables (unchanged)
|
| 332 |
labels = spec["labels"] + [schema_name]
|
| 333 |
collected = {lbl: [] for lbl in labels}
|
| 334 |
seen = {lbl: set() for lbl in labels}
|
| 335 |
by_col = (spec["orientation"] == "row1")
|
| 336 |
start_row = 1 if by_col else 0
|
| 337 |
rows = tbl.rows[start_row:]
|
| 338 |
+
|
| 339 |
for ri, row in enumerate(rows):
|
| 340 |
for ci, cell in enumerate(row.cells):
|
| 341 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|