Spaces:
Running
Running
Update extract_red_text.py
Browse files- extract_red_text.py +119 -91
extract_red_text.py
CHANGED
|
@@ -1,29 +1,36 @@
|
|
| 1 |
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import re
|
| 3 |
import json
|
| 4 |
import sys
|
| 5 |
from docx import Document
|
| 6 |
from docx.oxml.ns import qn
|
|
|
|
|
|
|
| 7 |
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16)
|
| 23 |
-
if rr > 150 and gg < 100 and bb < 100 and (rr-gg) > 30 and (rr-bb) > 30:
|
| 24 |
-
return True
|
| 25 |
-
return False
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
def _prev_para_text(tbl):
|
| 28 |
"""Get text from previous paragraph before table"""
|
| 29 |
prev = tbl._tbl.getprevious()
|
|
@@ -33,23 +40,30 @@ def _prev_para_text(tbl):
|
|
| 33 |
return ""
|
| 34 |
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
def fuzzy_match_heading(heading, patterns):
|
| 41 |
"""Check if heading matches any pattern with fuzzy matching"""
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
for pattern in patterns:
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
return False
|
| 47 |
|
| 48 |
def get_table_context(tbl):
|
| 49 |
"""Get comprehensive context information for table"""
|
| 50 |
heading = normalize_text(_prev_para_text(tbl))
|
| 51 |
-
|
| 52 |
-
|
|
|
|
| 53 |
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
|
| 54 |
all_cells = []
|
| 55 |
for row in tbl.rows:
|
|
@@ -67,33 +81,35 @@ def get_table_context(tbl):
|
|
| 67 |
'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
|
| 68 |
}
|
| 69 |
|
|
|
|
|
|
|
|
|
|
| 70 |
def calculate_schema_match_score(schema_name, spec, context):
|
| 71 |
"""Enhanced calculate match score - IMPROVED for Vehicle Registration tables"""
|
| 72 |
score = 0
|
| 73 |
reasons = []
|
| 74 |
-
|
| 75 |
-
#
|
| 76 |
if "Vehicle Registration" in schema_name:
|
| 77 |
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"]
|
| 78 |
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
|
| 79 |
-
|
| 80 |
keyword_matches = sum(1 for keyword in vehicle_keywords if keyword in table_text)
|
| 81 |
if keyword_matches >= 2:
|
| 82 |
-
score += 150
|
| 83 |
reasons.append(f"Vehicle Registration keywords: {keyword_matches}/5")
|
| 84 |
elif keyword_matches >= 1:
|
| 85 |
-
score += 75
|
| 86 |
reasons.append(f"Some Vehicle Registration keywords: {keyword_matches}/5")
|
| 87 |
-
|
| 88 |
-
#
|
| 89 |
if "Summary" in schema_name and "details" in " ".join(context['headers']).lower():
|
| 90 |
score += 100
|
| 91 |
reasons.append(f"Summary schema with DETAILS column - perfect match")
|
| 92 |
-
|
| 93 |
if "Summary" not in schema_name and "details" in " ".join(context['headers']).lower():
|
| 94 |
score -= 75
|
| 95 |
reasons.append(f"Non-summary schema penalized for DETAILS column presence")
|
| 96 |
-
|
| 97 |
# Context exclusions
|
| 98 |
if spec.get("context_exclusions"):
|
| 99 |
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
|
|
@@ -101,7 +117,7 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 101 |
if exclusion.lower() in table_text:
|
| 102 |
score -= 50
|
| 103 |
reasons.append(f"Context exclusion penalty: '{exclusion}' found")
|
| 104 |
-
|
| 105 |
# Context keywords
|
| 106 |
if spec.get("context_keywords"):
|
| 107 |
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
|
|
@@ -109,24 +125,23 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 109 |
for keyword in spec["context_keywords"]:
|
| 110 |
if keyword.lower() in table_text:
|
| 111 |
keyword_matches += 1
|
| 112 |
-
|
| 113 |
if keyword_matches > 0:
|
| 114 |
score += keyword_matches * 15
|
| 115 |
reasons.append(f"Context keyword matches: {keyword_matches}/{len(spec['context_keywords'])}")
|
| 116 |
-
|
| 117 |
# Direct first cell match
|
| 118 |
if context['first_cell'] and context['first_cell'].upper() == schema_name.upper():
|
| 119 |
score += 100
|
| 120 |
reasons.append(f"Direct first cell match: '{context['first_cell']}'")
|
| 121 |
-
|
| 122 |
# Heading pattern matching
|
| 123 |
if spec.get("headings"):
|
| 124 |
for h in spec["headings"]:
|
| 125 |
-
if fuzzy_match_heading(context['heading'], [h
|
| 126 |
score += 50
|
| 127 |
reasons.append(f"Heading match: '{context['heading']}'")
|
| 128 |
break
|
| 129 |
-
|
| 130 |
# Column header matching
|
| 131 |
if spec.get("columns"):
|
| 132 |
cols = [normalize_text(col) for col in spec["columns"]]
|
|
@@ -140,7 +155,7 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 140 |
elif matches > 0:
|
| 141 |
score += matches * 20
|
| 142 |
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
|
| 143 |
-
|
| 144 |
# Label matching for left-oriented tables
|
| 145 |
if spec.get("orientation") == "left":
|
| 146 |
labels = [normalize_text(lbl) for lbl in spec["labels"]]
|
|
@@ -151,24 +166,21 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 151 |
if matches > 0:
|
| 152 |
score += (matches / len(labels)) * 30
|
| 153 |
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
|
| 154 |
-
|
| 155 |
-
#
|
| 156 |
elif spec.get("orientation") == "row1":
|
| 157 |
labels = [normalize_text(lbl) for lbl in spec["labels"]]
|
| 158 |
matches = 0
|
| 159 |
for lbl in labels:
|
| 160 |
-
# More flexible matching for vehicle tables
|
| 161 |
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']):
|
| 162 |
matches += 1
|
| 163 |
-
# Also check for partial keyword matches
|
| 164 |
elif any(word.upper() in " ".join(context['headers']).upper() for word in lbl.split() if len(word) > 3):
|
| 165 |
-
matches += 0.5
|
| 166 |
-
|
| 167 |
if matches > 0:
|
| 168 |
-
score += (matches / len(labels)) * 40
|
| 169 |
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
|
| 170 |
-
|
| 171 |
-
# Special handling for Declaration tables
|
| 172 |
if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME":
|
| 173 |
if "OPERATOR DECLARATION" in context['heading'].upper():
|
| 174 |
score += 80
|
|
@@ -176,12 +188,12 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 176 |
elif any("MANAGER" in cell.upper() for cell in context['all_cells']):
|
| 177 |
score += 60
|
| 178 |
reasons.append("Manager found in cells (likely Operator Declaration)")
|
| 179 |
-
|
| 180 |
if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME":
|
| 181 |
if any("MANAGER" in cell.upper() for cell in context['all_cells']):
|
| 182 |
score -= 50
|
| 183 |
reasons.append("Penalty: Manager found (not auditor)")
|
| 184 |
-
|
| 185 |
return score, reasons
|
| 186 |
|
| 187 |
def match_table_schema(tbl):
|
|
@@ -198,6 +210,9 @@ def match_table_schema(tbl):
|
|
| 198 |
return best_match
|
| 199 |
return None
|
| 200 |
|
|
|
|
|
|
|
|
|
|
| 201 |
def check_multi_schema_table(tbl):
|
| 202 |
"""Check if table contains multiple schemas and split appropriately"""
|
| 203 |
context = get_table_context(tbl)
|
|
@@ -244,117 +259,107 @@ def extract_multi_schema_table(tbl, schemas):
|
|
| 244 |
result[schema_name] = schema_data
|
| 245 |
return result
|
| 246 |
|
|
|
|
|
|
|
|
|
|
| 247 |
def extract_table_data(tbl, schema_name, spec):
|
| 248 |
"""Extract red text data from table based on schema - ENHANCED for Vehicle Registration"""
|
| 249 |
-
|
| 250 |
-
#
|
| 251 |
if "Vehicle Registration" in schema_name:
|
| 252 |
print(f" π EXTRACTION FIX: Processing Vehicle Registration table")
|
| 253 |
-
|
| 254 |
labels = spec["labels"]
|
| 255 |
collected = {lbl: [] for lbl in labels}
|
| 256 |
seen = {lbl: set() for lbl in labels}
|
| 257 |
-
|
| 258 |
-
# For Vehicle Registration, orientation is "row1" - headers in first row
|
| 259 |
if len(tbl.rows) < 2:
|
| 260 |
print(f" β Vehicle table has less than 2 rows")
|
| 261 |
return {}
|
| 262 |
-
|
| 263 |
-
# Map header cells to labels
|
| 264 |
header_row = tbl.rows[0]
|
| 265 |
column_mapping = {}
|
| 266 |
-
|
| 267 |
print(f" π Mapping {len(header_row.cells)} header cells to labels")
|
| 268 |
-
|
| 269 |
for col_idx, cell in enumerate(header_row.cells):
|
| 270 |
header_text = normalize_text(cell.text).strip()
|
| 271 |
if not header_text:
|
| 272 |
continue
|
| 273 |
-
|
| 274 |
print(f" Column {col_idx}: '{header_text}'")
|
| 275 |
-
|
| 276 |
-
# Find best matching label
|
| 277 |
best_match = None
|
| 278 |
best_score = 0
|
| 279 |
-
|
| 280 |
for label in labels:
|
| 281 |
-
# Direct match
|
| 282 |
if header_text.upper() == label.upper():
|
| 283 |
best_match = label
|
| 284 |
best_score = 1.0
|
| 285 |
break
|
| 286 |
-
|
| 287 |
-
# Partial keyword matching
|
| 288 |
header_words = set(word.upper() for word in header_text.split() if len(word) > 2)
|
| 289 |
label_words = set(word.upper() for word in label.split() if len(word) > 2)
|
| 290 |
-
|
| 291 |
if header_words and label_words:
|
| 292 |
common_words = header_words.intersection(label_words)
|
| 293 |
if common_words:
|
| 294 |
score = len(common_words) / max(len(header_words), len(label_words))
|
| 295 |
-
if score > best_score and score >= 0.4:
|
| 296 |
best_score = score
|
| 297 |
best_match = label
|
| 298 |
-
|
| 299 |
if best_match:
|
| 300 |
column_mapping[col_idx] = best_match
|
| 301 |
print(f" β
Mapped to: '{best_match}' (score: {best_score:.2f})")
|
| 302 |
else:
|
| 303 |
print(f" β οΈ No mapping found for '{header_text}'")
|
| 304 |
-
|
| 305 |
print(f" π Total column mappings: {len(column_mapping)}")
|
| 306 |
-
|
| 307 |
# Extract red text from data rows (skip header)
|
| 308 |
for row_idx in range(1, len(tbl.rows)):
|
| 309 |
row = tbl.rows[row_idx]
|
| 310 |
print(f" π Processing data row {row_idx}")
|
| 311 |
-
|
| 312 |
for col_idx, cell in enumerate(row.cells):
|
| 313 |
if col_idx in column_mapping:
|
| 314 |
label = column_mapping[col_idx]
|
| 315 |
-
|
| 316 |
-
# Extract red text
|
| 317 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 318 |
-
|
| 319 |
if red_txt:
|
| 320 |
print(f" π΄ Found red text in '{label}': '{red_txt}'")
|
| 321 |
-
|
| 322 |
if red_txt not in seen[label]:
|
| 323 |
seen[label].add(red_txt)
|
| 324 |
collected[label].append(red_txt)
|
| 325 |
-
|
| 326 |
-
# Return only non-empty collections
|
| 327 |
result = {k: v for k, v in collected.items() if v}
|
| 328 |
print(f" β
Vehicle Registration extracted: {len(result)} columns with data")
|
| 329 |
return result
|
| 330 |
-
|
| 331 |
-
#
|
| 332 |
-
labels = spec
|
| 333 |
collected = {lbl: [] for lbl in labels}
|
| 334 |
seen = {lbl: set() for lbl in labels}
|
| 335 |
-
by_col = (spec
|
| 336 |
start_row = 1 if by_col else 0
|
| 337 |
rows = tbl.rows[start_row:]
|
| 338 |
-
|
| 339 |
for ri, row in enumerate(rows):
|
| 340 |
for ci, cell in enumerate(row.cells):
|
| 341 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 342 |
if not red_txt:
|
| 343 |
continue
|
| 344 |
if by_col:
|
| 345 |
-
if ci < len(spec
|
| 346 |
lbl = spec["labels"][ci]
|
| 347 |
else:
|
| 348 |
lbl = schema_name
|
| 349 |
else:
|
| 350 |
raw_label = normalize_text(row.cells[0].text)
|
| 351 |
lbl = None
|
| 352 |
-
for spec_label in spec
|
| 353 |
if normalize_text(spec_label).upper() == raw_label.upper():
|
| 354 |
lbl = spec_label
|
| 355 |
break
|
| 356 |
if not lbl:
|
| 357 |
-
for spec_label in spec
|
| 358 |
spec_norm = normalize_text(spec_label).upper()
|
| 359 |
raw_norm = raw_label.upper()
|
| 360 |
if spec_norm in raw_norm or raw_norm in spec_norm:
|
|
@@ -367,16 +372,24 @@ def extract_table_data(tbl, schema_name, spec):
|
|
| 367 |
collected[lbl].append(red_txt)
|
| 368 |
return {k: v for k, v in collected.items() if v}
|
| 369 |
|
|
|
|
|
|
|
|
|
|
| 370 |
def extract_red_text(input_doc):
|
| 371 |
-
|
|
|
|
|
|
|
|
|
|
| 372 |
if isinstance(input_doc, str):
|
| 373 |
doc = Document(input_doc)
|
| 374 |
else:
|
| 375 |
doc = input_doc
|
| 376 |
out = {}
|
| 377 |
table_count = 0
|
|
|
|
| 378 |
for tbl in doc.tables:
|
| 379 |
table_count += 1
|
|
|
|
| 380 |
multi_schemas = check_multi_schema_table(tbl)
|
| 381 |
if multi_schemas:
|
| 382 |
multi_data = extract_multi_schema_table(tbl, multi_schemas)
|
|
@@ -391,8 +404,10 @@ def extract_red_text(input_doc):
|
|
| 391 |
else:
|
| 392 |
out[schema_name] = schema_data
|
| 393 |
continue
|
|
|
|
| 394 |
schema = match_table_schema(tbl)
|
| 395 |
if not schema:
|
|
|
|
| 396 |
continue
|
| 397 |
spec = TABLE_SCHEMAS[schema]
|
| 398 |
data = extract_table_data(tbl, schema, spec)
|
|
@@ -405,11 +420,15 @@ def extract_red_text(input_doc):
|
|
| 405 |
out[schema][k] = v
|
| 406 |
else:
|
| 407 |
out[schema] = data
|
|
|
|
|
|
|
| 408 |
paras = {}
|
| 409 |
for idx, para in enumerate(doc.paragraphs):
|
| 410 |
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
|
| 411 |
if not red_txt:
|
| 412 |
continue
|
|
|
|
|
|
|
| 413 |
context = None
|
| 414 |
for j in range(idx-1, -1, -1):
|
| 415 |
txt = normalize_text(doc.paragraphs[j].text)
|
|
@@ -418,15 +437,22 @@ def extract_red_text(input_doc):
|
|
| 418 |
if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
|
| 419 |
context = txt
|
| 420 |
break
|
|
|
|
|
|
|
| 421 |
if not context and re.fullmatch(PARAGRAPH_PATTERNS["date_line"], red_txt):
|
| 422 |
context = "Date"
|
|
|
|
| 423 |
if not context:
|
| 424 |
context = "(para)"
|
| 425 |
paras.setdefault(context, []).append(red_txt)
|
|
|
|
| 426 |
if paras:
|
| 427 |
out["paragraphs"] = paras
|
| 428 |
return out
|
| 429 |
|
|
|
|
|
|
|
|
|
|
| 430 |
def extract_red_text_filelike(input_file, output_file):
|
| 431 |
"""
|
| 432 |
Accepts:
|
|
@@ -445,8 +471,10 @@ def extract_red_text_filelike(input_file, output_file):
|
|
| 445 |
json.dump(result, f, indent=2, ensure_ascii=False)
|
| 446 |
return result
|
| 447 |
|
|
|
|
|
|
|
|
|
|
| 448 |
if __name__ == "__main__":
|
| 449 |
-
# Support both script and app/file-like usage
|
| 450 |
if len(sys.argv) == 3:
|
| 451 |
input_docx = sys.argv[1]
|
| 452 |
output_json = sys.argv[2]
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
extract_red_text.py
|
| 4 |
+
Improved version that reuses hf_utils for shared heuristics while preserving
|
| 5 |
+
the original schema logic, logging and behavior.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
import re
|
| 9 |
import json
|
| 10 |
import sys
|
| 11 |
from docx import Document
|
| 12 |
from docx.oxml.ns import qn
|
| 13 |
+
|
| 14 |
+
# master schema & patterns (unchanged)
|
| 15 |
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
|
| 16 |
|
| 17 |
+
# canonical helpers (from your new hf_utils.py)
|
| 18 |
+
from hf_utils import (
|
| 19 |
+
is_red_font,
|
| 20 |
+
normalize_text,
|
| 21 |
+
normalize_header_text,
|
| 22 |
+
flatten_json,
|
| 23 |
+
find_matching_json_key_and_value,
|
| 24 |
+
get_clean_text,
|
| 25 |
+
has_red_text,
|
| 26 |
+
extract_red_text_segments,
|
| 27 |
+
replace_red_text_in_cell,
|
| 28 |
+
key_is_forbidden_for_position,
|
| 29 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# -------------------------------------------------------------------
|
| 32 |
+
# Small XML helper (kept exactly as before β low-level)
|
| 33 |
+
# -------------------------------------------------------------------
|
| 34 |
def _prev_para_text(tbl):
|
| 35 |
"""Get text from previous paragraph before table"""
|
| 36 |
prev = tbl._tbl.getprevious()
|
|
|
|
| 40 |
return ""
|
| 41 |
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
|
| 42 |
|
| 43 |
+
# -------------------------------------------------------------------
|
| 44 |
+
# Table context helpers (use normalize_text from hf_utils)
|
| 45 |
+
# -------------------------------------------------------------------
|
|
|
|
| 46 |
def fuzzy_match_heading(heading, patterns):
|
| 47 |
"""Check if heading matches any pattern with fuzzy matching"""
|
| 48 |
+
if not heading:
|
| 49 |
+
return False
|
| 50 |
+
heading_norm = normalize_text(heading).upper()
|
| 51 |
for pattern in patterns:
|
| 52 |
+
try:
|
| 53 |
+
if re.search(pattern, heading_norm, re.IGNORECASE):
|
| 54 |
+
return True
|
| 55 |
+
except re.error:
|
| 56 |
+
# fallback simple substring if pattern isn't a valid re
|
| 57 |
+
if pattern.upper() in heading_norm:
|
| 58 |
+
return True
|
| 59 |
return False
|
| 60 |
|
| 61 |
def get_table_context(tbl):
|
| 62 |
"""Get comprehensive context information for table"""
|
| 63 |
heading = normalize_text(_prev_para_text(tbl))
|
| 64 |
+
# first row headers
|
| 65 |
+
headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()] if tbl.rows else []
|
| 66 |
+
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells and r.cells[0].text.strip()]
|
| 67 |
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
|
| 68 |
all_cells = []
|
| 69 |
for row in tbl.rows:
|
|
|
|
| 81 |
'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
|
| 82 |
}
|
| 83 |
|
| 84 |
+
# -------------------------------------------------------------------
|
| 85 |
+
# Scoring / matching logic (kept your behavior but using normalize_text)
|
| 86 |
+
# -------------------------------------------------------------------
|
| 87 |
def calculate_schema_match_score(schema_name, spec, context):
|
| 88 |
"""Enhanced calculate match score - IMPROVED for Vehicle Registration tables"""
|
| 89 |
score = 0
|
| 90 |
reasons = []
|
| 91 |
+
|
| 92 |
+
# VEHICLE REGISTRATION BOOST
|
| 93 |
if "Vehicle Registration" in schema_name:
|
| 94 |
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"]
|
| 95 |
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
|
|
|
|
| 96 |
keyword_matches = sum(1 for keyword in vehicle_keywords if keyword in table_text)
|
| 97 |
if keyword_matches >= 2:
|
| 98 |
+
score += 150
|
| 99 |
reasons.append(f"Vehicle Registration keywords: {keyword_matches}/5")
|
| 100 |
elif keyword_matches >= 1:
|
| 101 |
+
score += 75
|
| 102 |
reasons.append(f"Some Vehicle Registration keywords: {keyword_matches}/5")
|
| 103 |
+
|
| 104 |
+
# SUMMARY TABLE BOOST (existing logic)
|
| 105 |
if "Summary" in schema_name and "details" in " ".join(context['headers']).lower():
|
| 106 |
score += 100
|
| 107 |
reasons.append(f"Summary schema with DETAILS column - perfect match")
|
| 108 |
+
|
| 109 |
if "Summary" not in schema_name and "details" in " ".join(context['headers']).lower():
|
| 110 |
score -= 75
|
| 111 |
reasons.append(f"Non-summary schema penalized for DETAILS column presence")
|
| 112 |
+
|
| 113 |
# Context exclusions
|
| 114 |
if spec.get("context_exclusions"):
|
| 115 |
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
|
|
|
|
| 117 |
if exclusion.lower() in table_text:
|
| 118 |
score -= 50
|
| 119 |
reasons.append(f"Context exclusion penalty: '{exclusion}' found")
|
| 120 |
+
|
| 121 |
# Context keywords
|
| 122 |
if spec.get("context_keywords"):
|
| 123 |
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
|
|
|
|
| 125 |
for keyword in spec["context_keywords"]:
|
| 126 |
if keyword.lower() in table_text:
|
| 127 |
keyword_matches += 1
|
|
|
|
| 128 |
if keyword_matches > 0:
|
| 129 |
score += keyword_matches * 15
|
| 130 |
reasons.append(f"Context keyword matches: {keyword_matches}/{len(spec['context_keywords'])}")
|
| 131 |
+
|
| 132 |
# Direct first cell match
|
| 133 |
if context['first_cell'] and context['first_cell'].upper() == schema_name.upper():
|
| 134 |
score += 100
|
| 135 |
reasons.append(f"Direct first cell match: '{context['first_cell']}'")
|
| 136 |
+
|
| 137 |
# Heading pattern matching
|
| 138 |
if spec.get("headings"):
|
| 139 |
for h in spec["headings"]:
|
| 140 |
+
if fuzzy_match_heading(context['heading'], [h.get("text", "")]):
|
| 141 |
score += 50
|
| 142 |
reasons.append(f"Heading match: '{context['heading']}'")
|
| 143 |
break
|
| 144 |
+
|
| 145 |
# Column header matching
|
| 146 |
if spec.get("columns"):
|
| 147 |
cols = [normalize_text(col) for col in spec["columns"]]
|
|
|
|
| 155 |
elif matches > 0:
|
| 156 |
score += matches * 20
|
| 157 |
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
|
| 158 |
+
|
| 159 |
# Label matching for left-oriented tables
|
| 160 |
if spec.get("orientation") == "left":
|
| 161 |
labels = [normalize_text(lbl) for lbl in spec["labels"]]
|
|
|
|
| 166 |
if matches > 0:
|
| 167 |
score += (matches / len(labels)) * 30
|
| 168 |
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
|
| 169 |
+
|
| 170 |
+
# Enhanced Label matching for row1-oriented tables (Vehicle Registration)
|
| 171 |
elif spec.get("orientation") == "row1":
|
| 172 |
labels = [normalize_text(lbl) for lbl in spec["labels"]]
|
| 173 |
matches = 0
|
| 174 |
for lbl in labels:
|
|
|
|
| 175 |
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']):
|
| 176 |
matches += 1
|
|
|
|
| 177 |
elif any(word.upper() in " ".join(context['headers']).upper() for word in lbl.split() if len(word) > 3):
|
| 178 |
+
matches += 0.5
|
|
|
|
| 179 |
if matches > 0:
|
| 180 |
+
score += (matches / len(labels)) * 40
|
| 181 |
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
|
| 182 |
+
|
| 183 |
+
# Special handling for Declaration tables
|
| 184 |
if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME":
|
| 185 |
if "OPERATOR DECLARATION" in context['heading'].upper():
|
| 186 |
score += 80
|
|
|
|
| 188 |
elif any("MANAGER" in cell.upper() for cell in context['all_cells']):
|
| 189 |
score += 60
|
| 190 |
reasons.append("Manager found in cells (likely Operator Declaration)")
|
| 191 |
+
|
| 192 |
if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME":
|
| 193 |
if any("MANAGER" in cell.upper() for cell in context['all_cells']):
|
| 194 |
score -= 50
|
| 195 |
reasons.append("Penalty: Manager found (not auditor)")
|
| 196 |
+
|
| 197 |
return score, reasons
|
| 198 |
|
| 199 |
def match_table_schema(tbl):
|
|
|
|
| 210 |
return best_match
|
| 211 |
return None
|
| 212 |
|
| 213 |
+
# -------------------------------------------------------------------
|
| 214 |
+
# Multi-schema detection & extraction (kept behavior)
|
| 215 |
+
# -------------------------------------------------------------------
|
| 216 |
def check_multi_schema_table(tbl):
|
| 217 |
"""Check if table contains multiple schemas and split appropriately"""
|
| 218 |
context = get_table_context(tbl)
|
|
|
|
| 259 |
result[schema_name] = schema_data
|
| 260 |
return result
|
| 261 |
|
| 262 |
+
# -------------------------------------------------------------------
|
| 263 |
+
# Table extraction for schemas (kept your specialized vehicle handling)
|
| 264 |
+
# -------------------------------------------------------------------
|
| 265 |
def extract_table_data(tbl, schema_name, spec):
|
| 266 |
"""Extract red text data from table based on schema - ENHANCED for Vehicle Registration"""
|
| 267 |
+
|
| 268 |
+
# Special handling for vehicle registration tables
|
| 269 |
if "Vehicle Registration" in schema_name:
|
| 270 |
print(f" π EXTRACTION FIX: Processing Vehicle Registration table")
|
|
|
|
| 271 |
labels = spec["labels"]
|
| 272 |
collected = {lbl: [] for lbl in labels}
|
| 273 |
seen = {lbl: set() for lbl in labels}
|
| 274 |
+
|
|
|
|
| 275 |
if len(tbl.rows) < 2:
|
| 276 |
print(f" β Vehicle table has less than 2 rows")
|
| 277 |
return {}
|
| 278 |
+
|
|
|
|
| 279 |
header_row = tbl.rows[0]
|
| 280 |
column_mapping = {}
|
| 281 |
+
|
| 282 |
print(f" π Mapping {len(header_row.cells)} header cells to labels")
|
| 283 |
+
|
| 284 |
for col_idx, cell in enumerate(header_row.cells):
|
| 285 |
header_text = normalize_text(cell.text).strip()
|
| 286 |
if not header_text:
|
| 287 |
continue
|
| 288 |
+
|
| 289 |
print(f" Column {col_idx}: '{header_text}'")
|
| 290 |
+
|
|
|
|
| 291 |
best_match = None
|
| 292 |
best_score = 0
|
| 293 |
+
|
| 294 |
for label in labels:
|
|
|
|
| 295 |
if header_text.upper() == label.upper():
|
| 296 |
best_match = label
|
| 297 |
best_score = 1.0
|
| 298 |
break
|
| 299 |
+
|
|
|
|
| 300 |
header_words = set(word.upper() for word in header_text.split() if len(word) > 2)
|
| 301 |
label_words = set(word.upper() for word in label.split() if len(word) > 2)
|
| 302 |
+
|
| 303 |
if header_words and label_words:
|
| 304 |
common_words = header_words.intersection(label_words)
|
| 305 |
if common_words:
|
| 306 |
score = len(common_words) / max(len(header_words), len(label_words))
|
| 307 |
+
if score > best_score and score >= 0.4:
|
| 308 |
best_score = score
|
| 309 |
best_match = label
|
| 310 |
+
|
| 311 |
if best_match:
|
| 312 |
column_mapping[col_idx] = best_match
|
| 313 |
print(f" β
Mapped to: '{best_match}' (score: {best_score:.2f})")
|
| 314 |
else:
|
| 315 |
print(f" β οΈ No mapping found for '{header_text}'")
|
| 316 |
+
|
| 317 |
print(f" π Total column mappings: {len(column_mapping)}")
|
| 318 |
+
|
| 319 |
# Extract red text from data rows (skip header)
|
| 320 |
for row_idx in range(1, len(tbl.rows)):
|
| 321 |
row = tbl.rows[row_idx]
|
| 322 |
print(f" π Processing data row {row_idx}")
|
|
|
|
| 323 |
for col_idx, cell in enumerate(row.cells):
|
| 324 |
if col_idx in column_mapping:
|
| 325 |
label = column_mapping[col_idx]
|
|
|
|
|
|
|
| 326 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
|
|
|
| 327 |
if red_txt:
|
| 328 |
print(f" π΄ Found red text in '{label}': '{red_txt}'")
|
|
|
|
| 329 |
if red_txt not in seen[label]:
|
| 330 |
seen[label].add(red_txt)
|
| 331 |
collected[label].append(red_txt)
|
|
|
|
|
|
|
| 332 |
result = {k: v for k, v in collected.items() if v}
|
| 333 |
print(f" β
Vehicle Registration extracted: {len(result)} columns with data")
|
| 334 |
return result
|
| 335 |
+
|
| 336 |
+
# FALLBACK: original extraction logic for other tables
|
| 337 |
+
labels = spec.get("labels", []) + [schema_name]
|
| 338 |
collected = {lbl: [] for lbl in labels}
|
| 339 |
seen = {lbl: set() for lbl in labels}
|
| 340 |
+
by_col = (spec.get("orientation") == "row1")
|
| 341 |
start_row = 1 if by_col else 0
|
| 342 |
rows = tbl.rows[start_row:]
|
| 343 |
+
|
| 344 |
for ri, row in enumerate(rows):
|
| 345 |
for ci, cell in enumerate(row.cells):
|
| 346 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 347 |
if not red_txt:
|
| 348 |
continue
|
| 349 |
if by_col:
|
| 350 |
+
if ci < len(spec.get("labels", [])):
|
| 351 |
lbl = spec["labels"][ci]
|
| 352 |
else:
|
| 353 |
lbl = schema_name
|
| 354 |
else:
|
| 355 |
raw_label = normalize_text(row.cells[0].text)
|
| 356 |
lbl = None
|
| 357 |
+
for spec_label in spec.get("labels", []):
|
| 358 |
if normalize_text(spec_label).upper() == raw_label.upper():
|
| 359 |
lbl = spec_label
|
| 360 |
break
|
| 361 |
if not lbl:
|
| 362 |
+
for spec_label in spec.get("labels", []):
|
| 363 |
spec_norm = normalize_text(spec_label).upper()
|
| 364 |
raw_norm = raw_label.upper()
|
| 365 |
if spec_norm in raw_norm or raw_norm in spec_norm:
|
|
|
|
| 372 |
collected[lbl].append(red_txt)
|
| 373 |
return {k: v for k, v in collected.items() if v}
|
| 374 |
|
| 375 |
+
# -------------------------------------------------------------------
|
| 376 |
+
# Main extraction: iterate tables & paragraphs
|
| 377 |
+
# -------------------------------------------------------------------
|
| 378 |
def extract_red_text(input_doc):
|
| 379 |
+
"""
|
| 380 |
+
input_doc: docx.Document object or file path
|
| 381 |
+
returns: dict
|
| 382 |
+
"""
|
| 383 |
if isinstance(input_doc, str):
|
| 384 |
doc = Document(input_doc)
|
| 385 |
else:
|
| 386 |
doc = input_doc
|
| 387 |
out = {}
|
| 388 |
table_count = 0
|
| 389 |
+
|
| 390 |
for tbl in doc.tables:
|
| 391 |
table_count += 1
|
| 392 |
+
# Check multi-schema table first
|
| 393 |
multi_schemas = check_multi_schema_table(tbl)
|
| 394 |
if multi_schemas:
|
| 395 |
multi_data = extract_multi_schema_table(tbl, multi_schemas)
|
|
|
|
| 404 |
else:
|
| 405 |
out[schema_name] = schema_data
|
| 406 |
continue
|
| 407 |
+
|
| 408 |
schema = match_table_schema(tbl)
|
| 409 |
if not schema:
|
| 410 |
+
# keep scanning for tables even if no schema matched
|
| 411 |
continue
|
| 412 |
spec = TABLE_SCHEMAS[schema]
|
| 413 |
data = extract_table_data(tbl, schema, spec)
|
|
|
|
| 420 |
out[schema][k] = v
|
| 421 |
else:
|
| 422 |
out[schema] = data
|
| 423 |
+
|
| 424 |
+
# paragraphs
|
| 425 |
paras = {}
|
| 426 |
for idx, para in enumerate(doc.paragraphs):
|
| 427 |
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
|
| 428 |
if not red_txt:
|
| 429 |
continue
|
| 430 |
+
|
| 431 |
+
# find context heading by scanning backward
|
| 432 |
context = None
|
| 433 |
for j in range(idx-1, -1, -1):
|
| 434 |
txt = normalize_text(doc.paragraphs[j].text)
|
|
|
|
| 437 |
if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
|
| 438 |
context = txt
|
| 439 |
break
|
| 440 |
+
|
| 441 |
+
# if it's date-like and matches date pattern, set context to Date
|
| 442 |
if not context and re.fullmatch(PARAGRAPH_PATTERNS["date_line"], red_txt):
|
| 443 |
context = "Date"
|
| 444 |
+
|
| 445 |
if not context:
|
| 446 |
context = "(para)"
|
| 447 |
paras.setdefault(context, []).append(red_txt)
|
| 448 |
+
|
| 449 |
if paras:
|
| 450 |
out["paragraphs"] = paras
|
| 451 |
return out
|
| 452 |
|
| 453 |
+
# -------------------------------------------------------------------
|
| 454 |
+
# File-like wrapper (keeps API used elsewhere)
|
| 455 |
+
# -------------------------------------------------------------------
|
| 456 |
def extract_red_text_filelike(input_file, output_file):
|
| 457 |
"""
|
| 458 |
Accepts:
|
|
|
|
| 471 |
json.dump(result, f, indent=2, ensure_ascii=False)
|
| 472 |
return result
|
| 473 |
|
| 474 |
+
# -------------------------------------------------------------------
|
| 475 |
+
# CLI entrypoint (preserve original UX)
|
| 476 |
+
# -------------------------------------------------------------------
|
| 477 |
if __name__ == "__main__":
|
|
|
|
| 478 |
if len(sys.argv) == 3:
|
| 479 |
input_docx = sys.argv[1]
|
| 480 |
output_json = sys.argv[2]
|