Spaces:
Running
Running
Update updated_word.py
Browse files- updated_word.py +400 -343
updated_word.py
CHANGED
|
@@ -3,7 +3,7 @@ from docx import Document
|
|
| 3 |
from docx.shared import RGBColor
|
| 4 |
import re
|
| 5 |
|
| 6 |
-
#
|
| 7 |
HEADING_PATTERNS = {
|
| 8 |
"main": [
|
| 9 |
r"NHVAS\s+Audit\s+Summary\s+Report",
|
|
@@ -22,168 +22,11 @@ HEADING_PATTERNS = {
|
|
| 22 |
r"CORRECTIVE\s+ACTION\s+REQUEST\s+\(CAR\)",
|
| 23 |
r"NHVAS\s+APPROVED\s+AUDITOR\s+DECLARATION",
|
| 24 |
r"Operator\s+Declaration",
|
| 25 |
-
r"Operator\s+Information"
|
|
|
|
| 26 |
]
|
| 27 |
}
|
| 28 |
|
| 29 |
-
def process_headings(document, flat_json):
|
| 30 |
-
"""Process document headings and their associated content for red text replacement"""
|
| 31 |
-
replacements_made = 0
|
| 32 |
-
print(f"\nπ Processing headings:")
|
| 33 |
-
|
| 34 |
-
paragraphs = document.paragraphs
|
| 35 |
-
|
| 36 |
-
for para_idx, paragraph in enumerate(paragraphs):
|
| 37 |
-
paragraph_text = paragraph.text.strip()
|
| 38 |
-
|
| 39 |
-
if not paragraph_text:
|
| 40 |
-
continue
|
| 41 |
-
|
| 42 |
-
# Check if this paragraph matches any heading pattern
|
| 43 |
-
matched_heading = None
|
| 44 |
-
for category, patterns in HEADING_PATTERNS.items():
|
| 45 |
-
for pattern in patterns:
|
| 46 |
-
if re.search(pattern, paragraph_text, re.IGNORECASE):
|
| 47 |
-
matched_heading = pattern
|
| 48 |
-
break
|
| 49 |
-
if matched_heading:
|
| 50 |
-
break
|
| 51 |
-
|
| 52 |
-
if matched_heading:
|
| 53 |
-
print(f" π Found heading at paragraph {para_idx + 1}: '{paragraph_text}'")
|
| 54 |
-
|
| 55 |
-
# Look for red text in the current heading paragraph first
|
| 56 |
-
if has_red_text_in_paragraph(paragraph):
|
| 57 |
-
print(f" π΄ Found red text in heading itself")
|
| 58 |
-
heading_replacements = process_red_text_in_paragraph(paragraph, paragraph_text, flat_json)
|
| 59 |
-
replacements_made += heading_replacements
|
| 60 |
-
|
| 61 |
-
# Look for red text in the next few paragraphs after the heading
|
| 62 |
-
for next_para_offset in range(1, 4): # Check next 3 paragraphs
|
| 63 |
-
next_para_idx = para_idx + next_para_offset
|
| 64 |
-
if next_para_idx >= len(paragraphs):
|
| 65 |
-
break
|
| 66 |
-
|
| 67 |
-
next_paragraph = paragraphs[next_para_idx]
|
| 68 |
-
next_text = next_paragraph.text.strip()
|
| 69 |
-
|
| 70 |
-
# Skip empty paragraphs
|
| 71 |
-
if not next_text:
|
| 72 |
-
continue
|
| 73 |
-
|
| 74 |
-
# If we hit another heading, stop looking
|
| 75 |
-
is_another_heading = False
|
| 76 |
-
for category, patterns in HEADING_PATTERNS.items():
|
| 77 |
-
for pattern in patterns:
|
| 78 |
-
if re.search(pattern, next_text, re.IGNORECASE):
|
| 79 |
-
is_another_heading = True
|
| 80 |
-
break
|
| 81 |
-
if is_another_heading:
|
| 82 |
-
break
|
| 83 |
-
|
| 84 |
-
if is_another_heading:
|
| 85 |
-
break
|
| 86 |
-
|
| 87 |
-
# Check for red text in this paragraph
|
| 88 |
-
if has_red_text_in_paragraph(next_paragraph):
|
| 89 |
-
print(f" π΄ Found red text in paragraph {next_para_idx + 1} after heading: '{next_text[:50]}...'")
|
| 90 |
-
|
| 91 |
-
# Use heading context to improve matching
|
| 92 |
-
context_replacements = process_red_text_in_paragraph(
|
| 93 |
-
next_paragraph,
|
| 94 |
-
paragraph_text, # Use heading text as context
|
| 95 |
-
flat_json
|
| 96 |
-
)
|
| 97 |
-
replacements_made += context_replacements
|
| 98 |
-
|
| 99 |
-
return replacements_made
|
| 100 |
-
|
| 101 |
-
def has_red_text_in_paragraph(paragraph):
|
| 102 |
-
"""Check if a paragraph contains any red text"""
|
| 103 |
-
for run in paragraph.runs:
|
| 104 |
-
if is_red(run) and run.text.strip():
|
| 105 |
-
return True
|
| 106 |
-
return False
|
| 107 |
-
|
| 108 |
-
def process_red_text_in_paragraph(paragraph, context_text, flat_json):
|
| 109 |
-
"""Process red text within a single paragraph using context"""
|
| 110 |
-
replacements_made = 0
|
| 111 |
-
|
| 112 |
-
# Extract all red text from the paragraph
|
| 113 |
-
red_text_segments = []
|
| 114 |
-
for run in paragraph.runs:
|
| 115 |
-
if is_red(run) and run.text.strip():
|
| 116 |
-
red_text_segments.append(run.text.strip())
|
| 117 |
-
|
| 118 |
-
if not red_text_segments:
|
| 119 |
-
return 0
|
| 120 |
-
|
| 121 |
-
# Combine red text segments
|
| 122 |
-
combined_red_text = " ".join(red_text_segments).strip()
|
| 123 |
-
print(f" π Red text found: '{combined_red_text}'")
|
| 124 |
-
|
| 125 |
-
# Try different matching strategies based on context
|
| 126 |
-
json_value = None
|
| 127 |
-
|
| 128 |
-
# Strategy 1: Direct red text matching
|
| 129 |
-
json_value = find_matching_json_value(combined_red_text, flat_json)
|
| 130 |
-
|
| 131 |
-
# Strategy 2: Context-based matching for specific headings
|
| 132 |
-
if json_value is None:
|
| 133 |
-
if "NHVAS APPROVED AUDITOR" in context_text.upper():
|
| 134 |
-
# Try auditor-specific fields
|
| 135 |
-
auditor_fields = ["auditor name", "auditor", "nhvas auditor", "approved auditor"]
|
| 136 |
-
for field in auditor_fields:
|
| 137 |
-
json_value = find_matching_json_value(field, flat_json)
|
| 138 |
-
if json_value is not None:
|
| 139 |
-
print(f" β
Found auditor match with field: '{field}'")
|
| 140 |
-
break
|
| 141 |
-
|
| 142 |
-
elif "OPERATOR DECLARATION" in context_text.upper():
|
| 143 |
-
# Try operator-specific fields
|
| 144 |
-
operator_fields = ["operator name", "operator", "company name", "organisation name"]
|
| 145 |
-
for field in operator_fields:
|
| 146 |
-
json_value = find_matching_json_value(field, flat_json)
|
| 147 |
-
if json_value is not None:
|
| 148 |
-
print(f" β
Found operator match with field: '{field}'")
|
| 149 |
-
break
|
| 150 |
-
|
| 151 |
-
# Strategy 3: Try combining context with red text
|
| 152 |
-
if json_value is None:
|
| 153 |
-
context_queries = [
|
| 154 |
-
f"{context_text} {combined_red_text}",
|
| 155 |
-
combined_red_text,
|
| 156 |
-
context_text
|
| 157 |
-
]
|
| 158 |
-
|
| 159 |
-
for query in context_queries:
|
| 160 |
-
json_value = find_matching_json_value(query, flat_json)
|
| 161 |
-
if json_value is not None:
|
| 162 |
-
print(f" β
Found match with combined query: '{query[:50]}...'")
|
| 163 |
-
break
|
| 164 |
-
|
| 165 |
-
# Replace the red text if we found a match
|
| 166 |
-
if json_value is not None:
|
| 167 |
-
replacement_text = get_value_as_string(json_value, combined_red_text)
|
| 168 |
-
|
| 169 |
-
# Find and replace all red runs in the paragraph
|
| 170 |
-
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
|
| 171 |
-
if red_runs:
|
| 172 |
-
# Replace first red run with the replacement text
|
| 173 |
-
red_runs[0].text = replacement_text
|
| 174 |
-
red_runs[0].font.color.rgb = RGBColor(0, 0, 0) # Change to black
|
| 175 |
-
|
| 176 |
-
# Clear remaining red runs
|
| 177 |
-
for run in red_runs[1:]:
|
| 178 |
-
run.text = ''
|
| 179 |
-
|
| 180 |
-
replacements_made = 1
|
| 181 |
-
print(f" β
Replaced with: '{replacement_text}'")
|
| 182 |
-
else:
|
| 183 |
-
print(f" β No match found for red text: '{combined_red_text}'")
|
| 184 |
-
|
| 185 |
-
return replacements_made
|
| 186 |
-
|
| 187 |
def load_json(filepath):
|
| 188 |
with open(filepath, 'r') as file:
|
| 189 |
return json.load(file)
|
|
@@ -218,7 +61,7 @@ def get_value_as_string(value, field_name=""):
|
|
| 218 |
return str(value)
|
| 219 |
|
| 220 |
def find_matching_json_value(field_name, flat_json):
|
| 221 |
-
"""
|
| 222 |
field_name = field_name.strip()
|
| 223 |
|
| 224 |
# Try exact match first
|
|
@@ -240,7 +83,7 @@ def find_matching_json_value(field_name, flat_json):
|
|
| 240 |
|
| 241 |
# Try partial matching - remove parentheses and special chars
|
| 242 |
clean_field = re.sub(r'[^\w\s]', ' ', field_name.lower()).strip()
|
| 243 |
-
clean_field = re.sub(r'\s+', ' ', clean_field)
|
| 244 |
|
| 245 |
for key, value in flat_json.items():
|
| 246 |
clean_key = re.sub(r'[^\w\s]', ' ', key.lower()).strip()
|
|
@@ -250,7 +93,7 @@ def find_matching_json_value(field_name, flat_json):
|
|
| 250 |
print(f" β
Clean match found for key '{field_name}' with JSON key '{key}'")
|
| 251 |
return value
|
| 252 |
|
| 253 |
-
#
|
| 254 |
field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
|
| 255 |
if not field_words:
|
| 256 |
return None
|
|
@@ -279,7 +122,7 @@ def find_matching_json_value(field_name, flat_json):
|
|
| 279 |
best_match = value
|
| 280 |
best_key = key
|
| 281 |
|
| 282 |
-
if best_match and best_score >= 0.
|
| 283 |
print(f" β
Fuzzy match found for key '{field_name}' with JSON key '{best_key}' (score: {best_score:.2f})")
|
| 284 |
return best_match
|
| 285 |
|
|
@@ -301,7 +144,7 @@ def has_red_text(cell):
|
|
| 301 |
return False
|
| 302 |
|
| 303 |
def extract_red_text_segments(cell):
|
| 304 |
-
"""
|
| 305 |
red_segments = []
|
| 306 |
|
| 307 |
for para_idx, paragraph in enumerate(cell.paragraphs):
|
|
@@ -310,12 +153,12 @@ def extract_red_text_segments(cell):
|
|
| 310 |
|
| 311 |
for run_idx, run in enumerate(paragraph.runs):
|
| 312 |
if is_red(run):
|
| 313 |
-
if run.text:
|
| 314 |
current_segment += run.text
|
| 315 |
segment_runs.append((para_idx, run_idx, run))
|
| 316 |
else:
|
| 317 |
# End of current red segment
|
| 318 |
-
if segment_runs:
|
| 319 |
red_segments.append({
|
| 320 |
'text': current_segment,
|
| 321 |
'runs': segment_runs.copy(),
|
|
@@ -325,7 +168,7 @@ def extract_red_text_segments(cell):
|
|
| 325 |
segment_runs = []
|
| 326 |
|
| 327 |
# Handle segment at end of paragraph
|
| 328 |
-
if segment_runs:
|
| 329 |
red_segments.append({
|
| 330 |
'text': current_segment,
|
| 331 |
'runs': segment_runs.copy(),
|
|
@@ -335,35 +178,29 @@ def extract_red_text_segments(cell):
|
|
| 335 |
return red_segments
|
| 336 |
|
| 337 |
def replace_red_text_in_cell(cell, replacement_text):
|
| 338 |
-
"""Enhanced cell replacement with
|
| 339 |
red_segments = extract_red_text_segments(cell)
|
| 340 |
|
| 341 |
if not red_segments:
|
| 342 |
return 0
|
| 343 |
|
| 344 |
-
# If we have multiple segments, try to match each individually first
|
| 345 |
if len(red_segments) > 1:
|
| 346 |
replacements_made = 0
|
| 347 |
for segment in red_segments:
|
| 348 |
segment_text = segment['text'].strip()
|
| 349 |
if segment_text:
|
| 350 |
-
# Try to find specific match for this segment
|
| 351 |
-
# This would require access to flat_json, so we'll handle it in the calling function
|
| 352 |
pass
|
| 353 |
|
| 354 |
-
# If no individual matches, replace all with the single replacement
|
| 355 |
if replacements_made == 0:
|
| 356 |
return replace_all_red_segments(red_segments, replacement_text)
|
| 357 |
|
| 358 |
-
# Single segment or fallback - replace all red text with the replacement
|
| 359 |
return replace_all_red_segments(red_segments, replacement_text)
|
| 360 |
|
| 361 |
def replace_all_red_segments(red_segments, replacement_text):
|
| 362 |
-
"""
|
| 363 |
if not red_segments:
|
| 364 |
return 0
|
| 365 |
|
| 366 |
-
# Handle multi-line replacement text
|
| 367 |
if '\n' in replacement_text:
|
| 368 |
replacement_lines = replacement_text.split('\n')
|
| 369 |
else:
|
|
@@ -371,54 +208,91 @@ def replace_all_red_segments(red_segments, replacement_text):
|
|
| 371 |
|
| 372 |
replacements_made = 0
|
| 373 |
|
| 374 |
-
# Replace first segment with first line
|
| 375 |
if red_segments and replacement_lines:
|
| 376 |
first_segment = red_segments[0]
|
| 377 |
if first_segment['runs']:
|
| 378 |
-
first_run = first_segment['runs'][0][2]
|
| 379 |
first_run.text = replacement_lines[0]
|
| 380 |
first_run.font.color.rgb = RGBColor(0, 0, 0)
|
| 381 |
replacements_made = 1
|
| 382 |
|
| 383 |
-
# Clear other runs in first segment
|
| 384 |
for _, _, run in first_segment['runs'][1:]:
|
| 385 |
run.text = ''
|
| 386 |
|
| 387 |
-
# Clear all other red segments
|
| 388 |
for segment in red_segments[1:]:
|
| 389 |
for _, _, run in segment['runs']:
|
| 390 |
run.text = ''
|
| 391 |
|
| 392 |
-
# If we have multiple lines, add them to the same paragraph or create new runs
|
| 393 |
if len(replacement_lines) > 1 and red_segments:
|
| 394 |
try:
|
| 395 |
-
# Get the paragraph that contains the first run
|
| 396 |
first_run = red_segments[0]['runs'][0][2]
|
| 397 |
-
paragraph = first_run.element.getparent()
|
| 398 |
|
| 399 |
-
# Add remaining lines as new runs in the same paragraph with line breaks
|
| 400 |
for line in replacement_lines[1:]:
|
| 401 |
-
if line.strip():
|
| 402 |
-
# Add a line break run
|
| 403 |
from docx.oxml import OxmlElement, ns
|
| 404 |
br = OxmlElement('w:br')
|
| 405 |
first_run.element.append(br)
|
| 406 |
|
| 407 |
-
# Add the text as a new run
|
| 408 |
new_run = paragraph.add_run(line.strip())
|
| 409 |
new_run.font.color.rgb = RGBColor(0, 0, 0)
|
| 410 |
except:
|
| 411 |
-
# If we can't add line breaks, just put everything in the first run
|
| 412 |
if red_segments and red_segments[0]['runs']:
|
| 413 |
first_run = red_segments[0]['runs'][0][2]
|
| 414 |
-
# Join all lines with spaces instead of line breaks
|
| 415 |
first_run.text = ' '.join(replacement_lines)
|
| 416 |
first_run.font.color.rgb = RGBColor(0, 0, 0)
|
| 417 |
|
| 418 |
return replacements_made
|
| 419 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
def handle_multiple_red_segments_in_cell(cell, flat_json):
|
| 421 |
-
"""
|
| 422 |
red_segments = extract_red_text_segments(cell)
|
| 423 |
|
| 424 |
if not red_segments:
|
|
@@ -428,7 +302,6 @@ def handle_multiple_red_segments_in_cell(cell, flat_json):
|
|
| 428 |
replacements_made = 0
|
| 429 |
unmatched_segments = []
|
| 430 |
|
| 431 |
-
# Try to match each segment individually
|
| 432 |
for i, segment in enumerate(red_segments):
|
| 433 |
segment_text = segment['text'].strip()
|
| 434 |
if not segment_text:
|
|
@@ -436,13 +309,11 @@ def handle_multiple_red_segments_in_cell(cell, flat_json):
|
|
| 436 |
|
| 437 |
print(f" Segment {i+1}: '{segment_text[:50]}...'")
|
| 438 |
|
| 439 |
-
# Find JSON match for this segment
|
| 440 |
json_value = find_matching_json_value(segment_text, flat_json)
|
| 441 |
|
| 442 |
if json_value is not None:
|
| 443 |
replacement_text = get_value_as_string(json_value, segment_text)
|
| 444 |
|
| 445 |
-
# Handle list values
|
| 446 |
if isinstance(json_value, list) and len(json_value) > 1:
|
| 447 |
replacement_text = "\n".join(str(item) for item in json_value if str(item).strip())
|
| 448 |
|
|
@@ -454,7 +325,6 @@ def handle_multiple_red_segments_in_cell(cell, flat_json):
|
|
| 454 |
unmatched_segments.append(segment)
|
| 455 |
print(f" β³ No individual match for segment '{segment_text[:30]}...'")
|
| 456 |
|
| 457 |
-
# If we have unmatched segments, try to match the combined text
|
| 458 |
if unmatched_segments and replacements_made == 0:
|
| 459 |
combined_text = " ".join(seg['text'] for seg in red_segments).strip()
|
| 460 |
print(f" π Trying combined text match: '{combined_text[:50]}...'")
|
|
@@ -465,109 +335,46 @@ def handle_multiple_red_segments_in_cell(cell, flat_json):
|
|
| 465 |
if isinstance(json_value, list) and len(json_value) > 1:
|
| 466 |
replacement_text = "\n".join(str(item) for item in json_value if str(item).strip())
|
| 467 |
|
| 468 |
-
# Replace all segments with the combined replacement
|
| 469 |
replacements_made = replace_all_red_segments(red_segments, replacement_text)
|
| 470 |
print(f" β
Replaced combined text with '{replacement_text[:50]}...'")
|
| 471 |
|
| 472 |
return replacements_made
|
| 473 |
|
| 474 |
def replace_single_segment(segment, replacement_text):
|
| 475 |
-
"""
|
| 476 |
if not segment['runs']:
|
| 477 |
return False
|
| 478 |
|
| 479 |
-
|
| 480 |
-
first_run = segment['runs'][0][2] # (para_idx, run_idx, run)
|
| 481 |
first_run.text = replacement_text
|
| 482 |
first_run.font.color.rgb = RGBColor(0, 0, 0)
|
| 483 |
|
| 484 |
-
# Clear remaining runs in the segment
|
| 485 |
for _, _, run in segment['runs'][1:]:
|
| 486 |
run.text = ''
|
| 487 |
|
| 488 |
return True
|
| 489 |
|
| 490 |
-
def process_tables(document, flat_json):
|
| 491 |
-
"""Enhanced table processing with better dynamic detection"""
|
| 492 |
-
replacements_made = 0
|
| 493 |
-
|
| 494 |
-
for table_idx, table in enumerate(document.tables):
|
| 495 |
-
print(f"\nπ Processing table {table_idx + 1}:")
|
| 496 |
-
|
| 497 |
-
# Dynamically detect table type by analyzing content
|
| 498 |
-
table_type = detect_table_type(table)
|
| 499 |
-
print(f" π Detected table type: {table_type}")
|
| 500 |
-
|
| 501 |
-
if table_type == "vehicle_registration":
|
| 502 |
-
vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
|
| 503 |
-
replacements_made += vehicle_replacements
|
| 504 |
-
continue
|
| 505 |
-
elif table_type == "print_accreditation":
|
| 506 |
-
print_replacements = handle_print_accreditation_section(table, flat_json)
|
| 507 |
-
replacements_made += print_replacements
|
| 508 |
-
continue
|
| 509 |
-
|
| 510 |
-
# Process as regular key-value table
|
| 511 |
-
for row_idx, row in enumerate(table.rows):
|
| 512 |
-
if len(row.cells) < 1:
|
| 513 |
-
continue
|
| 514 |
-
|
| 515 |
-
# Process each cell for red text
|
| 516 |
-
for cell_idx, cell in enumerate(row.cells):
|
| 517 |
-
if has_red_text(cell):
|
| 518 |
-
cell_replacements = handle_multiple_red_segments_in_cell(cell, flat_json)
|
| 519 |
-
replacements_made += cell_replacements
|
| 520 |
-
|
| 521 |
-
# If no individual segment matches found, try context-based matching
|
| 522 |
-
if cell_replacements == 0:
|
| 523 |
-
context_replacements = try_context_based_replacement(cell, row, table, flat_json)
|
| 524 |
-
replacements_made += context_replacements
|
| 525 |
-
|
| 526 |
-
return replacements_made
|
| 527 |
-
|
| 528 |
def detect_table_type(table):
|
| 529 |
-
"""
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
for row in table.rows[:3]:
|
| 533 |
-
for cell in row.cells:
|
| 534 |
-
sample_text += get_clean_text(cell).lower() + " "
|
| 535 |
-
|
| 536 |
-
# Vehicle registration indicators
|
| 537 |
-
vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension"]
|
| 538 |
-
vehicle_score = sum(1 for indicator in vehicle_indicators if indicator in sample_text)
|
| 539 |
-
|
| 540 |
-
# Print accreditation indicators
|
| 541 |
-
print_indicators = ["print name", "position title"]
|
| 542 |
-
print_score = sum(1 for indicator in print_indicators if indicator in sample_text)
|
| 543 |
-
|
| 544 |
-
if vehicle_score >= 3:
|
| 545 |
-
return "vehicle_registration"
|
| 546 |
-
elif print_score >= 2:
|
| 547 |
-
return "print_accreditation"
|
| 548 |
-
else:
|
| 549 |
-
return "key_value"
|
| 550 |
|
| 551 |
def try_context_based_replacement(cell, row, table, flat_json):
|
| 552 |
-
"""
|
| 553 |
replacements_made = 0
|
| 554 |
|
| 555 |
-
# Get context from row headers/labels
|
| 556 |
row_context = ""
|
| 557 |
if len(row.cells) > 1:
|
| 558 |
-
# First cell might be a label
|
| 559 |
first_cell_text = get_clean_text(row.cells[0]).strip()
|
| 560 |
if first_cell_text and not has_red_text(row.cells[0]):
|
| 561 |
row_context = first_cell_text
|
| 562 |
|
| 563 |
-
# Get red text from the cell
|
| 564 |
red_segments = extract_red_text_segments(cell)
|
| 565 |
for segment in red_segments:
|
| 566 |
red_text = segment['text'].strip()
|
| 567 |
if not red_text:
|
| 568 |
continue
|
| 569 |
|
| 570 |
-
# Try combining context with red text
|
| 571 |
if row_context:
|
| 572 |
context_queries = [
|
| 573 |
f"{row_context} {red_text}",
|
|
@@ -587,7 +394,56 @@ def try_context_based_replacement(cell, row, table, flat_json):
|
|
| 587 |
|
| 588 |
return replacements_made
|
| 589 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 590 |
def handle_australian_company_number(row, company_numbers):
|
|
|
|
| 591 |
replacements_made = 0
|
| 592 |
for i, digit in enumerate(company_numbers):
|
| 593 |
cell_idx = i + 1
|
|
@@ -600,26 +456,23 @@ def handle_australian_company_number(row, company_numbers):
|
|
| 600 |
return replacements_made
|
| 601 |
|
| 602 |
def handle_vehicle_registration_table(table, flat_json):
|
| 603 |
-
"""
|
| 604 |
replacements_made = 0
|
| 605 |
|
| 606 |
-
#
|
| 607 |
vehicle_section = None
|
| 608 |
|
| 609 |
-
# Try to find the vehicle registration section
|
| 610 |
for key, value in flat_json.items():
|
| 611 |
if "vehicle registration numbers of records examined" in key.lower():
|
| 612 |
-
if isinstance(value, dict):
|
| 613 |
vehicle_section = value
|
| 614 |
print(f" β
Found vehicle data in key: '{key}'")
|
| 615 |
break
|
| 616 |
|
| 617 |
if not vehicle_section:
|
| 618 |
-
# Try alternative approach - look for individual column keys
|
| 619 |
potential_columns = {}
|
| 620 |
for key, value in flat_json.items():
|
| 621 |
if any(col_name in key.lower() for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension"]):
|
| 622 |
-
# Extract the column name from the flattened key
|
| 623 |
if "." in key:
|
| 624 |
column_name = key.split(".")[-1]
|
| 625 |
else:
|
|
@@ -635,7 +488,7 @@ def handle_vehicle_registration_table(table, flat_json):
|
|
| 635 |
|
| 636 |
print(f" β
Found vehicle registration data with {len(vehicle_section)} columns")
|
| 637 |
|
| 638 |
-
# Find header row
|
| 639 |
header_row_idx = -1
|
| 640 |
header_row = None
|
| 641 |
|
|
@@ -652,30 +505,26 @@ def handle_vehicle_registration_table(table, flat_json):
|
|
| 652 |
|
| 653 |
print(f" β
Found header row at index {header_row_idx}")
|
| 654 |
|
| 655 |
-
#
|
| 656 |
column_mapping = {}
|
| 657 |
for col_idx, cell in enumerate(header_row.cells):
|
| 658 |
header_text = get_clean_text(cell).strip()
|
| 659 |
if not header_text or header_text.lower() == "no.":
|
| 660 |
continue
|
| 661 |
|
| 662 |
-
# Try to match header text with JSON keys
|
| 663 |
best_match = None
|
| 664 |
best_score = 0
|
| 665 |
|
| 666 |
-
# Normalize header text for better matching
|
| 667 |
normalized_header = header_text.lower().replace("(", " (").replace(")", ") ").strip()
|
| 668 |
|
| 669 |
for json_key in vehicle_section.keys():
|
| 670 |
normalized_json = json_key.lower().strip()
|
| 671 |
|
| 672 |
-
# Try exact match first (after normalization)
|
| 673 |
if normalized_header == normalized_json:
|
| 674 |
best_match = json_key
|
| 675 |
best_score = 1.0
|
| 676 |
break
|
| 677 |
|
| 678 |
-
# Try word-based matching
|
| 679 |
header_words = set(word.lower() for word in normalized_header.split() if len(word) > 2)
|
| 680 |
json_words = set(word.lower() for word in normalized_json.split() if len(word) > 2)
|
| 681 |
|
|
@@ -683,16 +532,15 @@ def handle_vehicle_registration_table(table, flat_json):
|
|
| 683 |
common_words = header_words.intersection(json_words)
|
| 684 |
score = len(common_words) / max(len(header_words), len(json_words))
|
| 685 |
|
| 686 |
-
if score > best_score and score >= 0.3:
|
| 687 |
best_score = score
|
| 688 |
best_match = json_key
|
| 689 |
|
| 690 |
-
# Try substring matching for cases like "RegistrationNumber" vs "Registration Number"
|
| 691 |
header_clean = normalized_header.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
|
| 692 |
json_clean = normalized_json.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
|
| 693 |
|
| 694 |
if header_clean in json_clean or json_clean in header_clean:
|
| 695 |
-
if len(header_clean) > 5 and len(json_clean) > 5:
|
| 696 |
substring_score = min(len(header_clean), len(json_clean)) / max(len(header_clean), len(json_clean))
|
| 697 |
if substring_score > best_score and substring_score >= 0.6:
|
| 698 |
best_score = substring_score
|
|
@@ -706,7 +554,7 @@ def handle_vehicle_registration_table(table, flat_json):
|
|
| 706 |
print(f" β No column mappings found")
|
| 707 |
return 0
|
| 708 |
|
| 709 |
-
# Determine
|
| 710 |
max_data_rows = 0
|
| 711 |
for json_key, data in vehicle_section.items():
|
| 712 |
if isinstance(data, list):
|
|
@@ -714,42 +562,35 @@ def handle_vehicle_registration_table(table, flat_json):
|
|
| 714 |
|
| 715 |
print(f" π Need to populate {max_data_rows} data rows")
|
| 716 |
|
| 717 |
-
# Process
|
| 718 |
for data_row_index in range(max_data_rows):
|
| 719 |
table_row_idx = header_row_idx + 1 + data_row_index
|
| 720 |
|
| 721 |
-
# Check if this table row exists, if not, add it
|
| 722 |
if table_row_idx >= len(table.rows):
|
| 723 |
print(f" β οΈ Row {table_row_idx + 1} doesn't exist - table only has {len(table.rows)} rows")
|
| 724 |
print(f" β Adding new row for vehicle {data_row_index + 1}")
|
| 725 |
|
| 726 |
-
# Add a new row to the table
|
| 727 |
new_row = table.add_row()
|
| 728 |
print(f" β
Successfully added row {len(table.rows)} to the table")
|
| 729 |
|
| 730 |
row = table.rows[table_row_idx]
|
| 731 |
print(f" π Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")
|
| 732 |
|
| 733 |
-
# Fill in data for each mapped column
|
| 734 |
for col_idx, json_key in column_mapping.items():
|
| 735 |
if col_idx < len(row.cells):
|
| 736 |
cell = row.cells[col_idx]
|
| 737 |
|
| 738 |
-
# Get the data for this column and row
|
| 739 |
column_data = vehicle_section.get(json_key, [])
|
| 740 |
if isinstance(column_data, list) and data_row_index < len(column_data):
|
| 741 |
replacement_value = str(column_data[data_row_index])
|
| 742 |
|
| 743 |
-
# Check if cell has red text or is empty (needs data)
|
| 744 |
cell_text = get_clean_text(cell)
|
| 745 |
if has_red_text(cell) or not cell_text.strip():
|
| 746 |
-
# If cell is empty, add the text directly
|
| 747 |
if not cell_text.strip():
|
| 748 |
cell.text = replacement_value
|
| 749 |
replacements_made += 1
|
| 750 |
print(f" -> Added '{replacement_value}' to empty cell (column '{json_key}')")
|
| 751 |
else:
|
| 752 |
-
# If cell has red text, replace it
|
| 753 |
cell_replacements = replace_red_text_in_cell(cell, replacement_value)
|
| 754 |
replacements_made += cell_replacements
|
| 755 |
if cell_replacements > 0:
|
|
@@ -758,52 +599,47 @@ def handle_vehicle_registration_table(table, flat_json):
|
|
| 758 |
return replacements_made
|
| 759 |
|
| 760 |
def handle_print_accreditation_section(table, flat_json):
|
| 761 |
-
"""
|
| 762 |
replacements_made = 0
|
| 763 |
|
| 764 |
-
# Look for the print accreditation name data
|
| 765 |
print_data = flat_json.get("print accreditation name.print accreditation name", [])
|
| 766 |
if not isinstance(print_data, list) or len(print_data) < 2:
|
| 767 |
return 0
|
| 768 |
|
| 769 |
-
name_value = print_data[0]
|
| 770 |
-
position_value = print_data[1]
|
| 771 |
|
| 772 |
print(f" π Print accreditation data: Name='{name_value}', Position='{position_value}'")
|
| 773 |
|
| 774 |
-
# Find rows with "Print Name" and "Position Title"
|
| 775 |
for row_idx, row in enumerate(table.rows):
|
| 776 |
if len(row.cells) >= 2:
|
| 777 |
-
# Check if this row has the headers
|
| 778 |
cell1_text = get_clean_text(row.cells[0]).lower()
|
| 779 |
cell2_text = get_clean_text(row.cells[1]).lower()
|
| 780 |
|
| 781 |
if "print name" in cell1_text and "position title" in cell2_text:
|
| 782 |
print(f" π Found header row {row_idx + 1}: '{cell1_text}' | '{cell2_text}'")
|
| 783 |
|
| 784 |
-
# Check the next row for red text to replace
|
| 785 |
if row_idx + 1 < len(table.rows):
|
| 786 |
data_row = table.rows[row_idx + 1]
|
| 787 |
if len(data_row.cells) >= 2:
|
| 788 |
-
# Replace Print Name (first cell)
|
| 789 |
if has_red_text(data_row.cells[0]):
|
| 790 |
cell_replacements = replace_red_text_in_cell(data_row.cells[0], name_value)
|
| 791 |
replacements_made += cell_replacements
|
| 792 |
if cell_replacements > 0:
|
| 793 |
print(f" β
Replaced Print Name: '{name_value}'")
|
| 794 |
|
| 795 |
-
# Replace Position Title (second cell)
|
| 796 |
if has_red_text(data_row.cells[1]):
|
| 797 |
cell_replacements = replace_red_text_in_cell(data_row.cells[1], position_value)
|
| 798 |
replacements_made += cell_replacements
|
| 799 |
if cell_replacements > 0:
|
| 800 |
print(f" β
Replaced Position Title: '{position_value}'")
|
| 801 |
|
| 802 |
-
break
|
| 803 |
|
| 804 |
return replacements_made
|
| 805 |
|
| 806 |
def process_single_column_sections(cell, field_name, flat_json):
|
|
|
|
| 807 |
json_value = find_matching_json_value(field_name, flat_json)
|
| 808 |
if json_value is not None:
|
| 809 |
replacement_text = get_value_as_string(json_value, field_name)
|
|
@@ -819,41 +655,45 @@ def process_single_column_sections(cell, field_name, flat_json):
|
|
| 819 |
return 0
|
| 820 |
|
| 821 |
def process_tables(document, flat_json):
|
| 822 |
-
"""
|
| 823 |
replacements_made = 0
|
| 824 |
|
| 825 |
for table_idx, table in enumerate(document.tables):
|
| 826 |
print(f"\nπ Processing table {table_idx + 1}:")
|
| 827 |
|
| 828 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 829 |
table_text = ""
|
| 830 |
-
for row in table.rows[:3]:
|
| 831 |
for cell in row.cells:
|
| 832 |
table_text += get_clean_text(cell).lower() + " "
|
| 833 |
|
| 834 |
-
#
|
| 835 |
vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension"]
|
| 836 |
indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
|
| 837 |
-
if indicator_count >=
|
| 838 |
print(f" π Detected Vehicle Registration table")
|
| 839 |
vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
|
| 840 |
replacements_made += vehicle_replacements
|
| 841 |
-
continue
|
| 842 |
|
| 843 |
-
#
|
| 844 |
print_accreditation_indicators = ["print name", "position title"]
|
| 845 |
indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)
|
| 846 |
-
if indicator_count >=
|
| 847 |
print(f" π Detected Print Accreditation table")
|
| 848 |
print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
|
| 849 |
replacements_made += print_accreditation_replacements
|
| 850 |
-
continue
|
| 851 |
|
|
|
|
| 852 |
for row_idx, row in enumerate(table.rows):
|
| 853 |
-
if len(row.cells) < 1:
|
| 854 |
continue
|
| 855 |
|
| 856 |
-
# Get the key from the first column
|
| 857 |
key_cell = row.cells[0]
|
| 858 |
key_text = get_clean_text(key_cell)
|
| 859 |
|
|
@@ -862,27 +702,24 @@ def process_tables(document, flat_json):
|
|
| 862 |
|
| 863 |
print(f" π Row {row_idx + 1}: Key = '{key_text}'")
|
| 864 |
|
| 865 |
-
# Check if this key exists in our JSON
|
| 866 |
json_value = find_matching_json_value(key_text, flat_json)
|
| 867 |
|
| 868 |
if json_value is not None:
|
| 869 |
replacement_text = get_value_as_string(json_value, key_text)
|
| 870 |
|
| 871 |
-
#
|
| 872 |
if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
|
| 873 |
cell_replacements = handle_australian_company_number(row, json_value)
|
| 874 |
replacements_made += cell_replacements
|
| 875 |
|
| 876 |
-
#
|
| 877 |
elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
|
| 878 |
print(f" β
Section header detected, checking next row for content...")
|
| 879 |
next_row = table.rows[row_idx + 1]
|
| 880 |
|
| 881 |
-
# Check all cells in the next row for red text
|
| 882 |
for cell_idx, cell in enumerate(next_row.cells):
|
| 883 |
if has_red_text(cell):
|
| 884 |
print(f" β
Found red text in next row, cell {cell_idx + 1}")
|
| 885 |
-
# For list values, join with line breaks
|
| 886 |
if isinstance(json_value, list):
|
| 887 |
replacement_text = "\n".join(str(item) for item in json_value)
|
| 888 |
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
|
|
@@ -902,6 +739,7 @@ def process_tables(document, flat_json):
|
|
| 902 |
cell_replacements = replace_red_text_in_cell(value_cell, replacement_text)
|
| 903 |
replacements_made += cell_replacements
|
| 904 |
else:
|
|
|
|
| 905 |
if len(row.cells) == 1 and has_red_text(key_cell):
|
| 906 |
red_text = ""
|
| 907 |
for paragraph in key_cell.paragraphs:
|
|
@@ -915,32 +753,30 @@ def process_tables(document, flat_json):
|
|
| 915 |
cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
|
| 916 |
replacements_made += cell_replacements
|
| 917 |
|
| 918 |
-
#
|
| 919 |
for cell_idx in range(len(row.cells)):
|
| 920 |
cell = row.cells[cell_idx]
|
| 921 |
if has_red_text(cell):
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
for paragraph in cell.paragraphs:
|
| 925 |
-
for run in paragraph.runs:
|
| 926 |
-
if is_red(run):
|
| 927 |
-
red_text += run.text
|
| 928 |
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
|
| 939 |
return replacements_made
|
| 940 |
|
| 941 |
def process_paragraphs(document, flat_json):
|
|
|
|
| 942 |
replacements_made = 0
|
| 943 |
print(f"\nπ Processing paragraphs:")
|
|
|
|
| 944 |
for para_idx, paragraph in enumerate(document.paragraphs):
|
| 945 |
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
|
| 946 |
if red_runs:
|
|
@@ -948,16 +784,18 @@ def process_paragraphs(document, flat_json):
|
|
| 948 |
red_text_only = "".join(run.text for run in red_runs).strip()
|
| 949 |
print(f" π Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")
|
| 950 |
|
| 951 |
-
#
|
| 952 |
json_value = find_matching_json_value(red_text_only, flat_json)
|
| 953 |
|
| 954 |
-
# If no match, try some common patterns
|
| 955 |
if json_value is None:
|
| 956 |
-
#
|
| 957 |
if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
|
| 958 |
json_value = find_matching_json_value("auditor signature", flat_json)
|
| 959 |
elif "OPERATOR SIGNATURE" in red_text_only.upper():
|
| 960 |
json_value = find_matching_json_value("operator signature", flat_json)
|
|
|
|
|
|
|
|
|
|
| 961 |
|
| 962 |
if json_value is not None:
|
| 963 |
replacement_text = get_value_as_string(json_value)
|
|
@@ -967,20 +805,225 @@ def process_paragraphs(document, flat_json):
|
|
| 967 |
for run in red_runs[1:]:
|
| 968 |
run.text = ''
|
| 969 |
replacements_made += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 970 |
return replacements_made
|
| 971 |
|
| 972 |
def process_hf(json_file, docx_file, output_file):
|
| 973 |
-
"""
|
| 974 |
-
Accepts file-like objects or file paths.
|
| 975 |
-
For Hugging Face: json_file, docx_file, output_file will be file-like objects.
|
| 976 |
-
"""
|
| 977 |
try:
|
| 978 |
-
#
|
| 979 |
if hasattr(json_file, "read"):
|
| 980 |
json_data = json.load(json_file)
|
| 981 |
else:
|
| 982 |
with open(json_file, 'r', encoding='utf-8') as f:
|
| 983 |
json_data = json.load(f)
|
|
|
|
| 984 |
flat_json = flatten_json(json_data)
|
| 985 |
print("π Available JSON keys (sample):")
|
| 986 |
for i, (key, value) in enumerate(sorted(flat_json.items())):
|
|
@@ -988,24 +1031,38 @@ def process_hf(json_file, docx_file, output_file):
|
|
| 988 |
print(f" - {key}: {value}")
|
| 989 |
print(f" ... and {len(flat_json) - 10} more keys\n")
|
| 990 |
|
| 991 |
-
#
|
| 992 |
if hasattr(docx_file, "read"):
|
| 993 |
doc = Document(docx_file)
|
| 994 |
else:
|
| 995 |
doc = Document(docx_file)
|
| 996 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 997 |
table_replacements = process_tables(doc, flat_json)
|
| 998 |
paragraph_replacements = process_paragraphs(doc, flat_json)
|
| 999 |
heading_replacements = process_headings(doc, flat_json)
|
| 1000 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1001 |
|
| 1002 |
-
#
|
| 1003 |
if hasattr(output_file, "write"):
|
| 1004 |
doc.save(output_file)
|
| 1005 |
else:
|
| 1006 |
doc.save(output_file)
|
|
|
|
| 1007 |
print(f"\nβ
Document saved as: {output_file}")
|
| 1008 |
-
print(f"β
Total replacements: {total_replacements}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1009 |
|
| 1010 |
except FileNotFoundError as e:
|
| 1011 |
print(f"β File not found: {e}")
|
|
@@ -1017,9 +1074,9 @@ def process_hf(json_file, docx_file, output_file):
|
|
| 1017 |
if __name__ == "__main__":
|
| 1018 |
import sys
|
| 1019 |
if len(sys.argv) != 4:
|
| 1020 |
-
print("Usage: python
|
| 1021 |
exit(1)
|
| 1022 |
docx_path = sys.argv[1]
|
| 1023 |
json_path = sys.argv[2]
|
| 1024 |
output_path = sys.argv[3]
|
| 1025 |
-
process_hf(json_path, docx_path, output_path)
|
|
|
|
| 3 |
from docx.shared import RGBColor
|
| 4 |
import re
|
| 5 |
|
| 6 |
+
# Enhanced heading patterns (ADDITIVE - keeps your existing ones)
|
| 7 |
HEADING_PATTERNS = {
|
| 8 |
"main": [
|
| 9 |
r"NHVAS\s+Audit\s+Summary\s+Report",
|
|
|
|
| 22 |
r"CORRECTIVE\s+ACTION\s+REQUEST\s+\(CAR\)",
|
| 23 |
r"NHVAS\s+APPROVED\s+AUDITOR\s+DECLARATION",
|
| 24 |
r"Operator\s+Declaration",
|
| 25 |
+
r"Operator\s+Information",
|
| 26 |
+
r"Driver\s*/\s*Scheduler\s+Records\s+Examined"
|
| 27 |
]
|
| 28 |
}
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def load_json(filepath):
|
| 31 |
with open(filepath, 'r') as file:
|
| 32 |
return json.load(file)
|
|
|
|
| 61 |
return str(value)
|
| 62 |
|
| 63 |
def find_matching_json_value(field_name, flat_json):
|
| 64 |
+
"""Enhanced dynamic matching without manual mappings"""
|
| 65 |
field_name = field_name.strip()
|
| 66 |
|
| 67 |
# Try exact match first
|
|
|
|
| 83 |
|
| 84 |
# Try partial matching - remove parentheses and special chars
|
| 85 |
clean_field = re.sub(r'[^\w\s]', ' ', field_name.lower()).strip()
|
| 86 |
+
clean_field = re.sub(r'\s+', ' ', clean_field)
|
| 87 |
|
| 88 |
for key, value in flat_json.items():
|
| 89 |
clean_key = re.sub(r'[^\w\s]', ' ', key.lower()).strip()
|
|
|
|
| 93 |
print(f" β
Clean match found for key '{field_name}' with JSON key '{key}'")
|
| 94 |
return value
|
| 95 |
|
| 96 |
+
# Enhanced fuzzy matching with better scoring
|
| 97 |
field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
|
| 98 |
if not field_words:
|
| 99 |
return None
|
|
|
|
| 122 |
best_match = value
|
| 123 |
best_key = key
|
| 124 |
|
| 125 |
+
if best_match and best_score >= 0.25: # Lowered threshold for better coverage
|
| 126 |
print(f" β
Fuzzy match found for key '{field_name}' with JSON key '{best_key}' (score: {best_score:.2f})")
|
| 127 |
return best_match
|
| 128 |
|
|
|
|
| 144 |
return False
|
| 145 |
|
| 146 |
def extract_red_text_segments(cell):
|
| 147 |
+
"""Enhanced red text extraction with better multi-line handling"""
|
| 148 |
red_segments = []
|
| 149 |
|
| 150 |
for para_idx, paragraph in enumerate(cell.paragraphs):
|
|
|
|
| 153 |
|
| 154 |
for run_idx, run in enumerate(paragraph.runs):
|
| 155 |
if is_red(run):
|
| 156 |
+
if run.text:
|
| 157 |
current_segment += run.text
|
| 158 |
segment_runs.append((para_idx, run_idx, run))
|
| 159 |
else:
|
| 160 |
# End of current red segment
|
| 161 |
+
if segment_runs:
|
| 162 |
red_segments.append({
|
| 163 |
'text': current_segment,
|
| 164 |
'runs': segment_runs.copy(),
|
|
|
|
| 168 |
segment_runs = []
|
| 169 |
|
| 170 |
# Handle segment at end of paragraph
|
| 171 |
+
if segment_runs:
|
| 172 |
red_segments.append({
|
| 173 |
'text': current_segment,
|
| 174 |
'runs': segment_runs.copy(),
|
|
|
|
| 178 |
return red_segments
|
| 179 |
|
| 180 |
def replace_red_text_in_cell(cell, replacement_text):
|
| 181 |
+
"""Enhanced cell replacement with improved multi-line handling"""
|
| 182 |
red_segments = extract_red_text_segments(cell)
|
| 183 |
|
| 184 |
if not red_segments:
|
| 185 |
return 0
|
| 186 |
|
|
|
|
| 187 |
if len(red_segments) > 1:
|
| 188 |
replacements_made = 0
|
| 189 |
for segment in red_segments:
|
| 190 |
segment_text = segment['text'].strip()
|
| 191 |
if segment_text:
|
|
|
|
|
|
|
| 192 |
pass
|
| 193 |
|
|
|
|
| 194 |
if replacements_made == 0:
|
| 195 |
return replace_all_red_segments(red_segments, replacement_text)
|
| 196 |
|
|
|
|
| 197 |
return replace_all_red_segments(red_segments, replacement_text)
|
| 198 |
|
| 199 |
def replace_all_red_segments(red_segments, replacement_text):
|
| 200 |
+
"""Enhanced replacement with better line handling"""
|
| 201 |
if not red_segments:
|
| 202 |
return 0
|
| 203 |
|
|
|
|
| 204 |
if '\n' in replacement_text:
|
| 205 |
replacement_lines = replacement_text.split('\n')
|
| 206 |
else:
|
|
|
|
| 208 |
|
| 209 |
replacements_made = 0
|
| 210 |
|
|
|
|
| 211 |
if red_segments and replacement_lines:
|
| 212 |
first_segment = red_segments[0]
|
| 213 |
if first_segment['runs']:
|
| 214 |
+
first_run = first_segment['runs'][0][2]
|
| 215 |
first_run.text = replacement_lines[0]
|
| 216 |
first_run.font.color.rgb = RGBColor(0, 0, 0)
|
| 217 |
replacements_made = 1
|
| 218 |
|
|
|
|
| 219 |
for _, _, run in first_segment['runs'][1:]:
|
| 220 |
run.text = ''
|
| 221 |
|
|
|
|
| 222 |
for segment in red_segments[1:]:
|
| 223 |
for _, _, run in segment['runs']:
|
| 224 |
run.text = ''
|
| 225 |
|
|
|
|
| 226 |
if len(replacement_lines) > 1 and red_segments:
|
| 227 |
try:
|
|
|
|
| 228 |
first_run = red_segments[0]['runs'][0][2]
|
| 229 |
+
paragraph = first_run.element.getparent()
|
| 230 |
|
|
|
|
| 231 |
for line in replacement_lines[1:]:
|
| 232 |
+
if line.strip():
|
|
|
|
| 233 |
from docx.oxml import OxmlElement, ns
|
| 234 |
br = OxmlElement('w:br')
|
| 235 |
first_run.element.append(br)
|
| 236 |
|
|
|
|
| 237 |
new_run = paragraph.add_run(line.strip())
|
| 238 |
new_run.font.color.rgb = RGBColor(0, 0, 0)
|
| 239 |
except:
|
|
|
|
| 240 |
if red_segments and red_segments[0]['runs']:
|
| 241 |
first_run = red_segments[0]['runs'][0][2]
|
|
|
|
| 242 |
first_run.text = ' '.join(replacement_lines)
|
| 243 |
first_run.font.color.rgb = RGBColor(0, 0, 0)
|
| 244 |
|
| 245 |
return replacements_made
|
| 246 |
|
| 247 |
+
def analyze_table_structure(table):
|
| 248 |
+
"""NEW: Dynamic table structure analysis"""
|
| 249 |
+
structure = {
|
| 250 |
+
'type': 'unknown',
|
| 251 |
+
'orientation': 'unknown',
|
| 252 |
+
'has_headers': False,
|
| 253 |
+
'column_count': 0,
|
| 254 |
+
'row_count': 0,
|
| 255 |
+
'red_text_locations': []
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
if not table.rows:
|
| 259 |
+
return structure
|
| 260 |
+
|
| 261 |
+
structure['row_count'] = len(table.rows)
|
| 262 |
+
structure['column_count'] = len(table.rows[0].cells) if table.rows else 0
|
| 263 |
+
|
| 264 |
+
# Analyze first row for headers
|
| 265 |
+
first_row_text = []
|
| 266 |
+
for cell in table.rows[0].cells:
|
| 267 |
+
cell_text = get_clean_text(cell).strip()
|
| 268 |
+
first_row_text.append(cell_text)
|
| 269 |
+
|
| 270 |
+
# Detect table type based on content patterns
|
| 271 |
+
combined_text = " ".join(first_row_text).lower()
|
| 272 |
+
|
| 273 |
+
if any(indicator in combined_text for indicator in ["registration", "vehicle", "maintenance", "mass"]):
|
| 274 |
+
structure['type'] = 'vehicle_registration'
|
| 275 |
+
elif any(indicator in combined_text for indicator in ["print name", "position", "auditor", "operator"]):
|
| 276 |
+
structure['type'] = 'declaration'
|
| 277 |
+
elif any(indicator in combined_text for indicator in ["std", "standard", "compliance"]):
|
| 278 |
+
structure['type'] = 'compliance_matrix'
|
| 279 |
+
elif len(table.rows[0].cells) == 2 and not any(indicator in combined_text for indicator in ["no.", "number"]):
|
| 280 |
+
structure['type'] = 'key_value'
|
| 281 |
+
else:
|
| 282 |
+
structure['type'] = 'data_grid'
|
| 283 |
+
|
| 284 |
+
# Find red text locations
|
| 285 |
+
for row_idx, row in enumerate(table.rows):
|
| 286 |
+
for cell_idx, cell in enumerate(row.cells):
|
| 287 |
+
if has_red_text(cell):
|
| 288 |
+
structure['red_text_locations'].append((row_idx, cell_idx))
|
| 289 |
+
|
| 290 |
+
structure['has_headers'] = len(structure['red_text_locations']) > 0 and (0, 0) not in structure['red_text_locations']
|
| 291 |
+
|
| 292 |
+
return structure
|
| 293 |
+
|
| 294 |
def handle_multiple_red_segments_in_cell(cell, flat_json):
|
| 295 |
+
"""Enhanced multi-segment handling"""
|
| 296 |
red_segments = extract_red_text_segments(cell)
|
| 297 |
|
| 298 |
if not red_segments:
|
|
|
|
| 302 |
replacements_made = 0
|
| 303 |
unmatched_segments = []
|
| 304 |
|
|
|
|
| 305 |
for i, segment in enumerate(red_segments):
|
| 306 |
segment_text = segment['text'].strip()
|
| 307 |
if not segment_text:
|
|
|
|
| 309 |
|
| 310 |
print(f" Segment {i+1}: '{segment_text[:50]}...'")
|
| 311 |
|
|
|
|
| 312 |
json_value = find_matching_json_value(segment_text, flat_json)
|
| 313 |
|
| 314 |
if json_value is not None:
|
| 315 |
replacement_text = get_value_as_string(json_value, segment_text)
|
| 316 |
|
|
|
|
| 317 |
if isinstance(json_value, list) and len(json_value) > 1:
|
| 318 |
replacement_text = "\n".join(str(item) for item in json_value if str(item).strip())
|
| 319 |
|
|
|
|
| 325 |
unmatched_segments.append(segment)
|
| 326 |
print(f" β³ No individual match for segment '{segment_text[:30]}...'")
|
| 327 |
|
|
|
|
| 328 |
if unmatched_segments and replacements_made == 0:
|
| 329 |
combined_text = " ".join(seg['text'] for seg in red_segments).strip()
|
| 330 |
print(f" π Trying combined text match: '{combined_text[:50]}...'")
|
|
|
|
| 335 |
if isinstance(json_value, list) and len(json_value) > 1:
|
| 336 |
replacement_text = "\n".join(str(item) for item in json_value if str(item).strip())
|
| 337 |
|
|
|
|
| 338 |
replacements_made = replace_all_red_segments(red_segments, replacement_text)
|
| 339 |
print(f" β
Replaced combined text with '{replacement_text[:50]}...'")
|
| 340 |
|
| 341 |
return replacements_made
|
| 342 |
|
| 343 |
def replace_single_segment(segment, replacement_text):
|
| 344 |
+
"""Enhanced single segment replacement"""
|
| 345 |
if not segment['runs']:
|
| 346 |
return False
|
| 347 |
|
| 348 |
+
first_run = segment['runs'][0][2]
|
|
|
|
| 349 |
first_run.text = replacement_text
|
| 350 |
first_run.font.color.rgb = RGBColor(0, 0, 0)
|
| 351 |
|
|
|
|
| 352 |
for _, _, run in segment['runs'][1:]:
|
| 353 |
run.text = ''
|
| 354 |
|
| 355 |
return True
|
| 356 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
def detect_table_type(table):
|
| 358 |
+
"""Enhanced table type detection"""
|
| 359 |
+
structure = analyze_table_structure(table)
|
| 360 |
+
return structure['type']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
def try_context_based_replacement(cell, row, table, flat_json):
|
| 363 |
+
"""Enhanced context-based replacement"""
|
| 364 |
replacements_made = 0
|
| 365 |
|
|
|
|
| 366 |
row_context = ""
|
| 367 |
if len(row.cells) > 1:
|
|
|
|
| 368 |
first_cell_text = get_clean_text(row.cells[0]).strip()
|
| 369 |
if first_cell_text and not has_red_text(row.cells[0]):
|
| 370 |
row_context = first_cell_text
|
| 371 |
|
|
|
|
| 372 |
red_segments = extract_red_text_segments(cell)
|
| 373 |
for segment in red_segments:
|
| 374 |
red_text = segment['text'].strip()
|
| 375 |
if not red_text:
|
| 376 |
continue
|
| 377 |
|
|
|
|
| 378 |
if row_context:
|
| 379 |
context_queries = [
|
| 380 |
f"{row_context} {red_text}",
|
|
|
|
| 394 |
|
| 395 |
return replacements_made
|
| 396 |
|
| 397 |
+
def smart_fallback_processor(element, flat_json):
|
| 398 |
+
"""NEW: Smart fallback for missed red text"""
|
| 399 |
+
replacements_made = 0
|
| 400 |
+
|
| 401 |
+
# Check if element has red text that wasn't processed
|
| 402 |
+
if hasattr(element, 'paragraphs'):
|
| 403 |
+
for paragraph in element.paragraphs:
|
| 404 |
+
for run in paragraph.runs:
|
| 405 |
+
if is_red(run) and run.text.strip():
|
| 406 |
+
# Try advanced pattern matching
|
| 407 |
+
red_text = run.text.strip()
|
| 408 |
+
|
| 409 |
+
# Try semantic matching
|
| 410 |
+
json_value = semantic_text_matching(red_text, flat_json)
|
| 411 |
+
if json_value:
|
| 412 |
+
replacement_text = get_value_as_string(json_value, red_text)
|
| 413 |
+
run.text = replacement_text
|
| 414 |
+
run.font.color.rgb = RGBColor(0, 0, 0)
|
| 415 |
+
replacements_made += 1
|
| 416 |
+
print(f" π― Fallback match: '{red_text}' -> '{replacement_text[:30]}...'")
|
| 417 |
+
|
| 418 |
+
return replacements_made
|
| 419 |
+
|
| 420 |
+
def semantic_text_matching(text, flat_json):
|
| 421 |
+
"""NEW: Advanced semantic matching for edge cases"""
|
| 422 |
+
text_lower = text.lower().strip()
|
| 423 |
+
|
| 424 |
+
# Common semantic patterns
|
| 425 |
+
semantic_patterns = {
|
| 426 |
+
'name': ['name', 'manager', 'operator', 'auditor', 'driver'],
|
| 427 |
+
'date': ['date', 'expiry', 'conducted', 'completed'],
|
| 428 |
+
'address': ['address', 'location', 'road', 'street'],
|
| 429 |
+
'number': ['number', 'registration', 'phone', 'telephone'],
|
| 430 |
+
'email': ['email', 'mail'],
|
| 431 |
+
'position': ['position', 'title', 'role']
|
| 432 |
+
}
|
| 433 |
+
|
| 434 |
+
# Find semantic category
|
| 435 |
+
for category, keywords in semantic_patterns.items():
|
| 436 |
+
if any(keyword in text_lower for keyword in keywords):
|
| 437 |
+
# Look for JSON keys in this semantic category
|
| 438 |
+
for key, value in flat_json.items():
|
| 439 |
+
key_lower = key.lower()
|
| 440 |
+
if any(keyword in key_lower for keyword in keywords):
|
| 441 |
+
return value
|
| 442 |
+
|
| 443 |
+
return None
|
| 444 |
+
|
| 445 |
def handle_australian_company_number(row, company_numbers):
|
| 446 |
+
"""Enhanced ACN handling"""
|
| 447 |
replacements_made = 0
|
| 448 |
for i, digit in enumerate(company_numbers):
|
| 449 |
cell_idx = i + 1
|
|
|
|
| 456 |
return replacements_made
|
| 457 |
|
| 458 |
def handle_vehicle_registration_table(table, flat_json):
|
| 459 |
+
"""Enhanced vehicle registration table handling"""
|
| 460 |
replacements_made = 0
|
| 461 |
|
| 462 |
+
# Try to find vehicle registration data
|
| 463 |
vehicle_section = None
|
| 464 |
|
|
|
|
| 465 |
for key, value in flat_json.items():
|
| 466 |
if "vehicle registration numbers of records examined" in key.lower():
|
| 467 |
+
if isinstance(value, dict):
|
| 468 |
vehicle_section = value
|
| 469 |
print(f" β
Found vehicle data in key: '{key}'")
|
| 470 |
break
|
| 471 |
|
| 472 |
if not vehicle_section:
|
|
|
|
| 473 |
potential_columns = {}
|
| 474 |
for key, value in flat_json.items():
|
| 475 |
if any(col_name in key.lower() for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension"]):
|
|
|
|
| 476 |
if "." in key:
|
| 477 |
column_name = key.split(".")[-1]
|
| 478 |
else:
|
|
|
|
| 488 |
|
| 489 |
print(f" β
Found vehicle registration data with {len(vehicle_section)} columns")
|
| 490 |
|
| 491 |
+
# Find header row
|
| 492 |
header_row_idx = -1
|
| 493 |
header_row = None
|
| 494 |
|
|
|
|
| 505 |
|
| 506 |
print(f" β
Found header row at index {header_row_idx}")
|
| 507 |
|
| 508 |
+
# Enhanced column mapping
|
| 509 |
column_mapping = {}
|
| 510 |
for col_idx, cell in enumerate(header_row.cells):
|
| 511 |
header_text = get_clean_text(cell).strip()
|
| 512 |
if not header_text or header_text.lower() == "no.":
|
| 513 |
continue
|
| 514 |
|
|
|
|
| 515 |
best_match = None
|
| 516 |
best_score = 0
|
| 517 |
|
|
|
|
| 518 |
normalized_header = header_text.lower().replace("(", " (").replace(")", ") ").strip()
|
| 519 |
|
| 520 |
for json_key in vehicle_section.keys():
|
| 521 |
normalized_json = json_key.lower().strip()
|
| 522 |
|
|
|
|
| 523 |
if normalized_header == normalized_json:
|
| 524 |
best_match = json_key
|
| 525 |
best_score = 1.0
|
| 526 |
break
|
| 527 |
|
|
|
|
| 528 |
header_words = set(word.lower() for word in normalized_header.split() if len(word) > 2)
|
| 529 |
json_words = set(word.lower() for word in normalized_json.split() if len(word) > 2)
|
| 530 |
|
|
|
|
| 532 |
common_words = header_words.intersection(json_words)
|
| 533 |
score = len(common_words) / max(len(header_words), len(json_words))
|
| 534 |
|
| 535 |
+
if score > best_score and score >= 0.3:
|
| 536 |
best_score = score
|
| 537 |
best_match = json_key
|
| 538 |
|
|
|
|
| 539 |
header_clean = normalized_header.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
|
| 540 |
json_clean = normalized_json.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
|
| 541 |
|
| 542 |
if header_clean in json_clean or json_clean in header_clean:
|
| 543 |
+
if len(header_clean) > 5 and len(json_clean) > 5:
|
| 544 |
substring_score = min(len(header_clean), len(json_clean)) / max(len(header_clean), len(json_clean))
|
| 545 |
if substring_score > best_score and substring_score >= 0.6:
|
| 546 |
best_score = substring_score
|
|
|
|
| 554 |
print(f" β No column mappings found")
|
| 555 |
return 0
|
| 556 |
|
| 557 |
+
# Determine data rows needed
|
| 558 |
max_data_rows = 0
|
| 559 |
for json_key, data in vehicle_section.items():
|
| 560 |
if isinstance(data, list):
|
|
|
|
| 562 |
|
| 563 |
print(f" π Need to populate {max_data_rows} data rows")
|
| 564 |
|
| 565 |
+
# Process data rows
|
| 566 |
for data_row_index in range(max_data_rows):
|
| 567 |
table_row_idx = header_row_idx + 1 + data_row_index
|
| 568 |
|
|
|
|
| 569 |
if table_row_idx >= len(table.rows):
|
| 570 |
print(f" β οΈ Row {table_row_idx + 1} doesn't exist - table only has {len(table.rows)} rows")
|
| 571 |
print(f" β Adding new row for vehicle {data_row_index + 1}")
|
| 572 |
|
|
|
|
| 573 |
new_row = table.add_row()
|
| 574 |
print(f" β
Successfully added row {len(table.rows)} to the table")
|
| 575 |
|
| 576 |
row = table.rows[table_row_idx]
|
| 577 |
print(f" π Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")
|
| 578 |
|
|
|
|
| 579 |
for col_idx, json_key in column_mapping.items():
|
| 580 |
if col_idx < len(row.cells):
|
| 581 |
cell = row.cells[col_idx]
|
| 582 |
|
|
|
|
| 583 |
column_data = vehicle_section.get(json_key, [])
|
| 584 |
if isinstance(column_data, list) and data_row_index < len(column_data):
|
| 585 |
replacement_value = str(column_data[data_row_index])
|
| 586 |
|
|
|
|
| 587 |
cell_text = get_clean_text(cell)
|
| 588 |
if has_red_text(cell) or not cell_text.strip():
|
|
|
|
| 589 |
if not cell_text.strip():
|
| 590 |
cell.text = replacement_value
|
| 591 |
replacements_made += 1
|
| 592 |
print(f" -> Added '{replacement_value}' to empty cell (column '{json_key}')")
|
| 593 |
else:
|
|
|
|
| 594 |
cell_replacements = replace_red_text_in_cell(cell, replacement_value)
|
| 595 |
replacements_made += cell_replacements
|
| 596 |
if cell_replacements > 0:
|
|
|
|
| 599 |
return replacements_made
|
| 600 |
|
| 601 |
def handle_print_accreditation_section(table, flat_json):
|
| 602 |
+
"""Enhanced print accreditation handling"""
|
| 603 |
replacements_made = 0
|
| 604 |
|
|
|
|
| 605 |
print_data = flat_json.get("print accreditation name.print accreditation name", [])
|
| 606 |
if not isinstance(print_data, list) or len(print_data) < 2:
|
| 607 |
return 0
|
| 608 |
|
| 609 |
+
name_value = print_data[0]
|
| 610 |
+
position_value = print_data[1]
|
| 611 |
|
| 612 |
print(f" π Print accreditation data: Name='{name_value}', Position='{position_value}'")
|
| 613 |
|
|
|
|
| 614 |
for row_idx, row in enumerate(table.rows):
|
| 615 |
if len(row.cells) >= 2:
|
|
|
|
| 616 |
cell1_text = get_clean_text(row.cells[0]).lower()
|
| 617 |
cell2_text = get_clean_text(row.cells[1]).lower()
|
| 618 |
|
| 619 |
if "print name" in cell1_text and "position title" in cell2_text:
|
| 620 |
print(f" π Found header row {row_idx + 1}: '{cell1_text}' | '{cell2_text}'")
|
| 621 |
|
|
|
|
| 622 |
if row_idx + 1 < len(table.rows):
|
| 623 |
data_row = table.rows[row_idx + 1]
|
| 624 |
if len(data_row.cells) >= 2:
|
|
|
|
| 625 |
if has_red_text(data_row.cells[0]):
|
| 626 |
cell_replacements = replace_red_text_in_cell(data_row.cells[0], name_value)
|
| 627 |
replacements_made += cell_replacements
|
| 628 |
if cell_replacements > 0:
|
| 629 |
print(f" β
Replaced Print Name: '{name_value}'")
|
| 630 |
|
|
|
|
| 631 |
if has_red_text(data_row.cells[1]):
|
| 632 |
cell_replacements = replace_red_text_in_cell(data_row.cells[1], position_value)
|
| 633 |
replacements_made += cell_replacements
|
| 634 |
if cell_replacements > 0:
|
| 635 |
print(f" β
Replaced Position Title: '{position_value}'")
|
| 636 |
|
| 637 |
+
break
|
| 638 |
|
| 639 |
return replacements_made
|
| 640 |
|
| 641 |
def process_single_column_sections(cell, field_name, flat_json):
|
| 642 |
+
"""Enhanced single column processing"""
|
| 643 |
json_value = find_matching_json_value(field_name, flat_json)
|
| 644 |
if json_value is not None:
|
| 645 |
replacement_text = get_value_as_string(json_value, field_name)
|
|
|
|
| 655 |
return 0
|
| 656 |
|
| 657 |
def process_tables(document, flat_json):
|
| 658 |
+
"""ENHANCED: Your existing function + smart enhancements"""
|
| 659 |
replacements_made = 0
|
| 660 |
|
| 661 |
for table_idx, table in enumerate(document.tables):
|
| 662 |
print(f"\nπ Processing table {table_idx + 1}:")
|
| 663 |
|
| 664 |
+
# ENHANCED: Dynamic table analysis
|
| 665 |
+
table_structure = analyze_table_structure(table)
|
| 666 |
+
print(f" π Table structure: {table_structure['type']} ({table_structure['row_count']}x{table_structure['column_count']})")
|
| 667 |
+
|
| 668 |
+
# Your existing logic with enhancements
|
| 669 |
table_text = ""
|
| 670 |
+
for row in table.rows[:3]:
|
| 671 |
for cell in row.cells:
|
| 672 |
table_text += get_clean_text(cell).lower() + " "
|
| 673 |
|
| 674 |
+
# Enhanced vehicle registration detection
|
| 675 |
vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension"]
|
| 676 |
indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
|
| 677 |
+
if indicator_count >= 2 or table_structure['type'] == 'vehicle_registration': # Lowered threshold
|
| 678 |
print(f" π Detected Vehicle Registration table")
|
| 679 |
vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
|
| 680 |
replacements_made += vehicle_replacements
|
| 681 |
+
continue
|
| 682 |
|
| 683 |
+
# Enhanced print accreditation detection
|
| 684 |
print_accreditation_indicators = ["print name", "position title"]
|
| 685 |
indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)
|
| 686 |
+
if indicator_count >= 1 or table_structure['type'] == 'declaration': # Lowered threshold
|
| 687 |
print(f" π Detected Print Accreditation table")
|
| 688 |
print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
|
| 689 |
replacements_made += print_accreditation_replacements
|
| 690 |
+
continue
|
| 691 |
|
| 692 |
+
# Your existing row processing with enhancements
|
| 693 |
for row_idx, row in enumerate(table.rows):
|
| 694 |
+
if len(row.cells) < 1:
|
| 695 |
continue
|
| 696 |
|
|
|
|
| 697 |
key_cell = row.cells[0]
|
| 698 |
key_text = get_clean_text(key_cell)
|
| 699 |
|
|
|
|
| 702 |
|
| 703 |
print(f" π Row {row_idx + 1}: Key = '{key_text}'")
|
| 704 |
|
|
|
|
| 705 |
json_value = find_matching_json_value(key_text, flat_json)
|
| 706 |
|
| 707 |
if json_value is not None:
|
| 708 |
replacement_text = get_value_as_string(json_value, key_text)
|
| 709 |
|
| 710 |
+
# Enhanced ACN handling
|
| 711 |
if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
|
| 712 |
cell_replacements = handle_australian_company_number(row, json_value)
|
| 713 |
replacements_made += cell_replacements
|
| 714 |
|
| 715 |
+
# Enhanced section header handling
|
| 716 |
elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
|
| 717 |
print(f" β
Section header detected, checking next row for content...")
|
| 718 |
next_row = table.rows[row_idx + 1]
|
| 719 |
|
|
|
|
| 720 |
for cell_idx, cell in enumerate(next_row.cells):
|
| 721 |
if has_red_text(cell):
|
| 722 |
print(f" β
Found red text in next row, cell {cell_idx + 1}")
|
|
|
|
| 723 |
if isinstance(json_value, list):
|
| 724 |
replacement_text = "\n".join(str(item) for item in json_value)
|
| 725 |
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
|
|
|
|
| 739 |
cell_replacements = replace_red_text_in_cell(value_cell, replacement_text)
|
| 740 |
replacements_made += cell_replacements
|
| 741 |
else:
|
| 742 |
+
# Enhanced fallback processing for unmatched keys
|
| 743 |
if len(row.cells) == 1 and has_red_text(key_cell):
|
| 744 |
red_text = ""
|
| 745 |
for paragraph in key_cell.paragraphs:
|
|
|
|
| 753 |
cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
|
| 754 |
replacements_made += cell_replacements
|
| 755 |
|
| 756 |
+
# Enhanced red text processing for all cells
|
| 757 |
for cell_idx in range(len(row.cells)):
|
| 758 |
cell = row.cells[cell_idx]
|
| 759 |
if has_red_text(cell):
|
| 760 |
+
cell_replacements = handle_multiple_red_segments_in_cell(cell, flat_json)
|
| 761 |
+
replacements_made += cell_replacements
|
|
|
|
|
|
|
|
|
|
|
|
|
| 762 |
|
| 763 |
+
# ENHANCED: Fallback for still unmatched red text
|
| 764 |
+
if cell_replacements == 0:
|
| 765 |
+
context_replacements = try_context_based_replacement(cell, row, table, flat_json)
|
| 766 |
+
replacements_made += context_replacements
|
| 767 |
+
|
| 768 |
+
# ENHANCED: Smart fallback processor
|
| 769 |
+
if context_replacements == 0:
|
| 770 |
+
fallback_replacements = smart_fallback_processor(cell, flat_json)
|
| 771 |
+
replacements_made += fallback_replacements
|
| 772 |
|
| 773 |
return replacements_made
|
| 774 |
|
| 775 |
def process_paragraphs(document, flat_json):
|
| 776 |
+
"""ENHANCED: Your existing function + smart fallbacks"""
|
| 777 |
replacements_made = 0
|
| 778 |
print(f"\nπ Processing paragraphs:")
|
| 779 |
+
|
| 780 |
for para_idx, paragraph in enumerate(document.paragraphs):
|
| 781 |
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
|
| 782 |
if red_runs:
|
|
|
|
| 784 |
red_text_only = "".join(run.text for run in red_runs).strip()
|
| 785 |
print(f" π Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")
|
| 786 |
|
| 787 |
+
# Your existing matching logic
|
| 788 |
json_value = find_matching_json_value(red_text_only, flat_json)
|
| 789 |
|
|
|
|
| 790 |
if json_value is None:
|
| 791 |
+
# Enhanced pattern matching for signatures and dates
|
| 792 |
if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
|
| 793 |
json_value = find_matching_json_value("auditor signature", flat_json)
|
| 794 |
elif "OPERATOR SIGNATURE" in red_text_only.upper():
|
| 795 |
json_value = find_matching_json_value("operator signature", flat_json)
|
| 796 |
+
# ENHANCED: Try semantic matching
|
| 797 |
+
elif json_value is None:
|
| 798 |
+
json_value = semantic_text_matching(red_text_only, flat_json)
|
| 799 |
|
| 800 |
if json_value is not None:
|
| 801 |
replacement_text = get_value_as_string(json_value)
|
|
|
|
| 805 |
for run in red_runs[1:]:
|
| 806 |
run.text = ''
|
| 807 |
replacements_made += 1
|
| 808 |
+
else:
|
| 809 |
+
# ENHANCED: Try smart fallback
|
| 810 |
+
fallback_replacements = smart_fallback_processor(paragraph, flat_json)
|
| 811 |
+
replacements_made += fallback_replacements
|
| 812 |
+
|
| 813 |
+
return replacements_made
|
| 814 |
+
|
| 815 |
+
def process_headings(document, flat_json):
|
| 816 |
+
"""ENHANCED: Your existing function + comprehensive coverage"""
|
| 817 |
+
replacements_made = 0
|
| 818 |
+
print(f"\nπ Processing headings:")
|
| 819 |
+
|
| 820 |
+
paragraphs = document.paragraphs
|
| 821 |
+
|
| 822 |
+
for para_idx, paragraph in enumerate(paragraphs):
|
| 823 |
+
paragraph_text = paragraph.text.strip()
|
| 824 |
+
|
| 825 |
+
if not paragraph_text:
|
| 826 |
+
continue
|
| 827 |
+
|
| 828 |
+
# Enhanced heading detection
|
| 829 |
+
matched_heading = None
|
| 830 |
+
for category, patterns in HEADING_PATTERNS.items():
|
| 831 |
+
for pattern in patterns:
|
| 832 |
+
if re.search(pattern, paragraph_text, re.IGNORECASE):
|
| 833 |
+
matched_heading = pattern
|
| 834 |
+
break
|
| 835 |
+
if matched_heading:
|
| 836 |
+
break
|
| 837 |
+
|
| 838 |
+
if matched_heading:
|
| 839 |
+
print(f" π Found heading at paragraph {para_idx + 1}: '{paragraph_text}'")
|
| 840 |
+
|
| 841 |
+
# Check current heading paragraph
|
| 842 |
+
if has_red_text_in_paragraph(paragraph):
|
| 843 |
+
print(f" π΄ Found red text in heading itself")
|
| 844 |
+
heading_replacements = process_red_text_in_paragraph(paragraph, paragraph_text, flat_json)
|
| 845 |
+
replacements_made += heading_replacements
|
| 846 |
+
|
| 847 |
+
# Enhanced: Look further ahead for related content
|
| 848 |
+
for next_para_offset in range(1, 6): # Extended range
|
| 849 |
+
next_para_idx = para_idx + next_para_offset
|
| 850 |
+
if next_para_idx >= len(paragraphs):
|
| 851 |
+
break
|
| 852 |
+
|
| 853 |
+
next_paragraph = paragraphs[next_para_idx]
|
| 854 |
+
next_text = next_paragraph.text.strip()
|
| 855 |
+
|
| 856 |
+
if not next_text:
|
| 857 |
+
continue
|
| 858 |
+
|
| 859 |
+
# Stop if we hit another heading
|
| 860 |
+
is_another_heading = False
|
| 861 |
+
for category, patterns in HEADING_PATTERNS.items():
|
| 862 |
+
for pattern in patterns:
|
| 863 |
+
if re.search(pattern, next_text, re.IGNORECASE):
|
| 864 |
+
is_another_heading = True
|
| 865 |
+
break
|
| 866 |
+
if is_another_heading:
|
| 867 |
+
break
|
| 868 |
+
|
| 869 |
+
if is_another_heading:
|
| 870 |
+
break
|
| 871 |
+
|
| 872 |
+
# Process red text with enhanced context
|
| 873 |
+
if has_red_text_in_paragraph(next_paragraph):
|
| 874 |
+
print(f" π΄ Found red text in paragraph {next_para_idx + 1} after heading: '{next_text[:50]}...'")
|
| 875 |
+
|
| 876 |
+
context_replacements = process_red_text_in_paragraph(
|
| 877 |
+
next_paragraph,
|
| 878 |
+
paragraph_text,
|
| 879 |
+
flat_json
|
| 880 |
+
)
|
| 881 |
+
replacements_made += context_replacements
|
| 882 |
+
|
| 883 |
+
# ENHANCED: Smart fallback if still no match
|
| 884 |
+
if context_replacements == 0:
|
| 885 |
+
fallback_replacements = smart_fallback_processor(next_paragraph, flat_json)
|
| 886 |
+
replacements_made += fallback_replacements
|
| 887 |
+
|
| 888 |
+
return replacements_made
|
| 889 |
+
|
| 890 |
+
def has_red_text_in_paragraph(paragraph):
|
| 891 |
+
"""Enhanced paragraph red text detection"""
|
| 892 |
+
for run in paragraph.runs:
|
| 893 |
+
if is_red(run) and run.text.strip():
|
| 894 |
+
return True
|
| 895 |
+
return False
|
| 896 |
+
|
| 897 |
+
def process_red_text_in_paragraph(paragraph, context_text, flat_json):
|
| 898 |
+
"""ENHANCED: Your existing function + smarter matching"""
|
| 899 |
+
replacements_made = 0
|
| 900 |
+
|
| 901 |
+
red_text_segments = []
|
| 902 |
+
for run in paragraph.runs:
|
| 903 |
+
if is_red(run) and run.text.strip():
|
| 904 |
+
red_text_segments.append(run.text.strip())
|
| 905 |
+
|
| 906 |
+
if not red_text_segments:
|
| 907 |
+
return 0
|
| 908 |
+
|
| 909 |
+
combined_red_text = " ".join(red_text_segments).strip()
|
| 910 |
+
print(f" π Red text found: '{combined_red_text}'")
|
| 911 |
+
|
| 912 |
+
json_value = None
|
| 913 |
+
|
| 914 |
+
# Strategy 1: Direct matching
|
| 915 |
+
json_value = find_matching_json_value(combined_red_text, flat_json)
|
| 916 |
+
|
| 917 |
+
# Strategy 2: Enhanced context-based matching
|
| 918 |
+
if json_value is None:
|
| 919 |
+
if "NHVAS APPROVED AUDITOR" in context_text.upper():
|
| 920 |
+
auditor_fields = ["auditor name", "auditor", "nhvas auditor", "approved auditor", "print name"]
|
| 921 |
+
for field in auditor_fields:
|
| 922 |
+
json_value = find_matching_json_value(field, flat_json)
|
| 923 |
+
if json_value is not None:
|
| 924 |
+
print(f" β
Found auditor match with field: '{field}'")
|
| 925 |
+
break
|
| 926 |
+
|
| 927 |
+
elif "OPERATOR DECLARATION" in context_text.upper():
|
| 928 |
+
operator_fields = ["operator name", "operator", "company name", "organisation name", "print name"]
|
| 929 |
+
for field in operator_fields:
|
| 930 |
+
json_value = find_matching_json_value(field, flat_json)
|
| 931 |
+
if json_value is not None:
|
| 932 |
+
print(f" β
Found operator match with field: '{field}'")
|
| 933 |
+
break
|
| 934 |
+
|
| 935 |
+
# Strategy 3: Enhanced context combination
|
| 936 |
+
if json_value is None:
|
| 937 |
+
context_queries = [
|
| 938 |
+
f"{context_text} {combined_red_text}",
|
| 939 |
+
combined_red_text,
|
| 940 |
+
context_text
|
| 941 |
+
]
|
| 942 |
+
|
| 943 |
+
for query in context_queries:
|
| 944 |
+
json_value = find_matching_json_value(query, flat_json)
|
| 945 |
+
if json_value is not None:
|
| 946 |
+
print(f" β
Found match with combined query: '{query[:50]}...'")
|
| 947 |
+
break
|
| 948 |
+
|
| 949 |
+
# ENHANCED: Strategy 4: Semantic matching
|
| 950 |
+
if json_value is None:
|
| 951 |
+
json_value = semantic_text_matching(combined_red_text, flat_json)
|
| 952 |
+
if json_value:
|
| 953 |
+
print(f" β
Found semantic match for: '{combined_red_text}'")
|
| 954 |
+
|
| 955 |
+
# Replace if match found
|
| 956 |
+
if json_value is not None:
|
| 957 |
+
replacement_text = get_value_as_string(json_value, combined_red_text)
|
| 958 |
+
|
| 959 |
+
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
|
| 960 |
+
if red_runs:
|
| 961 |
+
red_runs[0].text = replacement_text
|
| 962 |
+
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
|
| 963 |
+
|
| 964 |
+
for run in red_runs[1:]:
|
| 965 |
+
run.text = ''
|
| 966 |
+
|
| 967 |
+
replacements_made = 1
|
| 968 |
+
print(f" β
Replaced with: '{replacement_text}'")
|
| 969 |
+
else:
|
| 970 |
+
print(f" β No match found for red text: '{combined_red_text}'")
|
| 971 |
+
|
| 972 |
+
return replacements_made
|
| 973 |
+
|
| 974 |
+
def comprehensive_document_scan(document, flat_json):
|
| 975 |
+
"""NEW: Final comprehensive scan for any missed red text"""
|
| 976 |
+
print(f"\nπ Comprehensive final scan for missed red text:")
|
| 977 |
+
replacements_made = 0
|
| 978 |
+
|
| 979 |
+
# Scan all elements in document
|
| 980 |
+
for element in document.element.body:
|
| 981 |
+
# Check tables
|
| 982 |
+
if element.tag.endswith('tbl'):
|
| 983 |
+
table_obj = None
|
| 984 |
+
for table in document.tables:
|
| 985 |
+
if table._element == element:
|
| 986 |
+
table_obj = table
|
| 987 |
+
break
|
| 988 |
+
|
| 989 |
+
if table_obj:
|
| 990 |
+
for row in table_obj.rows:
|
| 991 |
+
for cell in row.cells:
|
| 992 |
+
if has_red_text(cell):
|
| 993 |
+
# Try one more time with enhanced fallback
|
| 994 |
+
cell_replacements = smart_fallback_processor(cell, flat_json)
|
| 995 |
+
replacements_made += cell_replacements
|
| 996 |
+
|
| 997 |
+
# Check paragraphs
|
| 998 |
+
elif element.tag.endswith('p'):
|
| 999 |
+
paragraph_obj = None
|
| 1000 |
+
for para in document.paragraphs:
|
| 1001 |
+
if para._element == element:
|
| 1002 |
+
paragraph_obj = para
|
| 1003 |
+
break
|
| 1004 |
+
|
| 1005 |
+
if paragraph_obj and has_red_text_in_paragraph(paragraph_obj):
|
| 1006 |
+
# Try enhanced fallback
|
| 1007 |
+
para_replacements = smart_fallback_processor(paragraph_obj, flat_json)
|
| 1008 |
+
replacements_made += para_replacements
|
| 1009 |
+
|
| 1010 |
+
if replacements_made > 0:
|
| 1011 |
+
print(f" β
Final scan caught {replacements_made} additional replacements!")
|
| 1012 |
+
else:
|
| 1013 |
+
print(f" β
No additional red text found - document fully processed!")
|
| 1014 |
+
|
| 1015 |
return replacements_made
|
| 1016 |
|
| 1017 |
def process_hf(json_file, docx_file, output_file):
|
| 1018 |
+
"""ENHANCED: Your existing main function + comprehensive processing"""
|
|
|
|
|
|
|
|
|
|
| 1019 |
try:
|
| 1020 |
+
# Load JSON
|
| 1021 |
if hasattr(json_file, "read"):
|
| 1022 |
json_data = json.load(json_file)
|
| 1023 |
else:
|
| 1024 |
with open(json_file, 'r', encoding='utf-8') as f:
|
| 1025 |
json_data = json.load(f)
|
| 1026 |
+
|
| 1027 |
flat_json = flatten_json(json_data)
|
| 1028 |
print("π Available JSON keys (sample):")
|
| 1029 |
for i, (key, value) in enumerate(sorted(flat_json.items())):
|
|
|
|
| 1031 |
print(f" - {key}: {value}")
|
| 1032 |
print(f" ... and {len(flat_json) - 10} more keys\n")
|
| 1033 |
|
| 1034 |
+
# Load DOCX
|
| 1035 |
if hasattr(docx_file, "read"):
|
| 1036 |
doc = Document(docx_file)
|
| 1037 |
else:
|
| 1038 |
doc = Document(docx_file)
|
| 1039 |
|
| 1040 |
+
# ENHANCED: Multi-pass processing for 100% coverage
|
| 1041 |
+
print("π Starting enhanced multi-pass processing...")
|
| 1042 |
+
|
| 1043 |
+
# Pass 1: Your existing processors (enhanced)
|
| 1044 |
table_replacements = process_tables(doc, flat_json)
|
| 1045 |
paragraph_replacements = process_paragraphs(doc, flat_json)
|
| 1046 |
heading_replacements = process_headings(doc, flat_json)
|
| 1047 |
+
|
| 1048 |
+
# Pass 2: NEW - Comprehensive final scan
|
| 1049 |
+
final_scan_replacements = comprehensive_document_scan(doc, flat_json)
|
| 1050 |
+
|
| 1051 |
+
total_replacements = table_replacements + paragraph_replacements + heading_replacements + final_scan_replacements
|
| 1052 |
|
| 1053 |
+
# Save output
|
| 1054 |
if hasattr(output_file, "write"):
|
| 1055 |
doc.save(output_file)
|
| 1056 |
else:
|
| 1057 |
doc.save(output_file)
|
| 1058 |
+
|
| 1059 |
print(f"\nβ
Document saved as: {output_file}")
|
| 1060 |
+
print(f"β
Total replacements: {total_replacements}")
|
| 1061 |
+
print(f" π Tables: {table_replacements}")
|
| 1062 |
+
print(f" π Paragraphs: {paragraph_replacements}")
|
| 1063 |
+
print(f" π Headings: {heading_replacements}")
|
| 1064 |
+
print(f" π― Final scan: {final_scan_replacements}")
|
| 1065 |
+
print(f"π Processing complete with enhanced coverage!")
|
| 1066 |
|
| 1067 |
except FileNotFoundError as e:
|
| 1068 |
print(f"β File not found: {e}")
|
|
|
|
| 1074 |
if __name__ == "__main__":
|
| 1075 |
import sys
|
| 1076 |
if len(sys.argv) != 4:
|
| 1077 |
+
print("Usage: python enhanced_pipeline.py <input_docx> <updated_json> <output_docx>")
|
| 1078 |
exit(1)
|
| 1079 |
docx_path = sys.argv[1]
|
| 1080 |
json_path = sys.argv[2]
|
| 1081 |
output_path = sys.argv[3]
|
| 1082 |
+
process_hf(json_path, docx_path, output_path)
|