import gradio as gr import tempfile import os import shutil import subprocess def process_files(pdf_file, word_file): # Create a unique temporary directory for this run temp_dir = tempfile.mkdtemp(prefix="hf_redtext_") # Define standard filenames for use in the pipeline pdf_path = os.path.join(temp_dir, "input.pdf") word_path = os.path.join(temp_dir, "input.docx") pdf_txt_path = os.path.join(temp_dir, "pdf_data.txt") word_json_path = os.path.join(temp_dir, "word_data.json") updated_json_path = os.path.join(temp_dir, "updated_word_data.json") final_docx_path = os.path.join(temp_dir, "updated.docx") # Copy the uploaded files to the temp directory shutil.copy(pdf_file, pdf_path) shutil.copy(word_file, word_path) # Step 1: Extract text from the PDF subprocess.run(["python", "extract_pdf_data.py", pdf_path, pdf_txt_path], check=True) # Step 2: Extract red text from the Word document subprocess.run(["python", "extract_red_text.py", word_path, word_json_path], check=True) # Step 3: Update the Word JSON using the PDF text (calls OpenAI) subprocess.run(["python", "update_docx_with_pdf.py", word_json_path, pdf_txt_path, updated_json_path], check=True) # Step 4: Apply the updated JSON to the Word doc to create the final output subprocess.run(["python", "updated_word.py", word_path, updated_json_path, final_docx_path], check=True) # Return the final .docx file return final_docx_path iface = gr.Interface( fn=process_files, inputs=[ gr.File(label="Upload PDF File", type="filepath"), gr.File(label="Upload Word File", type="filepath") ], outputs=gr.File(label="Download Updated Word File"), title="Red Text Replacer", description="Upload a PDF and Word document. Red-colored text in the Word doc will be replaced by matching content from the PDF." ) if __name__ == "__main__": iface.launch()