Spaces:
Running
Running
File size: 95,540 Bytes
457b8fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 |
# extract_glossary_from_epub.py
import os
import json
import argparse
import zipfile
import time
import sys
import tiktoken
import threading
import queue
import ebooklib
import re
from ebooklib import epub
from chapter_splitter import ChapterSplitter
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Dict, Tuple
from unified_api_client import UnifiedClient, UnifiedClientError
# Fix for PyInstaller - handle stdout reconfigure more carefully
if sys.platform.startswith("win"):
try:
# Try to reconfigure if the method exists
if hasattr(sys.stdout, 'reconfigure'):
sys.stdout.reconfigure(encoding="utf-8", errors="replace")
except (AttributeError, ValueError):
# If reconfigure doesn't work, try to set up UTF-8 another way
import io
import locale
if sys.stdout and hasattr(sys.stdout, 'buffer'):
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', errors='replace')
MODEL = os.getenv("MODEL", "gemini-2.0-flash")
def interruptible_sleep(duration, check_stop_fn, interval=0.1):
"""Sleep that can be interrupted by stop request"""
elapsed = 0
while elapsed < duration:
if check_stop_fn and check_stop_fn(): # Add safety check for None
return False # Interrupted
sleep_time = min(interval, duration - elapsed)
time.sleep(sleep_time)
elapsed += sleep_time
return True # Completed normally
def cancel_all_futures(futures):
"""Cancel all pending futures immediately"""
cancelled_count = 0
for future in futures:
if not future.done() and future.cancel():
cancelled_count += 1
return cancelled_count
def create_client_with_multi_key_support(api_key, model, output_dir, config):
"""Create a UnifiedClient with multi API key support if enabled"""
# Check if multi API key mode is enabled
use_multi_keys = config.get('use_multi_api_keys', False)
# Set environment variables for UnifiedClient to pick up
if use_multi_keys and 'multi_api_keys' in config and config['multi_api_keys']:
print("🔑 Multi API Key mode enabled for glossary extraction")
# Set environment variables that UnifiedClient will read
os.environ['USE_MULTI_API_KEYS'] = '1'
os.environ['MULTI_API_KEYS'] = json.dumps(config['multi_api_keys'])
os.environ['FORCE_KEY_ROTATION'] = '1' if config.get('force_key_rotation', True) else '0'
os.environ['ROTATION_FREQUENCY'] = str(config.get('rotation_frequency', 1))
print(f" • Keys configured: {len(config['multi_api_keys'])}")
print(f" • Force rotation: {config.get('force_key_rotation', True)}")
print(f" • Rotation frequency: every {config.get('rotation_frequency', 1)} request(s)")
else:
# Ensure multi-key mode is disabled in environment
os.environ['USE_MULTI_API_KEYS'] = '0'
# Create UnifiedClient normally - it will check environment variables
return UnifiedClient(api_key=api_key, model=model, output_dir=output_dir)
def send_with_interrupt(messages, client, temperature, max_tokens, stop_check_fn, chunk_timeout=None):
"""Send API request with interrupt capability and optional timeout retry"""
result_queue = queue.Queue()
def api_call():
try:
start_time = time.time()
result = client.send(messages, temperature=temperature, max_tokens=max_tokens, context='glossary')
elapsed = time.time() - start_time
result_queue.put((result, elapsed))
except Exception as e:
result_queue.put(e)
api_thread = threading.Thread(target=api_call)
api_thread.daemon = True
api_thread.start()
timeout = chunk_timeout if chunk_timeout is not None else 86400
check_interval = 0.1
elapsed = 0
while elapsed < timeout:
try:
# Check for results with shorter timeout
result = result_queue.get(timeout=check_interval)
if isinstance(result, Exception):
raise result
if isinstance(result, tuple):
api_result, api_time = result
if chunk_timeout and api_time > chunk_timeout:
if hasattr(client, '_in_cleanup'):
client._in_cleanup = True
if hasattr(client, 'cancel_current_operation'):
client.cancel_current_operation()
raise UnifiedClientError(f"API call took {api_time:.1f}s (timeout: {chunk_timeout}s)")
return api_result
return result
except queue.Empty:
if stop_check_fn():
# More aggressive cancellation
print("🛑 Stop requested - cancelling API call immediately...")
# Set cleanup flag
if hasattr(client, '_in_cleanup'):
client._in_cleanup = True
# Try to cancel the operation
if hasattr(client, 'cancel_current_operation'):
client.cancel_current_operation()
# Don't wait for the thread to finish - just raise immediately
raise UnifiedClientError("Glossary extraction stopped by user")
elapsed += check_interval
# Timeout occurred
if hasattr(client, '_in_cleanup'):
client._in_cleanup = True
if hasattr(client, 'cancel_current_operation'):
client.cancel_current_operation()
raise UnifiedClientError(f"API call timed out after {timeout} seconds")
# Parse token limit from environment variable (same logic as translation)
def parse_glossary_token_limit():
"""Parse token limit from environment variable"""
env_value = os.getenv("GLOSSARY_TOKEN_LIMIT", "1000000").strip()
if not env_value or env_value == "":
return None, "unlimited"
if env_value.lower() == "unlimited":
return None, "unlimited"
if env_value.isdigit() and int(env_value) > 0:
limit = int(env_value)
return limit, str(limit)
# Default fallback
return 1000000, "1000000 (default)"
MAX_GLOSSARY_TOKENS, GLOSSARY_LIMIT_STR = parse_glossary_token_limit()
# Global stop flag for GUI integration
_stop_requested = False
def set_stop_flag(value):
"""Set the global stop flag"""
global _stop_requested
_stop_requested = value
# When clearing the stop flag, also clear the multi-key environment variable
if not value:
os.environ['TRANSLATION_CANCELLED'] = '0'
# Also clear UnifiedClient global flag
try:
import unified_api_client
if hasattr(unified_api_client, 'UnifiedClient'):
unified_api_client.UnifiedClient._global_cancelled = False
except:
pass
def is_stop_requested():
"""Check if stop was requested"""
global _stop_requested
return _stop_requested
# ─── resilient tokenizer setup ───
try:
enc = tiktoken.encoding_for_model(MODEL)
except Exception:
try:
enc = tiktoken.get_encoding("cl100k_base")
except Exception:
enc = None
def count_tokens(text: str) -> int:
if enc:
return len(enc.encode(text))
# crude fallback: assume ~1 token per 4 chars
return max(1, len(text) // 4)
from ebooklib import epub
from bs4 import BeautifulSoup
from unified_api_client import UnifiedClient
from typing import List, Dict
import re
PROGRESS_FILE = "glossary_progress.json"
def remove_honorifics(name):
"""Remove common honorifics from names"""
if not name:
return name
# Check if honorifics filtering is disabled
if os.getenv('GLOSSARY_DISABLE_HONORIFICS_FILTER', '0') == '1':
return name.strip()
# Modern Korean honorifics
korean_honorifics = [
'님', '씨', '씨는', '군', '양', '선생님', '선생', '사장님', '사장',
'과장님', '과장', '대리님', '대리', '주임님', '주임', '이사님', '이사',
'부장님', '부장', '차장님', '차장', '팀장님', '팀장', '실장님', '실장',
'교수님', '교수', '박사님', '박사', '원장님', '원장', '회장님', '회장',
'소장님', '소장', '전무님', '전무', '상무님', '상무', '이사장님', '이사장'
]
# Archaic/Historical Korean honorifics
korean_archaic = [
'공', '옹', '어른', '나리', '나으리', '대감', '영감', '마님', '마마',
'대군', '군', '옹주', '공주', '왕자', '세자', '영애', '영식', '도령',
'낭자', '낭군', '서방', '영감님', '대감님', '마님', '아씨', '도련님',
'아가씨', '나으리', '진사', '첨지', '영의정', '좌의정', '우의정',
'판서', '참판', '정승', '대원군'
]
# Modern Japanese honorifics
japanese_honorifics = [
'さん', 'さま', '様', 'くん', '君', 'ちゃん', 'せんせい', '先生',
'どの', '殿', 'たん', 'ぴょん', 'ぽん', 'ちん', 'りん', 'せんぱい',
'先輩', 'こうはい', '後輩', 'し', '氏', 'ふじん', '夫人', 'かちょう',
'課長', 'ぶちょう', '部長', 'しゃちょう', '社長'
]
# Archaic/Historical Japanese honorifics
japanese_archaic = [
'どの', '殿', 'たいゆう', '大夫', 'きみ', '公', 'あそん', '朝臣',
'おみ', '臣', 'むらじ', '連', 'みこと', '命', '尊', 'ひめ', '姫',
'みや', '宮', 'おう', '王', 'こう', '侯', 'はく', '伯', 'し', '子',
'だん', '男', 'じょ', '女', 'ひこ', '彦', 'ひめみこ', '姫御子',
'すめらみこと', '天皇', 'きさき', '后', 'みかど', '帝'
]
# Modern Chinese honorifics
chinese_honorifics = [
'先生', '女士', '小姐', '老师', '师傅', '大人', '公', '君', '总',
'老总', '老板', '经理', '主任', '处长', '科长', '股长', '教授',
'博士', '院长', '校长', '同志', '师兄', '师姐', '师弟', '师妹',
'学长', '学姐', '前辈', '阁下'
]
# Archaic/Historical Chinese honorifics
chinese_archaic = [
'公', '侯', '伯', '子', '男', '王', '君', '卿', '大夫', '士',
'陛下', '殿下', '阁下', '爷', '老爷', '大人', '夫人', '娘娘',
'公子', '公主', '郡主', '世子', '太子', '皇上', '皇后', '贵妃',
'娘子', '相公', '官人', '郎君', '小姐', '姑娘', '公公', '嬷嬷',
'大侠', '少侠', '前辈', '晚辈', '在下', '足下', '兄台', '仁兄',
'贤弟', '老夫', '老朽', '本座', '本尊', '真人', '上人', '尊者'
]
# Combine all honorifics
all_honorifics = (
korean_honorifics + korean_archaic +
japanese_honorifics + japanese_archaic +
chinese_honorifics + chinese_archaic
)
# Remove honorifics from the end of the name
name_cleaned = name.strip()
# Sort by length (longest first) to avoid partial matches
sorted_honorifics = sorted(all_honorifics, key=len, reverse=True)
for honorific in sorted_honorifics:
if name_cleaned.endswith(honorific):
name_cleaned = name_cleaned[:-len(honorific)].strip()
# Only remove one honorific per pass
break
return name_cleaned
def set_output_redirect(log_callback=None):
"""Redirect print statements to a callback function for GUI integration"""
if log_callback:
import sys
import io
class CallbackWriter:
def __init__(self, callback):
self.callback = callback
self.buffer = ""
def write(self, text):
if text.strip():
self.callback(text.strip())
def flush(self):
pass
sys.stdout = CallbackWriter(log_callback)
def load_config(path: str) -> Dict:
with open(path, 'r', encoding='utf-8') as f:
cfg = json.load(f)
# override context_limit_chapters if GUI passed GLOSSARY_CONTEXT_LIMIT
env_limit = os.getenv("GLOSSARY_CONTEXT_LIMIT")
if env_limit is not None:
try:
cfg['context_limit_chapters'] = int(env_limit)
except ValueError:
pass # keep existing config value on parse error
# override temperature if GUI passed GLOSSARY_TEMPERATURE
env_temp = os.getenv("GLOSSARY_TEMPERATURE")
if env_temp is not None:
try:
cfg['temperature'] = float(env_temp)
except ValueError:
pass # keep existing config value on parse error
return cfg
def get_custom_entry_types():
"""Get custom entry types configuration from environment"""
try:
types_json = os.getenv('GLOSSARY_CUSTOM_ENTRY_TYPES', '{}')
result = json.loads(types_json)
# If empty, return defaults
if not result:
return {
'character': {'enabled': True, 'has_gender': True},
'term': {'enabled': True, 'has_gender': False}
}
return result
except:
# Default configuration
return {
'character': {'enabled': True, 'has_gender': True},
'term': {'enabled': True, 'has_gender': False}
}
def save_glossary_json(glossary: List[Dict], output_path: str):
"""Save glossary in the new simple format with automatic sorting by type"""
# Get custom types for sorting order
custom_types = get_custom_entry_types()
# Create sorting order: character=0, term=1, others alphabetically starting from 2
type_order = {'character': 0, 'term': 1}
other_types = sorted([t for t in custom_types.keys() if t not in ['character', 'term']])
for i, t in enumerate(other_types):
type_order[t] = i + 2
# Sort glossary by type order, then by raw_name
sorted_glossary = sorted(glossary, key=lambda x: (
type_order.get(x.get('type', 'term'), 999), # Unknown types go last
x.get('raw_name', '').lower()
))
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(sorted_glossary, f, ensure_ascii=False, indent=2)
def save_glossary_csv(glossary: List[Dict], output_path: str):
"""Save glossary in CSV or token-efficient format based on environment variable"""
import csv
csv_path = output_path.replace('.json', '.csv')
# Get custom types for sorting order and gender info
custom_types = get_custom_entry_types()
# Create sorting order
type_order = {'character': 0, 'term': 1}
other_types = sorted([t for t in custom_types.keys() if t not in ['character', 'term']])
for i, t in enumerate(other_types):
type_order[t] = i + 2
# Sort glossary
sorted_glossary = sorted(glossary, key=lambda x: (
type_order.get(x.get('type', 'term'), 999),
x.get('raw_name', '').lower()
))
# Check if we should use legacy CSV format
use_legacy_format = os.getenv('GLOSSARY_USE_LEGACY_CSV', '0') == '1'
if use_legacy_format:
# LEGACY CSV FORMAT
with open(csv_path, 'w', encoding='utf-8', newline='') as f:
writer = csv.writer(f)
# Build header row
header = ['type', 'raw_name', 'translated_name', 'gender']
# Add any custom fields to header
custom_fields_json = os.getenv('GLOSSARY_CUSTOM_FIELDS', '[]')
try:
custom_fields = json.loads(custom_fields_json)
header.extend(custom_fields)
except:
custom_fields = []
# Write header row
writer.writerow(header)
# Write data rows
for entry in sorted_glossary:
entry_type = entry.get('type', 'term')
type_config = custom_types.get(entry_type, {})
# Base row: type, raw_name, translated_name
row = [entry_type, entry.get('raw_name', ''), entry.get('translated_name', '')]
# Add gender only if type supports it
if type_config.get('has_gender', False):
row.append(entry.get('gender', ''))
# Add custom field values
for field in custom_fields:
row.append(entry.get(field, ''))
# Count how many fields we SHOULD have
expected_fields = 4 + len(custom_fields) # type, raw_name, translated_name, gender + custom fields
# Only trim if we have MORE than expected (extra trailing empties)
while len(row) > expected_fields and row[-1] == '':
row.pop()
# Ensure minimum required fields (type, raw_name, translated_name)
while len(row) < 3:
row.append('')
# Write row
writer.writerow(row)
print(f"✅ Saved legacy CSV format: {csv_path}")
else:
# NEW TOKEN-EFFICIENT FORMAT (DEFAULT)
# Group entries by type
grouped_entries = {}
for entry in sorted_glossary:
entry_type = entry.get('type', 'term')
if entry_type not in grouped_entries:
grouped_entries[entry_type] = []
grouped_entries[entry_type].append(entry)
# Get custom fields configuration
custom_fields_json = os.getenv('GLOSSARY_CUSTOM_FIELDS', '[]')
try:
custom_fields = json.loads(custom_fields_json)
except:
custom_fields = []
# Write as plain text format for token efficiency
with open(csv_path, 'w', encoding='utf-8') as f:
# Write header
f.write("Glossary: Characters, Terms, and Important Elements\n\n")
# Process each type group
for entry_type in sorted(grouped_entries.keys(), key=lambda x: type_order.get(x, 999)):
entries = grouped_entries[entry_type]
type_config = custom_types.get(entry_type, {})
# Write section header
section_name = entry_type.upper() + 'S' if not entry_type.upper().endswith('S') else entry_type.upper()
f.write(f"=== {section_name} ===\n")
# Write entries for this type with indentation
for entry in entries:
# Build the entry line
raw_name = entry.get('raw_name', '')
translated_name = entry.get('translated_name', '')
# Start with asterisk and name
line = f"* {translated_name} ({raw_name})"
# Add gender if applicable and not Unknown
if type_config.get('has_gender', False):
gender = entry.get('gender', '')
if gender and gender != 'Unknown':
line += f" [{gender}]"
# Add custom field values if they exist
custom_field_parts = []
for field in custom_fields:
value = entry.get(field, '').strip()
if value:
# For description fields, add as continuation
if field.lower() in ['description', 'notes', 'details']:
line += f": {value}"
else:
custom_field_parts.append(f"{field}: {value}")
# Add other custom fields in parentheses
if custom_field_parts:
line += f" ({', '.join(custom_field_parts)})"
# Write the line
f.write(line + "\n")
# Add blank line between sections
f.write("\n")
print(f"✅ Saved token-efficient glossary: {csv_path}")
# Print summary for both formats
type_counts = {}
for entry_type in grouped_entries:
type_counts[entry_type] = len(grouped_entries[entry_type])
total = sum(type_counts.values())
print(f" Total entries: {total}")
for entry_type, count in type_counts.items():
print(f" - {entry_type}: {count} entries")
def extract_chapters_from_epub(epub_path: str) -> List[str]:
chapters = []
items = []
# Add this helper function
def is_html_document(item):
"""Check if an EPUB item is an HTML document"""
if hasattr(item, 'media_type'):
return item.media_type in [
'application/xhtml+xml',
'text/html',
'application/html+xml',
'text/xml'
]
# Fallback for items that don't have media_type
if hasattr(item, 'get_name'):
name = item.get_name()
return name.lower().endswith(('.html', '.xhtml', '.htm'))
return False
try:
# Add stop check before reading
if is_stop_requested():
return []
book = epub.read_epub(epub_path)
# Replace the problematic line with media type checking
items = [item for item in book.get_items() if is_html_document(item)]
except Exception as e:
print(f"[Warning] Manifest load failed, falling back to raw EPUB scan: {e}")
try:
with zipfile.ZipFile(epub_path, 'r') as zf:
names = [n for n in zf.namelist() if n.lower().endswith(('.html', '.xhtml'))]
for name in names:
# Add stop check in loop
if is_stop_requested():
return chapters
try:
data = zf.read(name)
items.append(type('X', (), {
'get_content': lambda self, data=data: data,
'get_name': lambda self, name=name: name,
'media_type': 'text/html' # Add media_type for consistency
})())
except Exception:
print(f"[Warning] Could not read zip file entry: {name}")
except Exception as ze:
print(f"[Fatal] Cannot open EPUB as zip: {ze}")
return chapters
for item in items:
# Add stop check before processing each chapter
if is_stop_requested():
return chapters
try:
raw = item.get_content()
soup = BeautifulSoup(raw, 'html.parser')
text = soup.get_text("\n", strip=True)
if text:
chapters.append(text)
except Exception as e:
name = item.get_name() if hasattr(item, 'get_name') else repr(item)
print(f"[Warning] Skipped corrupted chapter {name}: {e}")
return chapters
def trim_context_history(history: List[Dict], limit: int, rolling_window: bool = False) -> List[Dict]:
"""
Handle context history with either reset or rolling window mode
Args:
history: List of conversation history
limit: Maximum number of exchanges to keep
rolling_window: Whether to use rolling window mode
"""
# Count current exchanges
current_exchanges = len(history)
# Handle based on mode
if limit > 0 and current_exchanges >= limit:
if rolling_window:
# Rolling window: keep the most recent exchanges
print(f"🔄 Rolling glossary context window: keeping last {limit} chapters")
# Keep only the most recent exchanges
history = history[-(limit-1):] if limit > 1 else []
else:
# Reset mode (original behavior)
print(f"🔄 Reset glossary context after {limit} chapters")
return [] # Return empty to reset context
# Convert to message format
trimmed = []
for entry in history:
trimmed.append({"role": "user", "content": entry["user"]})
trimmed.append({"role": "assistant", "content": entry["assistant"]})
return trimmed
def load_progress() -> Dict:
if os.path.exists(PROGRESS_FILE):
with open(PROGRESS_FILE, 'r', encoding='utf-8') as f:
return json.load(f)
return {"completed": [], "glossary": [], "context_history": []}
def parse_api_response(response_text: str) -> List[Dict]:
"""Parse API response to extract glossary entries - handles custom types"""
entries = []
# Get enabled types from custom configuration
custom_types = get_custom_entry_types()
enabled_types = [t for t, cfg in custom_types.items() if cfg.get('enabled', True)]
# First try JSON parsing
try:
# Clean up response text
cleaned_text = response_text.strip()
# Remove markdown code blocks if present
if '```json' in cleaned_text or '```' in cleaned_text:
import re
code_block_match = re.search(r'```(?:json)?\s*(.*?)\s*```', cleaned_text, re.DOTALL)
if code_block_match:
cleaned_text = code_block_match.group(1)
# Try to find JSON array or object
import re
json_match = re.search(r'[\[\{].*[\]\}]', cleaned_text, re.DOTALL)
if json_match:
json_str = json_match.group(0)
data = json.loads(json_str)
if isinstance(data, list):
for item in data:
if isinstance(item, dict):
# Check if entry type is enabled
entry_type = item.get('type', '').lower()
# Handle legacy format where type is the key
if not entry_type:
for type_name in enabled_types:
if type_name in item:
entry_type = type_name
fixed_entry = {
'type': type_name,
'raw_name': item.get(type_name, ''),
'translated_name': item.get('translated_name', '')
}
# Add gender if type supports it
if custom_types.get(type_name, {}).get('has_gender', False):
fixed_entry['gender'] = item.get('gender', 'Unknown')
# Copy other fields
for k, v in item.items():
if k not in [type_name, 'translated_name', 'gender', 'type', 'raw_name']:
fixed_entry[k] = v
entries.append(fixed_entry)
break
else:
# Standard format with type field
if entry_type in enabled_types:
entries.append(item)
return entries
elif isinstance(data, dict):
# Handle single entry
entry_type = data.get('type', '').lower()
if entry_type in enabled_types:
return [data]
# Check for wrapper
for key in ['entries', 'glossary', 'characters', 'terms', 'data']:
if key in data and isinstance(data[key], list):
return parse_api_response(json.dumps(data[key]))
return []
except (json.JSONDecodeError, AttributeError) as e:
print(f"[Debug] JSON parsing failed: {e}")
pass
# CSV-like format parsing
lines = response_text.strip().split('\n')
for line in lines:
line = line.strip()
if not line or line.startswith('#'):
continue
# Skip header lines
if 'type' in line.lower() and 'raw_name' in line.lower():
continue
# Parse CSV
parts = []
current_part = []
in_quotes = False
for char in line + ',':
if char == '"':
in_quotes = not in_quotes
elif char == ',' and not in_quotes:
parts.append(''.join(current_part).strip())
current_part = []
else:
current_part.append(char)
if parts and parts[-1] == '':
parts = parts[:-1]
if len(parts) >= 3:
entry_type = parts[0].lower()
# Check if type is enabled
if entry_type not in enabled_types:
continue
entry = {
'type': entry_type,
'raw_name': parts[1],
'translated_name': parts[2]
}
# Add gender if type supports it and it's provided
type_config = custom_types.get(entry_type, {})
if type_config.get('has_gender', False) and len(parts) > 3 and parts[3]:
entry['gender'] = parts[3]
elif type_config.get('has_gender', False):
entry['gender'] = 'Unknown'
# Add any custom fields
custom_fields_json = os.getenv('GLOSSARY_CUSTOM_FIELDS', '[]')
try:
custom_fields = json.loads(custom_fields_json)
start_idx = 4 # Always 4, not conditional
for i, field in enumerate(custom_fields):
if len(parts) > start_idx + i:
field_value = parts[start_idx + i]
if field_value: # Only add if not empty
entry[field] = field_value
except:
pass
entries.append(entry)
return entries
def validate_extracted_entry(entry):
"""Validate that extracted entry has required fields and enabled type"""
if 'type' not in entry:
return False
# Check if type is enabled
custom_types = get_custom_entry_types()
entry_type = entry.get('type', '').lower()
if entry_type not in custom_types:
return False
if not custom_types[entry_type].get('enabled', True):
return False
# Must have raw_name and translated_name
if 'raw_name' not in entry or not entry['raw_name']:
return False
if 'translated_name' not in entry or not entry['translated_name']:
return False
return True
def build_prompt(chapter_text: str) -> tuple:
"""Build the extraction prompt with custom types - returns (system_prompt, user_prompt)"""
custom_prompt = os.getenv('GLOSSARY_SYSTEM_PROMPT', '').strip()
if not custom_prompt:
# If no custom prompt, create a default
custom_prompt = """Extract all character names and important terms from the text.
{fields}
Only include entries that appear in the text.
Return the data in the exact format specified above."""
# Check if the prompt contains {fields} placeholder
if '{fields}' in custom_prompt:
# Get enabled types
custom_types = get_custom_entry_types()
enabled_types = [(t, cfg) for t, cfg in custom_types.items() if cfg.get('enabled', True)]
# Get custom fields
custom_fields_json = os.getenv('GLOSSARY_CUSTOM_FIELDS', '[]')
try:
custom_fields = json.loads(custom_fields_json)
except:
custom_fields = []
# Build fields specification based on what the prompt expects
# Check if the prompt mentions CSV or JSON to determine format
if 'CSV' in custom_prompt.upper():
# CSV format
fields_spec = []
# Show the header format
header_parts = ['type', 'raw_name', 'translated_name', 'gender']
if custom_fields:
header_parts.extend(custom_fields)
fields_spec.append(','.join(header_parts))
# Show examples for each type
for type_name, type_config in enabled_types:
example_parts = [type_name, '<name in original language>', '<English translation>']
# Add gender field
if type_config.get('has_gender', False):
example_parts.append('<Male/Female/Unknown>')
else:
example_parts.append('') # Empty for non-character types
# Add custom field placeholders
for field in custom_fields:
example_parts.append(f'<{field} value>')
fields_spec.append(','.join(example_parts))
fields_str = '\n'.join(fields_spec)
else:
# JSON format (default)
fields_spec = []
fields_spec.append("Extract entities and return as a JSON array.")
fields_spec.append("Each entry must be a JSON object with these exact fields:")
fields_spec.append("")
for type_name, type_config in enabled_types:
fields_spec.append(f"For {type_name}s:")
fields_spec.append(f' "type": "{type_name}" (required)')
fields_spec.append(' "raw_name": the name in original language/script (required)')
fields_spec.append(' "translated_name": English translation or romanization (required)')
if type_config.get('has_gender', False):
fields_spec.append(' "gender": "Male", "Female", or "Unknown" (required for characters)')
fields_spec.append("")
# Add custom fields info
if custom_fields:
fields_spec.append("Additional custom fields to include:")
for field in custom_fields:
fields_spec.append(f' "{field}": appropriate value')
fields_spec.append("")
# Add example
if enabled_types:
fields_spec.append("Example output format:")
fields_spec.append('[')
examples = []
if 'character' in [t[0] for t in enabled_types]:
example = ' {"type": "character", "raw_name": "田中太郎", "translated_name": "Tanaka Taro", "gender": "Male"'
for field in custom_fields:
example += f', "{field}": "example value"'
example += '}'
examples.append(example)
if 'term' in [t[0] for t in enabled_types]:
example = ' {"type": "term", "raw_name": "東京駅", "translated_name": "Tokyo Station"'
for field in custom_fields:
example += f', "{field}": "example value"'
example += '}'
examples.append(example)
fields_spec.append(',\n'.join(examples))
fields_spec.append(']')
fields_str = '\n'.join(fields_spec)
# Replace {fields} placeholder
system_prompt = custom_prompt.replace('{fields}', fields_str)
else:
# No {fields} placeholder - use the prompt as-is
system_prompt = custom_prompt
# Remove any {chapter_text} placeholders from system prompt
system_prompt = system_prompt.replace('{chapter_text}', '')
system_prompt = system_prompt.replace('{{chapter_text}}', '')
system_prompt = system_prompt.replace('{text}', '')
system_prompt = system_prompt.replace('{{text}}', '')
# Strip any trailing "Text:" or similar
system_prompt = system_prompt.rstrip()
if system_prompt.endswith('Text:'):
system_prompt = system_prompt[:-5].rstrip()
# User prompt is just the chapter text
user_prompt = chapter_text
return (system_prompt, user_prompt)
def skip_duplicate_entries(glossary):
"""
Skip entries with duplicate raw names using fuzzy matching.
Returns deduplicated list maintaining first occurrence of each unique raw name.
"""
import difflib
# Get fuzzy threshold from environment
fuzzy_threshold = float(os.getenv('GLOSSARY_FUZZY_THRESHOLD', '0.9'))
seen_raw_names = [] # List of (cleaned_name, original_entry) tuples
deduplicated = []
skipped_count = 0
for entry in glossary:
# Get raw_name and clean it
raw_name = entry.get('raw_name', '')
if not raw_name:
continue
# Remove honorifics for comparison (unless disabled)
cleaned_name = remove_honorifics(raw_name)
# Check for fuzzy matches with seen names
is_duplicate = False
for seen_clean, seen_original in seen_raw_names:
similarity = difflib.SequenceMatcher(None, cleaned_name.lower(), seen_clean.lower()).ratio()
if similarity >= fuzzy_threshold:
skipped_count += 1
print(f"[Skip] Duplicate entry: {raw_name} (cleaned: {cleaned_name}) - {similarity*100:.1f}% match with {seen_original}")
is_duplicate = True
break
if not is_duplicate:
# Add to seen list and keep the entry
seen_raw_names.append((cleaned_name, entry.get('raw_name', '')))
deduplicated.append(entry)
if skipped_count > 0:
print(f"⏭️ Skipped {skipped_count} duplicate entries (threshold: {fuzzy_threshold:.2f})")
print(f"✅ Kept {len(deduplicated)} unique entries")
return deduplicated
# Batch processing functions
def process_chapter_batch(chapters_batch: List[Tuple[int, str]],
client: UnifiedClient,
config: Dict,
contextual_enabled: bool,
history: List[Dict],
ctx_limit: int,
rolling_window: bool,
check_stop,
chunk_timeout: int = None) -> List[Dict]:
"""
Process a batch of chapters in parallel with improved interrupt support
"""
temp = float(os.getenv("GLOSSARY_TEMPERATURE") or config.get('temperature', 0.1))
env_max_output = os.getenv("MAX_OUTPUT_TOKENS")
if env_max_output and env_max_output.isdigit():
mtoks = int(env_max_output)
else:
mtoks = config.get('max_tokens', 4196)
results = []
with ThreadPoolExecutor(max_workers=len(chapters_batch)) as executor:
futures = {}
for idx, chap in chapters_batch:
if check_stop():
break
# Get system and user prompts
system_prompt, user_prompt = build_prompt(chap)
# Build messages correctly with system and user prompts
if not contextual_enabled:
msgs = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
else:
msgs = [{"role": "system", "content": system_prompt}] \
+ trim_context_history(history, ctx_limit, rolling_window) \
+ [{"role": "user", "content": user_prompt}]
# Submit to thread pool
future = executor.submit(
process_single_chapter_api_call,
idx, chap, msgs, client, temp, mtoks, check_stop, chunk_timeout
)
futures[future] = (idx, chap)
# Process results with better cancellation
for future in as_completed(futures): # Removed timeout - let futures complete
if check_stop():
print("🛑 Stop detected - cancelling all pending operations...")
# Cancel all pending futures immediately
cancelled = cancel_all_futures(list(futures.keys()))
if cancelled > 0:
print(f"✅ Cancelled {cancelled} pending API calls")
# Shutdown executor immediately
executor.shutdown(wait=False)
break
idx, chap = futures[future]
try:
result = future.result(timeout=0.5) # Short timeout on result retrieval
# Ensure chap is added to result here if not already present
if 'chap' not in result:
result['chap'] = chap
results.append(result)
except Exception as e:
if "stopped by user" in str(e).lower():
print(f"✅ Chapter {idx+1} stopped by user")
else:
print(f"Error processing chapter {idx+1}: {e}")
results.append({
'idx': idx,
'data': [],
'resp': "",
'chap': chap,
'error': str(e)
})
# Sort results by chapter index
results.sort(key=lambda x: x['idx'])
return results
def process_single_chapter_api_call(idx: int, chap: str, msgs: List[Dict],
client: UnifiedClient, temp: float, mtoks: int,
stop_check_fn, chunk_timeout: int = None) -> Dict:
"""Process a single chapter API call with thread-safe payload handling"""
# APPLY INTERRUPTIBLE THREADING DELAY FIRST
thread_delay = float(os.getenv("THREAD_SUBMISSION_DELAY_SECONDS", "0.5"))
if thread_delay > 0:
# Check if we need to wait (same logic as unified_api_client)
if hasattr(client, '_thread_submission_lock') and hasattr(client, '_last_thread_submission_time'):
with client._thread_submission_lock:
current_time = time.time()
time_since_last = current_time - client._last_thread_submission_time
if time_since_last < thread_delay:
sleep_time = thread_delay - time_since_last
thread_name = threading.current_thread().name
# PRINT BEFORE THE DELAY STARTS
print(f"🧵 [{thread_name}] Applying thread delay: {sleep_time:.1f}s for Chapter {idx+1}")
# Interruptible sleep - check stop flag every 0.1 seconds
elapsed = 0
check_interval = 0.1
while elapsed < sleep_time:
if stop_check_fn():
print(f"🛑 Threading delay interrupted by stop flag")
raise UnifiedClientError("Glossary extraction stopped by user during threading delay")
sleep_chunk = min(check_interval, sleep_time - elapsed)
time.sleep(sleep_chunk)
elapsed += sleep_chunk
client._last_thread_submission_time = time.time()
if not hasattr(client, '_thread_submission_count'):
client._thread_submission_count = 0
client._thread_submission_count += 1
start_time = time.time()
print(f"[BATCH] Starting API call for Chapter {idx+1} at {time.strftime('%H:%M:%S')}")
# Thread-safe payload directory
thread_name = threading.current_thread().name
thread_id = threading.current_thread().ident
thread_dir = os.path.join("Payloads", "glossary", f"{thread_name}_{thread_id}")
os.makedirs(thread_dir, exist_ok=True)
try:
# Save request payload before API call
payload_file = os.path.join(thread_dir, f"chapter_{idx+1}_request.json")
with open(payload_file, 'w', encoding='utf-8') as f:
json.dump({
'chapter': idx + 1,
'messages': msgs,
'temperature': temp,
'max_tokens': mtoks,
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
}, f, indent=2, ensure_ascii=False)
# Use send_with_interrupt for API call
raw = send_with_interrupt(
messages=msgs,
client=client,
temperature=temp,
max_tokens=mtoks,
stop_check_fn=stop_check_fn,
chunk_timeout=chunk_timeout
)
# Handle the response - it might be a tuple or a string
if raw is None:
print(f"⚠️ API returned None for chapter {idx+1}")
return {
'idx': idx,
'data': [],
'resp': "",
'chap': chap,
'error': "API returned None"
}
if isinstance(raw, tuple):
resp = raw[0] if raw[0] is not None else ""
elif isinstance(raw, str):
resp = raw
elif hasattr(raw, 'content'):
resp = raw.content if raw.content is not None else ""
elif hasattr(raw, 'text'):
resp = raw.text if raw.text is not None else ""
else:
resp = str(raw) if raw is not None else ""
# Ensure resp is never None
if resp is None:
resp = ""
# Save the raw response in thread-safe location
response_file = os.path.join(thread_dir, f"chapter_{idx+1}_response.txt")
with open(response_file, "w", encoding="utf-8", errors="replace") as f:
f.write(resp)
# Parse response using the new parser
data = parse_api_response(resp)
# More detailed debug logging
print(f"[BATCH] Chapter {idx+1} - Raw response length: {len(resp)} chars")
print(f"[BATCH] Chapter {idx+1} - Parsed {len(data)} entries before validation")
# Filter out invalid entries
valid_data = []
for entry in data:
if validate_extracted_entry(entry):
# Clean the raw_name
if 'raw_name' in entry:
entry['raw_name'] = entry['raw_name'].strip()
valid_data.append(entry)
else:
print(f"[BATCH] Chapter {idx+1} - Invalid entry: {entry}")
elapsed = time.time() - start_time
print(f"[BATCH] Completed Chapter {idx+1} in {elapsed:.1f}s at {time.strftime('%H:%M:%S')} - Extracted {len(valid_data)} valid entries")
return {
'idx': idx,
'data': valid_data,
'resp': resp,
'chap': chap, # Include the chapter text in the result
'error': None
}
except UnifiedClientError as e:
print(f"[Error] API call interrupted/failed for chapter {idx+1}: {e}")
return {
'idx': idx,
'data': [],
'resp': "",
'chap': chap, # Include chapter even on error
'error': str(e)
}
except Exception as e:
print(f"[Error] Unexpected error for chapter {idx+1}: {e}")
import traceback
print(f"[Error] Traceback: {traceback.format_exc()}")
return {
'idx': idx,
'data': [],
'resp': "",
'chap': chap, # Include chapter even on error
'error': str(e)
}
# Update main function to support batch processing:
def main(log_callback=None, stop_callback=None):
"""Modified main function that can accept a logging callback and stop callback"""
if log_callback:
set_output_redirect(log_callback)
# Set up stop checking
def check_stop():
if stop_callback and stop_callback():
print("❌ Glossary extraction stopped by user request.")
return True
return is_stop_requested()
start = time.time()
# Handle both command line and GUI calls
if '--epub' in sys.argv:
# Command line mode
parser = argparse.ArgumentParser(description='Extract glossary from EPUB/TXT')
parser.add_argument('--epub', required=True, help='Path to EPUB/TXT file')
parser.add_argument('--output', required=True, help='Output glossary path')
parser.add_argument('--config', help='Config file path')
args = parser.parse_args()
epub_path = args.epub
else:
# GUI mode - get from environment
epub_path = os.getenv("EPUB_PATH", "")
if not epub_path and len(sys.argv) > 1:
epub_path = sys.argv[1]
# Create args object for GUI mode
import types
args = types.SimpleNamespace()
args.epub = epub_path
args.output = os.getenv("OUTPUT_PATH", "glossary.json")
args.config = os.getenv("CONFIG_PATH", "config.json")
is_text_file = epub_path.lower().endswith('.txt')
if is_text_file:
# Import text processor
from extract_glossary_from_txt import extract_chapters_from_txt
chapters = extract_chapters_from_txt(epub_path)
file_base = os.path.splitext(os.path.basename(epub_path))[0]
else:
# Existing EPUB code
chapters = extract_chapters_from_epub(epub_path)
epub_base = os.path.splitext(os.path.basename(epub_path))[0]
file_base = epub_base
# If user didn't override --output, derive it from the EPUB filename:
if args.output == 'glossary.json':
args.output = f"{file_base}_glossary.json"
# ensure we have a Glossary subfolder next to the JSON/MD outputs
glossary_dir = os.path.join(os.path.dirname(args.output), "Glossary")
os.makedirs(glossary_dir, exist_ok=True)
# override the module‐level PROGRESS_FILE to include epub name
global PROGRESS_FILE
PROGRESS_FILE = os.path.join(
glossary_dir,
f"{file_base}_glossary_progress.json"
)
config = load_config(args.config)
# Get API key from environment variables (set by GUI) or config file
api_key = (os.getenv("API_KEY") or
os.getenv("OPENAI_API_KEY") or
os.getenv("OPENAI_OR_Gemini_API_KEY") or
os.getenv("GEMINI_API_KEY") or
config.get('api_key'))
# Get model from environment or config
model = os.getenv("MODEL") or config.get('model', 'gemini-1.5-flash')
# Define output directory (use current directory as default)
out = os.path.dirname(args.output) if hasattr(args, 'output') else os.getcwd()
# Use the variables we just retrieved
client = create_client_with_multi_key_support(api_key, model, out, config)
# Check for batch mode
batch_enabled = os.getenv("BATCH_TRANSLATION", "0") == "1"
batch_size = int(os.getenv("BATCH_SIZE", "5"))
conservative_batching = os.getenv("CONSERVATIVE_BATCHING", "0") == "1"
print(f"[DEBUG] BATCH_TRANSLATION = {os.getenv('BATCH_TRANSLATION')} (enabled: {batch_enabled})")
print(f"[DEBUG] BATCH_SIZE = {batch_size}")
print(f"[DEBUG] CONSERVATIVE_BATCHING = {os.getenv('CONSERVATIVE_BATCHING')} (enabled: {conservative_batching})")
if batch_enabled:
print(f"🚀 Glossary batch mode enabled with size: {batch_size}")
print(f"📑 Note: Glossary extraction uses direct batching (not affected by conservative batching setting)")
#API call delay
api_delay = float(os.getenv("SEND_INTERVAL_SECONDS", "2"))
print(f"⏱️ API call delay: {api_delay} seconds")
# Get compression factor from environment
compression_factor = float(os.getenv("COMPRESSION_FACTOR", "1.0"))
print(f"📐 Compression Factor: {compression_factor}")
# Initialize chapter splitter with compression factor
chapter_splitter = ChapterSplitter(model_name=model, compression_factor=compression_factor)
# Get temperature from environment or config
temp = float(os.getenv("GLOSSARY_TEMPERATURE") or config.get('temperature', 0.1))
env_max_output = os.getenv("MAX_OUTPUT_TOKENS")
if env_max_output and env_max_output.isdigit():
mtoks = int(env_max_output)
print(f"[DEBUG] Output Token Limit: {mtoks} (from GUI)")
else:
mtoks = config.get('max_tokens', 4196)
print(f"[DEBUG] Output Token Limit: {mtoks} (from config)")
# Get context limit from environment or config
ctx_limit = int(os.getenv("GLOSSARY_CONTEXT_LIMIT") or config.get('context_limit_chapters', 3))
# Parse chapter range from environment
chapter_range = os.getenv("CHAPTER_RANGE", "").strip()
range_start = None
range_end = None
if chapter_range and re.match(r"^\d+\s*-\s*\d+$", chapter_range):
range_start, range_end = map(int, chapter_range.split("-", 1))
print(f"📊 Chapter Range Filter: {range_start} to {range_end}")
elif chapter_range:
print(f"⚠️ Invalid chapter range format: {chapter_range} (use format: 5-10)")
# Log settings
format_parts = ["type", "raw_name", "translated_name", "gender"]
custom_fields_json = os.getenv('GLOSSARY_CUSTOM_FIELDS', '[]')
try:
custom_fields = json.loads(custom_fields_json)
if custom_fields:
format_parts.extend(custom_fields)
except:
pass
print(f"📑 Glossary Format: Simple ({', '.join(format_parts)})")
# Check honorifics filter toggle
honorifics_disabled = os.getenv('GLOSSARY_DISABLE_HONORIFICS_FILTER', '0') == '1'
if honorifics_disabled:
print("📑 Honorifics Filtering: ❌ DISABLED")
else:
print("📑 Honorifics Filtering: ✅ ENABLED")
# Log custom fields
custom_fields_json = os.getenv('GLOSSARY_CUSTOM_FIELDS', '[]')
try:
custom_fields = json.loads(custom_fields_json)
if custom_fields:
print(f"📑 Custom Fields: {', '.join(custom_fields)}")
except:
pass
# Check if custom prompt is being used
if os.getenv('GLOSSARY_SYSTEM_PROMPT'):
print("📑 Using custom extraction prompt")
else:
print("📑 Using default extraction prompt")
if is_text_file:
from extract_glossary_from_txt import extract_chapters_from_txt
chapters = extract_chapters_from_txt(args.epub)
else:
chapters = extract_chapters_from_epub(args.epub)
if not chapters:
print("No chapters found. Exiting.")
return
# Check for stop before starting processing
if check_stop():
return
prog = load_progress()
completed = prog['completed']
glossary = prog['glossary']
history = prog['context_history']
total_chapters = len(chapters)
# Get both settings
contextual_enabled = os.getenv('CONTEXTUAL', '1') == '1'
rolling_window = os.getenv('GLOSSARY_HISTORY_ROLLING', '0') == '1'
# Count chapters that will be processed with range filter
chapters_to_process = []
for idx, chap in enumerate(chapters):
# Skip if chapter is outside the range
if range_start is not None and range_end is not None:
chapter_num = idx + 1 # 1-based chapter numbering
if not (range_start <= chapter_num <= range_end):
continue
if idx not in completed:
chapters_to_process.append((idx, chap))
if len(chapters_to_process) < total_chapters:
print(f"📊 Processing {len(chapters_to_process)} out of {total_chapters} chapters")
# Get chunk timeout from environment
chunk_timeout = int(os.getenv("CHUNK_TIMEOUT", "900")) # 15 minutes default
# Process chapters based on mode
if batch_enabled and len(chapters_to_process) > 0:
# BATCH MODE: Process in batches with per-entry saving
total_batches = (len(chapters_to_process) + batch_size - 1) // batch_size
for batch_num in range(total_batches):
# Check for stop at the beginning of each batch
if check_stop():
print(f"❌ Glossary extraction stopped at batch {batch_num+1}")
# Apply deduplication before stopping
if glossary:
print("🔀 Applying deduplication and sorting before exit...")
glossary[:] = skip_duplicate_entries(glossary)
# Sort glossary
custom_types = get_custom_entry_types()
type_order = {'character': 0, 'term': 1}
other_types = sorted([t for t in custom_types.keys() if t not in ['character', 'term']])
for i, t in enumerate(other_types):
type_order[t] = i + 2
glossary.sort(key=lambda x: (
type_order.get(x.get('type', 'term'), 999),
x.get('raw_name', '').lower()
))
save_progress(completed, glossary, history)
save_glossary_json(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
save_glossary_csv(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
print(f"✅ Saved {len(glossary)} deduplicated entries before exit")
return
# Get current batch
batch_start = batch_num * batch_size
batch_end = min(batch_start + batch_size, len(chapters_to_process))
current_batch = chapters_to_process[batch_start:batch_end]
print(f"\n🔄 Processing Batch {batch_num+1}/{total_batches} (Chapters: {[idx+1 for idx, _ in current_batch]})")
print(f"[BATCH] Submitting {len(current_batch)} chapters for parallel processing...")
batch_start_time = time.time()
# Process batch in parallel BUT handle results as they complete
temp = float(os.getenv("GLOSSARY_TEMPERATURE") or config.get('temperature', 0.1))
env_max_output = os.getenv("MAX_OUTPUT_TOKENS")
if env_max_output and env_max_output.isdigit():
mtoks = int(env_max_output)
else:
mtoks = config.get('max_tokens', 4196)
batch_entry_count = 0
with ThreadPoolExecutor(max_workers=len(current_batch)) as executor:
futures = {}
# Submit all chapters in the batch
for idx, chap in current_batch:
if check_stop():
# Apply deduplication before breaking
if glossary:
print("🔀 Applying deduplication before stopping...")
glossary[:] = skip_duplicate_entries(glossary)
save_glossary_json(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
save_glossary_csv(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
break
# Get system and user prompts
system_prompt, user_prompt = build_prompt(chap)
# Build messages
if not contextual_enabled:
msgs = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
else:
msgs = [{"role": "system", "content": system_prompt}] \
+ trim_context_history(history, ctx_limit, rolling_window) \
+ [{"role": "user", "content": user_prompt}]
# Submit to thread pool
future = executor.submit(
process_single_chapter_api_call,
idx, chap, msgs, client, temp, mtoks, check_stop, chunk_timeout
)
futures[future] = (idx, chap)
# Small yield to keep GUI responsive when submitting many tasks
if idx % 5 == 0:
time.sleep(0.001)
# Small yield to keep GUI responsive when submitting many tasks
if idx % 5 == 0:
time.sleep(0.001)
# Process results AS THEY COMPLETE, not all at once
for future in as_completed(futures):
if check_stop():
print("🛑 Stop detected - cancelling all pending operations...")
cancelled = cancel_all_futures(list(futures.keys()))
if cancelled > 0:
print(f"✅ Cancelled {cancelled} pending API calls")
# Apply deduplication before stopping
if glossary:
print("🔀 Applying deduplication and sorting before exit...")
glossary[:] = skip_duplicate_entries(glossary)
# Sort glossary
custom_types = get_custom_entry_types()
type_order = {'character': 0, 'term': 1}
other_types = sorted([t for t in custom_types.keys() if t not in ['character', 'term']])
for i, t in enumerate(other_types):
type_order[t] = i + 2
glossary.sort(key=lambda x: (
type_order.get(x.get('type', 'term'), 999),
x.get('raw_name', '').lower()
))
save_progress(completed, glossary, history)
save_glossary_json(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
save_glossary_csv(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
print(f"✅ Saved {len(glossary)} deduplicated entries before exit")
executor.shutdown(wait=False)
break
idx, chap = futures[future]
try:
result = future.result(timeout=0.5)
# Process this chapter's results immediately
data = result.get('data', [])
resp = result.get('resp', '')
error = result.get('error')
if error:
print(f"[Chapter {idx+1}] Error: {error}")
completed.append(idx)
continue
# Process and save entries IMMEDIATELY as each chapter completes
if data and len(data) > 0:
total_ent = len(data)
batch_entry_count += total_ent
for eidx, entry in enumerate(data, start=1):
elapsed = time.time() - start
# Get entry info
entry_type = entry.get("type", "?")
raw_name = entry.get("raw_name", "?")
trans_name = entry.get("translated_name", "?")
print(f'[Chapter {idx+1}/{total_chapters}] [{eidx}/{total_ent}] ({elapsed:.1f}s elapsed) → {entry_type}: {raw_name} ({trans_name})')
# Add entry immediately WITHOUT deduplication
glossary.append(entry)
# Save immediately after EACH entry
save_progress(completed, glossary, history)
save_glossary_json(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
save_glossary_csv(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
completed.append(idx)
# Add to history if contextual is enabled
if contextual_enabled and resp and chap:
system_prompt, user_prompt = build_prompt(chap)
history.append({"user": user_prompt, "assistant": resp})
except Exception as e:
if "stopped by user" in str(e).lower():
print(f"✅ Chapter {idx+1} stopped by user")
else:
print(f"Error processing chapter {idx+1}: {e}")
completed.append(idx)
batch_elapsed = time.time() - batch_start_time
print(f"[BATCH] Batch {batch_num+1} completed in {batch_elapsed:.1f}s total")
# After batch completes, apply deduplication and sorting
if batch_entry_count > 0:
print(f"\n🔀 Applying deduplication and sorting after batch {batch_num+1}/{total_batches}")
original_size = len(glossary)
# Apply deduplication to entire glossary
glossary[:] = skip_duplicate_entries(glossary)
# Sort glossary by type and name
custom_types = get_custom_entry_types()
type_order = {'character': 0, 'term': 1}
other_types = sorted([t for t in custom_types.keys() if t not in ['character', 'term']])
for i, t in enumerate(other_types):
type_order[t] = i + 2
glossary.sort(key=lambda x: (
type_order.get(x.get('type', 'term'), 999),
x.get('raw_name', '').lower()
))
deduplicated_size = len(glossary)
removed = original_size - deduplicated_size
if removed > 0:
print(f"✅ Removed {removed} duplicates (fuzzy threshold: {os.getenv('GLOSSARY_FUZZY_THRESHOLD', '0.90')})")
print(f"📊 Glossary size: {deduplicated_size} unique entries")
# Save final deduplicated and sorted glossary
save_progress(completed, glossary, history)
save_glossary_json(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
save_glossary_csv(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
# Print batch summary
if batch_entry_count > 0:
print(f"\n📊 Batch {batch_num+1}/{total_batches} Summary:")
print(f" • Chapters processed: {len(current_batch)}")
print(f" • Total entries extracted: {batch_entry_count}")
print(f" • Glossary size: {len(glossary)} unique entries")
# Handle context history
if contextual_enabled:
if not rolling_window and len(history) >= ctx_limit and ctx_limit > 0:
print(f"🔄 Resetting glossary context (reached {ctx_limit} chapter limit)")
history = []
prog['context_history'] = []
# Add delay between batches (but not after the last batch)
if batch_num < total_batches - 1:
print(f"\n⏱️ Waiting {api_delay}s before next batch...")
if not interruptible_sleep(api_delay, check_stop, 0.1):
print(f"❌ Glossary extraction stopped during delay")
# Apply deduplication before stopping
if glossary:
print("🔀 Applying deduplication and sorting before exit...")
glossary[:] = skip_duplicate_entries(glossary)
# Sort glossary
custom_types = get_custom_entry_types()
type_order = {'character': 0, 'term': 1}
other_types = sorted([t for t in custom_types.keys() if t not in ['character', 'term']])
for i, t in enumerate(other_types):
type_order[t] = i + 2
glossary.sort(key=lambda x: (
type_order.get(x.get('type', 'term'), 999),
x.get('raw_name', '').lower()
))
save_progress(completed, glossary, history)
save_glossary_json(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
save_glossary_csv(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
print(f"✅ Saved {len(glossary)} deduplicated entries before exit")
return
else:
# SEQUENTIAL MODE: Original behavior
for idx, chap in enumerate(chapters):
# Check for stop at the beginning of each chapter
if check_stop():
print(f"❌ Glossary extraction stopped at chapter {idx+1}")
return
# Apply chapter range filter
if range_start is not None and range_end is not None:
chapter_num = idx + 1 # 1-based chapter numbering
if not (range_start <= chapter_num <= range_end):
# Check if this is from a text file
is_text_chapter = hasattr(chap, 'filename') and chap.get('filename', '').endswith('.txt')
terminology = "Section" if is_text_chapter else "Chapter"
print(f"[SKIP] {terminology} {chapter_num} - outside range filter")
continue
if idx in completed:
# Check if processing text file chapters
is_text_chapter = hasattr(chap, 'filename') and chap.get('filename', '').endswith('.txt')
terminology = "section" if is_text_chapter else "chapter"
print(f"Skipping {terminology} {idx+1} (already processed)")
continue
print(f"🔄 Processing Chapter {idx+1}/{total_chapters}")
# Check if history will reset on this chapter
if contextual_enabled and len(history) >= ctx_limit and ctx_limit > 0 and not rolling_window:
print(f" 📌 Glossary context will reset after this chapter (current: {len(history)}/{ctx_limit} chapters)")
try:
# Get system and user prompts from build_prompt
system_prompt, user_prompt = build_prompt(chap)
if not contextual_enabled:
# No context at all
msgs = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
else:
# Use context with trim_context_history handling the mode
msgs = [{"role": "system", "content": system_prompt}] \
+ trim_context_history(history, ctx_limit, rolling_window) \
+ [{"role": "user", "content": user_prompt}]
total_tokens = sum(count_tokens(m["content"]) for m in msgs)
# READ THE TOKEN LIMIT
env_value = os.getenv("MAX_INPUT_TOKENS", "1000000").strip()
if not env_value or env_value == "":
token_limit = None
limit_str = "unlimited"
elif env_value.isdigit() and int(env_value) > 0:
token_limit = int(env_value)
limit_str = str(token_limit)
else:
token_limit = 1000000
limit_str = "1000000 (default)"
print(f"[DEBUG] Glossary prompt tokens = {total_tokens} / {limit_str}")
# Check if we're over the token limit and need to split
if token_limit is not None and total_tokens > token_limit:
print(f"⚠️ Chapter {idx+1} exceeds token limit: {total_tokens} > {token_limit}")
print(f"📄 Using ChapterSplitter to split into smaller chunks...")
# Calculate available tokens for content
system_tokens = chapter_splitter.count_tokens(system_prompt)
context_tokens = sum(chapter_splitter.count_tokens(m["content"]) for m in trim_context_history(history, ctx_limit, rolling_window))
safety_margin = 1000
available_tokens = token_limit - system_tokens - context_tokens - safety_margin
# Since glossary extraction works with plain text, wrap it in a simple HTML structure
chapter_html = f"<html><body><p>{chap.replace(chr(10)+chr(10), '</p><p>')}</p></body></html>"
# Use ChapterSplitter to split the chapter
chunks = chapter_splitter.split_chapter(chapter_html, available_tokens)
print(f"📄 Chapter split into {len(chunks)} chunks")
# Process each chunk
chapter_glossary_data = [] # Collect data from all chunks
for chunk_html, chunk_idx, total_chunks in chunks:
if check_stop():
print(f"❌ Glossary extraction stopped during chunk {chunk_idx} of chapter {idx+1}")
return
print(f"🔄 Processing chunk {chunk_idx}/{total_chunks} of Chapter {idx+1}")
# Extract text from the chunk HTML
from bs4 import BeautifulSoup
soup = BeautifulSoup(chunk_html, 'html.parser')
chunk_text = soup.get_text(strip=True)
# Get system and user prompts for chunk
chunk_system_prompt, chunk_user_prompt = build_prompt(chunk_text)
# Build chunk messages
if not contextual_enabled:
chunk_msgs = [
{"role": "system", "content": chunk_system_prompt},
{"role": "user", "content": chunk_user_prompt}
]
else:
chunk_msgs = [{"role": "system", "content": chunk_system_prompt}] \
+ trim_context_history(history, ctx_limit, rolling_window) \
+ [{"role": "user", "content": chunk_user_prompt}]
# API call for chunk
try:
chunk_raw = send_with_interrupt(
messages=chunk_msgs,
client=client,
temperature=temp,
max_tokens=mtoks,
stop_check_fn=check_stop,
chunk_timeout=chunk_timeout
)
except UnifiedClientError as e:
if "stopped by user" in str(e).lower():
print(f"❌ Glossary extraction stopped during chunk {chunk_idx} API call")
return
elif "timeout" in str(e).lower():
print(f"⚠️ Chunk {chunk_idx} API call timed out: {e}")
continue # Skip this chunk
else:
print(f"❌ Chunk {chunk_idx} API error: {e}")
continue # Skip this chunk
except Exception as e:
print(f"❌ Unexpected error in chunk {chunk_idx}: {e}")
continue # Skip this chunk
# Process chunk response
if chunk_raw is None:
print(f"❌ API returned None for chunk {chunk_idx}")
continue
# Handle different response types
if isinstance(chunk_raw, tuple):
chunk_resp = chunk_raw[0] if chunk_raw[0] is not None else ""
elif isinstance(chunk_raw, str):
chunk_resp = chunk_raw
elif hasattr(chunk_raw, 'content'):
chunk_resp = chunk_raw.content if chunk_raw.content is not None else ""
elif hasattr(chunk_raw, 'text'):
chunk_resp = chunk_raw.text if chunk_raw.text is not None else ""
else:
print(f"❌ Unexpected response type for chunk {chunk_idx}: {type(chunk_raw)}")
chunk_resp = str(chunk_raw) if chunk_raw is not None else ""
# Ensure resp is a string
if not isinstance(chunk_resp, str):
print(f"⚠️ Converting non-string response to string for chunk {chunk_idx}")
chunk_resp = str(chunk_resp) if chunk_resp is not None else ""
# Check if response is empty
if not chunk_resp or chunk_resp.strip() == "":
print(f"⚠️ Empty response for chunk {chunk_idx}, skipping...")
continue
# Save chunk response with thread-safe location
thread_name = threading.current_thread().name
thread_id = threading.current_thread().ident
thread_dir = os.path.join("Payloads", "glossary", f"{thread_name}_{thread_id}")
os.makedirs(thread_dir, exist_ok=True)
with open(os.path.join(thread_dir, f"chunk_response_chap{idx+1}_chunk{chunk_idx}.txt"), "w", encoding="utf-8", errors="replace") as f:
f.write(chunk_resp)
# Extract data from chunk
chunk_resp_data = parse_api_response(chunk_resp)
if not chunk_resp_data:
print(f"[Warning] No data found in chunk {chunk_idx}, skipping...")
continue
# The parse_api_response already returns parsed data, no need to parse again
try:
# Filter out invalid entries directly from chunk_resp_data
valid_chunk_data = []
for entry in chunk_resp_data:
if validate_extracted_entry(entry):
# Clean the raw_name
if 'raw_name' in entry:
entry['raw_name'] = entry['raw_name'].strip()
valid_chunk_data.append(entry)
else:
print(f"[Debug] Skipped invalid entry in chunk {chunk_idx}: {entry}")
chapter_glossary_data.extend(valid_chunk_data)
print(f"✅ Chunk {chunk_idx}/{total_chunks}: extracted {len(valid_chunk_data)} entries")
# Add chunk to history if contextual
if contextual_enabled:
history.append({"user": chunk_user_prompt, "assistant": chunk_resp})
except Exception as e:
print(f"[Warning] Error processing chunk {chunk_idx} data: {e}")
continue
# Add delay between chunks (but not after last chunk)
if chunk_idx < total_chunks:
print(f"⏱️ Waiting {api_delay}s before next chunk...")
if not interruptible_sleep(api_delay, check_stop, 0.1):
print(f"❌ Glossary extraction stopped during chunk delay")
return
# Use the collected data from all chunks
data = chapter_glossary_data
resp = "" # Combined response not needed for progress tracking
print(f"✅ Chapter {idx+1} processed in {len(chunks)} chunks, total entries: {len(data)}")
else:
# Original single-chapter processing
# Check for stop before API call
if check_stop():
print(f"❌ Glossary extraction stopped before API call for chapter {idx+1}")
return
try:
# Use send_with_interrupt for API call
raw = send_with_interrupt(
messages=msgs,
client=client,
temperature=temp,
max_tokens=mtoks,
stop_check_fn=check_stop,
chunk_timeout=chunk_timeout
)
except UnifiedClientError as e:
if "stopped by user" in str(e).lower():
print(f"❌ Glossary extraction stopped during API call for chapter {idx+1}")
return
elif "timeout" in str(e).lower():
print(f"⚠️ API call timed out for chapter {idx+1}: {e}")
continue
else:
print(f"❌ API error for chapter {idx+1}: {e}")
continue
except Exception as e:
print(f"❌ Unexpected error for chapter {idx+1}: {e}")
continue
# Handle response
if raw is None:
print(f"❌ API returned None for chapter {idx+1}")
continue
# Handle different response types
if isinstance(raw, tuple):
resp = raw[0] if raw[0] is not None else ""
elif isinstance(raw, str):
resp = raw
elif hasattr(raw, 'content'):
resp = raw.content if raw.content is not None else ""
elif hasattr(raw, 'text'):
resp = raw.text if raw.text is not None else ""
else:
print(f"❌ Unexpected response type for chapter {idx+1}: {type(raw)}")
resp = str(raw) if raw is not None else ""
# Ensure resp is a string
if not isinstance(resp, str):
print(f"⚠️ Converting non-string response to string for chapter {idx+1}")
resp = str(resp) if resp is not None else ""
# NULL CHECK before checking if response is empty
if resp is None:
print(f"⚠️ Response is None for chapter {idx+1}, skipping...")
continue
# Check if response is empty
if not resp or resp.strip() == "":
print(f"⚠️ Empty response for chapter {idx+1}, skipping...")
continue
# Save the raw response with thread-safe location
thread_name = threading.current_thread().name
thread_id = threading.current_thread().ident
thread_dir = os.path.join("Payloads", "glossary", f"{thread_name}_{thread_id}")
os.makedirs(thread_dir, exist_ok=True)
with open(os.path.join(thread_dir, f"response_chap{idx+1}.txt"), "w", encoding="utf-8", errors="replace") as f:
f.write(resp)
# Parse response using the new parser
try:
data = parse_api_response(resp)
except Exception as e:
print(f"❌ Error parsing response for chapter {idx+1}: {e}")
print(f" Response preview: {resp[:200] if resp else 'None'}...")
continue
# Filter out invalid entries
valid_data = []
for entry in data:
if validate_extracted_entry(entry):
# Clean the raw_name
if 'raw_name' in entry:
entry['raw_name'] = entry['raw_name'].strip()
valid_data.append(entry)
else:
print(f"[Debug] Skipped invalid entry: {entry}")
data = valid_data
total_ent = len(data)
# Log entries
for eidx, entry in enumerate(data, start=1):
if check_stop():
print(f"❌ Glossary extraction stopped during entry processing for chapter {idx+1}")
return
elapsed = time.time() - start
if idx == 0 and eidx == 1:
eta = 0
else:
avg = elapsed / ((idx * 100) + eidx)
eta = avg * (total_chapters * 100 - ((idx * 100) + eidx))
# Get entry info based on new format
entry_type = entry.get("type", "?")
raw_name = entry.get("raw_name", "?")
trans_name = entry.get("translated_name", "?")
print(f'[Chapter {idx+1}/{total_chapters}] [{eidx}/{total_ent}] ({elapsed:.1f}s elapsed, ETA {eta:.1f}s) → {entry_type}: {raw_name} ({trans_name})')
# Apply skip logic and save
glossary.extend(data)
glossary[:] = skip_duplicate_entries(glossary)
completed.append(idx)
# Only add to history if contextual is enabled
if contextual_enabled and 'resp' in locals() and resp:
history.append({"user": user_prompt, "assistant": resp})
# Reset history when limit reached without rolling window
if not rolling_window and len(history) >= ctx_limit and ctx_limit > 0:
print(f"🔄 Resetting glossary context (reached {ctx_limit} chapter limit)")
history = []
prog['context_history'] = []
save_progress(completed, glossary, history)
save_glossary_json(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
save_glossary_csv(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
# Add delay before next API call (but not after the last chapter)
if idx < len(chapters) - 1:
# Check if we're within the range or if there are more chapters to process
next_chapter_in_range = True
if range_start is not None and range_end is not None:
next_chapter_num = idx + 2 # idx+1 is current, idx+2 is next
next_chapter_in_range = (range_start <= next_chapter_num <= range_end)
else:
# No range filter, check if next chapter is already completed
next_chapter_in_range = (idx + 1) not in completed
if next_chapter_in_range:
print(f"⏱️ Waiting {api_delay}s before next chapter...")
if not interruptible_sleep(api_delay, check_stop, 0.1):
print(f"❌ Glossary extraction stopped during delay")
return
# Check for stop after processing chapter
if check_stop():
print(f"❌ Glossary extraction stopped after processing chapter {idx+1}")
return
except Exception as e:
print(f"Error at chapter {idx+1}: {e}")
import traceback
print(f"Full traceback: {traceback.format_exc()}")
# Check for stop even after error
if check_stop():
print(f"❌ Glossary extraction stopped after error in chapter {idx+1}")
return
print(f"Done. Glossary saved to {args.output}")
# Also save as CSV format for compatibility
try:
csv_output = args.output.replace('.json', '.csv')
csv_path = os.path.join(glossary_dir, os.path.basename(csv_output))
save_glossary_csv(glossary, os.path.join(glossary_dir, os.path.basename(args.output)))
print(f"Also saved as CSV: {csv_path}")
except Exception as e:
print(f"[Warning] Could not save CSV format: {e}")
def save_progress(completed: List[int], glossary: List[Dict], context_history: List[Dict]):
"""Save progress to JSON file"""
progress_data = {
"completed": completed,
"glossary": glossary,
"context_history": context_history
}
try:
# Use atomic write to prevent corruption
temp_file = PROGRESS_FILE + '.tmp'
with open(temp_file, 'w', encoding='utf-8') as f:
json.dump(progress_data, f, ensure_ascii=False, indent=2)
# Replace the old file with the new one
if os.path.exists(PROGRESS_FILE):
os.remove(PROGRESS_FILE)
os.rename(temp_file, PROGRESS_FILE)
except Exception as e:
print(f"[Warning] Failed to save progress: {e}")
# Try direct write as fallback
try:
with open(PROGRESS_FILE, 'w', encoding='utf-8') as f:
json.dump(progress_data, f, ensure_ascii=False, indent=2)
except Exception as e2:
print(f"[Error] Could not save progress: {e2}")
if __name__=='__main__':
main() |