Spaces:
Running
Running
File size: 63,501 Bytes
457b8fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 |
# ai_hunter_enhanced.py
# Combined AI Hunter configuration GUI and detection logic
import tkinter as tk
from tkinter import ttk
import ttkbootstrap as tb
import json
import os
import re
import unicodedata
from difflib import SequenceMatcher
from collections import Counter
class AIHunterConfigGUI:
"""GUI for configuring AI Hunter detection parameters"""
def __init__(self, parent, config_dict, callback=None):
"""
Initialize with reference to main config dictionary
Args:
parent: Parent window
config_dict: Reference to main translator config dictionary
callback: Function to call after saving
"""
self.parent = parent
self.config = config_dict # Reference to main config
self.callback = callback
self.window = None
# Default AI Hunter settings structure
self.default_ai_hunter = {
'enabled': True,
'ai_hunter_max_workers': 1,
'retry_attempts': 6,
'disable_temperature_change': False,
'sample_size': 3000,
'thresholds': {
'exact': 90,
'text': 35,
'semantic': 85,
'structural': 85,
'character': 90,
'pattern': 80
},
'weights': {
'exact': 1.5,
'text': 1.2,
'semantic': 1.0,
'structural': 1.0,
'character': 0.8,
'pattern': 0.8
},
'detection_mode': 'weighted_average',
'multi_method_requirements': {
'methods_required': 3,
'min_methods': ['semantic', 'structural']
},
'preprocessing': {
'remove_html_spacing': True,
'normalize_unicode': True,
'ignore_case': True,
'remove_extra_whitespace': True
},
'edge_filters': {
'min_text_length': 500,
'max_length_ratio': 1.3,
'min_length_ratio': 0.7
},
'language_detection': {
'enabled': False,
'target_language': 'english',
'threshold_characters': 500,
'languages': {
'english': ['en'],
'japanese': ['ja', 'jp'],
'korean': ['ko', 'kr'],
'chinese': ['zh', 'zh-cn', 'zh-tw'],
'spanish': ['es'],
'french': ['fr'],
'german': ['de'],
'russian': ['ru'],
'arabic': ['ar'],
'hindi': ['hi'],
'portuguese': ['pt'],
'italian': ['it'],
'dutch': ['nl'],
'thai': ['th'],
'vietnamese': ['vi'],
'turkish': ['tr'],
'polish': ['pl'],
'swedish': ['sv'],
'danish': ['da'],
'norwegian': ['no'],
'finnish': ['fi']
}
}
}
# Initialize AI Hunter config in main config if not present
if 'ai_hunter_config' not in self.config:
self.config['ai_hunter_config'] = self.default_ai_hunter.copy()
else:
# Merge with defaults to ensure all keys exist
self.config['ai_hunter_config'] = self._merge_configs(
self.default_ai_hunter,
self.config['ai_hunter_config']
)
def _merge_configs(self, default, existing):
"""Recursively merge existing config with defaults"""
result = default.copy()
for key, value in existing.items():
if key in result and isinstance(result[key], dict) and isinstance(value, dict):
result[key] = self._merge_configs(result[key], value)
else:
result[key] = value
return result
def get_ai_config(self):
"""Get AI Hunter configuration from main config"""
return self.config.get('ai_hunter_config', self.default_ai_hunter)
def show_ai_hunter_config(self):
"""Display the AI Hunter configuration window with scrollbar using WindowManager"""
if self.window and self.window.winfo_exists():
self.window.lift()
return
# Import WindowManager if not already available
if not hasattr(self, 'wm'):
from translator_gui import WindowManager
import sys
import os
base_dir = getattr(sys, '_MEIPASS', os.path.dirname(os.path.abspath(__file__)))
self.wm = WindowManager(base_dir)
# Create scrollable dialog using WindowManager
dialog, scrollable_frame, canvas = self.wm.setup_scrollable(
self.parent,
"AI Hunter Configuration",
width=820,
height=None, # Will use default height
max_width_ratio=0.9,
max_height_ratio=0.85
)
self.window = dialog
# Create notebook inside scrollable frame
notebook = ttk.Notebook(scrollable_frame)
notebook.pack(fill='both', expand=True, padx=10, pady=10)
# Tab 1: Detection Thresholds
self.create_thresholds_tab(notebook)
# Tab 2: Detection Mode
self.create_mode_tab(notebook)
# Tab 3: Preprocessing
self.create_preprocessing_tab(notebook)
# Tab 4: Advanced Settings
self.create_advanced_tab(notebook)
# Buttons at the bottom (inside scrollable frame)
button_frame = tk.Frame(scrollable_frame)
button_frame.pack(fill='x', padx=10, pady=(10, 20))
tb.Button(button_frame, text="Save", command=self.apply_ai_hunter_settings,
bootstyle="success").pack(side='right', padx=5)
tb.Button(button_frame, text="Cancel", command=self.window.destroy,
bootstyle="secondary").pack(side='right')
tb.Button(button_frame, text="Reset to Defaults", command=self.reset_defaults,
bootstyle="warning").pack(side='left')
# Auto-resize and show
self.wm.auto_resize_dialog(dialog, canvas, max_width_ratio=0.9, max_height_ratio=1.1)
# Handle window close
dialog.protocol("WM_DELETE_WINDOW", lambda: [dialog._cleanup_scrolling(), dialog.destroy()])
def create_thresholds_tab(self, notebook):
"""Create the thresholds configuration tab"""
frame = ttk.Frame(notebook)
notebook.add(frame, text="Detection Thresholds")
# Title
tk.Label(frame, text="Detection Method Thresholds",
font=('TkDefaultFont', 12, 'bold')).pack(pady=10)
tk.Label(frame, text="Higher values = fewer false positives (more strict)\n"
"Lower values = more false positives (more sensitive)",
font=('TkDefaultFont', 10), fg='gray').pack(pady=(0, 20))
# Threshold controls
self.threshold_vars = {}
threshold_frame = tk.Frame(frame)
threshold_frame.pack(fill='both', expand=True, padx=20)
descriptions = {
'exact': 'Exact Text Match - Direct character-by-character comparison',
'text': 'Smart Text Similarity - Intelligent text comparison with sampling',
'semantic': 'Semantic Analysis - Character names, dialogue patterns, numbers',
'structural': 'Structural Patterns - Paragraph structure, dialogue distribution',
'character': 'Character Overlap - Common character names between chapters',
'pattern': 'Pattern Analysis - Narrative flow and structure patterns'
}
ai_config = self.get_ai_config()
for method, desc in descriptions.items():
method_frame = tk.Frame(threshold_frame)
method_frame.pack(fill='x', pady=10)
# Method name and description
label_frame = tk.Frame(method_frame)
label_frame.pack(fill='x')
tk.Label(label_frame, text=f"{method.title()}:",
font=('TkDefaultFont', 10, 'bold')).pack(side='left')
tk.Label(label_frame, text=f" {desc}",
font=('TkDefaultFont', 9), fg='gray').pack(side='left', padx=(10, 0))
# Slider and value
slider_frame = tk.Frame(method_frame)
slider_frame.pack(fill='x', pady=(5, 0))
self.threshold_vars[method] = tk.IntVar(value=ai_config['thresholds'][method])
slider = tb.Scale(slider_frame, from_=10, to=100,
variable=self.threshold_vars[method],
bootstyle="info", length=400)
slider.pack(side='left', padx=(20, 10))
value_label = tk.Label(slider_frame, text="", width=4)
value_label.pack(side='left')
# Update label when slider changes
def update_label(val, label=value_label, var=self.threshold_vars[method]):
label.config(text=f"{int(var.get())}%")
self.threshold_vars[method].trace('w', lambda *args, f=update_label: f(None))
update_label(None)
# Weight configuration
tk.Label(frame, text="Method Weights (for weighted average mode)",
font=('TkDefaultFont', 11, 'bold')).pack(pady=(30, 10))
self.weight_vars = {}
weight_frame = tk.Frame(frame)
weight_frame.pack(fill='x', padx=20)
for method in descriptions.keys():
w_frame = tk.Frame(weight_frame)
w_frame.pack(fill='x', pady=5)
tk.Label(w_frame, text=f"{method.title()} weight:", width=20,
anchor='w').pack(side='left')
self.weight_vars[method] = tk.DoubleVar(value=ai_config['weights'][method])
tb.Spinbox(w_frame, from_=0.1, to=2.0, increment=0.1,
textvariable=self.weight_vars[method],
width=10).pack(side='left', padx=10)
def create_mode_tab(self, notebook):
"""Create the detection mode configuration tab"""
frame = ttk.Frame(notebook)
notebook.add(frame, text="Detection Mode")
tk.Label(frame, text="Detection Mode Configuration",
font=('TkDefaultFont', 12, 'bold')).pack(pady=10)
# Detection mode selection
mode_frame = tk.LabelFrame(frame, text="Detection Mode", padx=20, pady=20)
mode_frame.pack(fill='x', padx=20, pady=10)
ai_config = self.get_ai_config()
self.mode_var = tk.StringVar(value=ai_config['detection_mode'])
modes = [
('single_method', 'Single Method',
'Flag as duplicate if ANY method exceeds its threshold\n(Most sensitive, most false positives)'),
('multi_method', 'Multi-Method Agreement',
'Require multiple methods to agree before flagging\n(Balanced approach)'),
('weighted_average', 'Weighted Average',
'Calculate weighted average of all methods\n(Most nuanced, least false positives)')
]
for value, text, desc in modes:
rb_frame = tk.Frame(mode_frame)
rb_frame.pack(fill='x', pady=10)
tb.Radiobutton(rb_frame, text=text, variable=self.mode_var,
value=value, bootstyle="primary").pack(anchor='w')
tk.Label(rb_frame, text=desc, font=('TkDefaultFont', 9),
fg='gray').pack(anchor='w', padx=(25, 0))
# Multi-method configuration
multi_frame = tk.LabelFrame(frame, text="Multi-Method Settings", padx=20, pady=20)
multi_frame.pack(fill='x', padx=20, pady=10)
tk.Label(multi_frame, text="Number of methods required to agree:",
font=('TkDefaultFont', 10)).pack(anchor='w')
self.methods_required_var = tk.IntVar(
value=ai_config['multi_method_requirements']['methods_required'])
tb.Spinbox(multi_frame, from_=1, to=6, textvariable=self.methods_required_var,
width=10).pack(anchor='w', pady=5)
tk.Label(multi_frame, text="Required methods (at least one must be included):",
font=('TkDefaultFont', 10)).pack(anchor='w', pady=(10, 5))
self.required_method_vars = {}
for method in ['exact', 'text', 'semantic', 'structural', 'character', 'pattern']:
var = tk.BooleanVar(
value=method in ai_config['multi_method_requirements']['min_methods'])
self.required_method_vars[method] = var
tb.Checkbutton(multi_frame, text=method.title(), variable=var,
bootstyle="round-toggle").pack(anchor='w', padx=20)
def create_preprocessing_tab(self, notebook):
"""Create the preprocessing configuration tab"""
frame = ttk.Frame(notebook)
notebook.add(frame, text="Preprocessing")
tk.Label(frame, text="Text Preprocessing Options",
font=('TkDefaultFont', 12, 'bold')).pack(pady=10)
tk.Label(frame, text="Configure how text is processed before comparison",
font=('TkDefaultFont', 10), fg='gray').pack(pady=(0, 20))
# Preprocessing options
prep_frame = tk.Frame(frame)
prep_frame.pack(fill='both', expand=True, padx=20)
self.prep_vars = {}
ai_config = self.get_ai_config()
options = [
('remove_html_spacing', 'Remove HTML with spacing',
'Replace HTML tags with spaces instead of removing completely'),
('normalize_unicode', 'Normalize Unicode',
'Normalize unicode characters (recommended)'),
('ignore_case', 'Case-insensitive comparison',
'Ignore character case when comparing'),
('remove_extra_whitespace', 'Remove extra whitespace',
'Collapse multiple spaces/newlines into single spaces')
]
for key, text, desc in options:
var = tk.BooleanVar(value=ai_config['preprocessing'][key])
self.prep_vars[key] = var
opt_frame = tk.Frame(prep_frame)
opt_frame.pack(fill='x', pady=10)
tb.Checkbutton(opt_frame, text=text, variable=var,
bootstyle="round-toggle").pack(anchor='w')
tk.Label(opt_frame, text=desc, font=('TkDefaultFont', 9),
fg='gray').pack(anchor='w', padx=(25, 0))
def create_advanced_tab(self, notebook):
"""Create the advanced settings tab"""
frame = ttk.Frame(notebook)
notebook.add(frame, text="Advanced")
tk.Label(frame, text="Advanced Settings",
font=('TkDefaultFont', 12, 'bold')).pack(pady=10)
# General settings
general_frame = tk.LabelFrame(frame, text="General", padx=20, pady=20)
general_frame.pack(fill='x', padx=20, pady=10)
ai_config = self.get_ai_config()
# Add separator for better organization
ttk.Separator(general_frame, orient='horizontal').pack(fill='x', pady=(0, 10))
# Sample size
ss_frame = tk.Frame(general_frame)
ss_frame.pack(fill='x', pady=5)
tk.Label(ss_frame, text="Sample size:", width=20, anchor='w').pack(side='left')
self.sample_size_var = tk.IntVar(value=ai_config['sample_size'])
tb.Spinbox(ss_frame, from_=1000, to=10000, increment=500,
textvariable=self.sample_size_var, width=10).pack(side='left', padx=10)
tk.Label(ss_frame, text="characters",
font=('TkDefaultFont', 9)).pack(side='left')
# AI Hunter Behavior Settings
tk.Label(general_frame, text="AI Hunter Behavior",
font=('TkDefaultFont', 10, 'bold')).pack(anchor='w', pady=(0, 5))
# Retry Attempts
retry_frame = tk.Frame(general_frame)
retry_frame.pack(fill='x', pady=5)
tk.Label(retry_frame, text="Retry attempts:", width=20, anchor='w').pack(side='left')
self.retry_attempts_var = tk.IntVar(value=ai_config.get('retry_attempts', 3))
tb.Spinbox(retry_frame, from_=1, to=10, textvariable=self.retry_attempts_var, width=10).pack(side='left', padx=10)
tk.Label(retry_frame, text="attempts", font=('TkDefaultFont', 9)).pack(side='left')
# Temperature Change Toggle
temp_frame = tk.Frame(general_frame)
temp_frame.pack(fill='x', pady=10)
self.disable_temp_change_var = tk.BooleanVar(value=ai_config.get('disable_temperature_change', False))
tb.Checkbutton(temp_frame, text="Disable temperature change behavior",
variable=self.disable_temp_change_var, bootstyle="round-toggle").pack(anchor='w')
tk.Label(temp_frame, text="Prevents AI Hunter from modifying temperature settings during retries",
font=('TkDefaultFont', 9), fg='gray').pack(anchor='w', padx=(25, 0))
# Edge filters
edge_frame = tk.LabelFrame(frame, text="Edge Case Filters", padx=20, pady=20)
edge_frame.pack(fill='x', padx=20, pady=10)
# Min text length
min_frame = tk.Frame(edge_frame)
min_frame.pack(fill='x', pady=5)
tk.Label(min_frame, text="Minimum text length:", width=20, anchor='w').pack(side='left')
self.min_length_var = tk.IntVar(value=ai_config['edge_filters']['min_text_length'])
tb.Spinbox(min_frame, from_=100, to=2000, increment=100,
textvariable=self.min_length_var, width=10).pack(side='left', padx=10)
tk.Label(min_frame, text="characters",
font=('TkDefaultFont', 9)).pack(side='left')
# Length ratios
ratio_frame = tk.Frame(edge_frame)
ratio_frame.pack(fill='x', pady=10)
tk.Label(ratio_frame, text="Length ratio limits:").pack(anchor='w')
r_frame = tk.Frame(ratio_frame)
r_frame.pack(fill='x', pady=5)
tk.Label(r_frame, text="Min ratio:", width=10, anchor='w').pack(side='left', padx=(20, 5))
self.min_ratio_var = tk.DoubleVar(value=ai_config['edge_filters']['min_length_ratio'])
tb.Spinbox(r_frame, from_=0.5, to=0.9, increment=0.1,
textvariable=self.min_ratio_var, width=8).pack(side='left')
tk.Label(r_frame, text="Max ratio:", width=10, anchor='w').pack(side='left', padx=(20, 5))
self.max_ratio_var = tk.DoubleVar(value=ai_config['edge_filters']['max_length_ratio'])
tb.Spinbox(r_frame, from_=1.1, to=2.0, increment=0.1,
textvariable=self.max_ratio_var, width=8).pack(side='left')
tk.Label(edge_frame, text="Chapters with vastly different lengths won't be compared",
font=('TkDefaultFont', 9), fg='gray').pack(anchor='w', padx=20)
# Language Detection
lang_frame = tk.LabelFrame(frame, text="Non-Target Language Detection", padx=20, pady=20)
lang_frame.pack(fill='x', padx=20, pady=10)
# Enable toggle
enable_frame = tk.Frame(lang_frame)
enable_frame.pack(fill='x', pady=5)
self.lang_enabled_var = tk.BooleanVar(value=ai_config['language_detection']['enabled'])
tb.Checkbutton(enable_frame, text="Enable non-target language detection",
variable=self.lang_enabled_var, bootstyle="round-toggle").pack(anchor='w')
tk.Label(enable_frame, text="Trigger retranslation when too much non-target language is detected",
font=('TkDefaultFont', 9), fg='gray').pack(anchor='w', padx=(25, 0))
# Target language selection
target_frame = tk.Frame(lang_frame)
target_frame.pack(fill='x', pady=10)
tk.Label(target_frame, text="Target language:", width=20, anchor='w').pack(side='left')
self.target_lang_var = tk.StringVar(value=ai_config['language_detection']['target_language'])
lang_options = list(ai_config['language_detection']['languages'].keys())
target_combo = ttk.Combobox(target_frame, textvariable=self.target_lang_var,
values=lang_options, state='readonly', width=15)
target_combo.pack(side='left', padx=10)
tk.Label(target_frame, text="Language that should be in the translation",
font=('TkDefaultFont', 9), fg='gray').pack(side='left', padx=(10, 0))
# Threshold setting
thresh_frame = tk.Frame(lang_frame)
thresh_frame.pack(fill='x', pady=5)
tk.Label(thresh_frame, text="Character threshold:", width=20, anchor='w').pack(side='left')
self.lang_threshold_var = tk.IntVar(value=ai_config['language_detection']['threshold_characters'])
tb.Spinbox(thresh_frame, from_=100, to=2000, increment=50,
textvariable=self.lang_threshold_var, width=10).pack(side='left', padx=10)
tk.Label(thresh_frame, text="non-target language characters to trigger retranslation",
font=('TkDefaultFont', 9), fg='gray').pack(side='left')
def apply_ai_hunter_settings(self):
"""Apply AI Hunter settings to the main config"""
ai_config = self.get_ai_config()
# Update from GUI variables
for method, var in self.threshold_vars.items():
ai_config['thresholds'][method] = var.get()
for method, var in self.weight_vars.items():
ai_config['weights'][method] = var.get()
ai_config['detection_mode'] = self.mode_var.get()
ai_config['multi_method_requirements']['methods_required'] = self.methods_required_var.get()
min_methods = [method for method, var in self.required_method_vars.items() if var.get()]
ai_config['multi_method_requirements']['min_methods'] = min_methods
for key, var in self.prep_vars.items():
ai_config['preprocessing'][key] = var.get()
ai_config['sample_size'] = self.sample_size_var.get()
ai_config['edge_filters']['min_text_length'] = self.min_length_var.get()
ai_config['edge_filters']['min_length_ratio'] = self.min_ratio_var.get()
ai_config['edge_filters']['max_length_ratio'] = self.max_ratio_var.get()
# Language detection settings
ai_config['language_detection']['enabled'] = self.lang_enabled_var.get()
ai_config['language_detection']['target_language'] = self.target_lang_var.get()
ai_config['language_detection']['threshold_characters'] = self.lang_threshold_var.get()
# Update retry attempts and temperature change settings
ai_config['retry_attempts'] = self.retry_attempts_var.get()
ai_config['disable_temperature_change'] = self.disable_temp_change_var.get()
# Update main config
self.config['ai_hunter_config'] = ai_config
# Call callback if provided (this should trigger main save_configuration)
if self.callback:
self.callback()
self.window.destroy()
def reset_defaults(self):
"""Reset all values to defaults"""
import tkinter.messagebox as messagebox
result = messagebox.askyesno("Reset to Defaults",
"Are you sure you want to reset all settings to defaults?")
if result:
self.config['ai_hunter_config'] = self.default_ai_hunter.copy()
self.window.destroy()
self.show_ai_hunter_config() # Reopen with default values
class ImprovedAIHunterDetection:
"""Improved AI Hunter detection methods for TranslateKRtoEN"""
def __init__(self, main_config):
"""
Initialize with reference to main config
Args:
main_config: Reference to main translator config dictionary
"""
self.main_config = main_config
# Default AI Hunter settings
self.default_ai_hunter = {
'enabled': True,
'lookback_chapters': 5,
'retry_attempts': 3,
'disable_temperature_change': False,
'sample_size': 3000,
'thresholds': {
'exact': 90,
'text': 85,
'semantic': 85,
'structural': 85,
'character': 80,
'pattern': 80
},
'weights': {
'exact': 1.5,
'text': 1.2,
'semantic': 1.0,
'structural': 1.0,
'character': 0.8,
'pattern': 0.8
},
'detection_mode': 'multi_method',
'multi_method_requirements': {
'methods_required': 2,
'min_methods': ['semantic', 'structural']
},
'preprocessing': {
'remove_html_spacing': True,
'normalize_unicode': True,
'ignore_case': True,
'remove_extra_whitespace': True
},
'edge_filters': {
'min_text_length': 500,
'max_length_ratio': 1.3,
'min_length_ratio': 0.7
},
'language_detection': {
'enabled': False,
'target_language': 'english',
'threshold_characters': 500,
'languages': {
'english': ['en'],
'japanese': ['ja', 'jp'],
'korean': ['ko', 'kr'],
'chinese': ['zh', 'zh-cn', 'zh-tw'],
'spanish': ['es'],
'french': ['fr'],
'german': ['de'],
'russian': ['ru'],
'arabic': ['ar'],
'hindi': ['hi'],
'portuguese': ['pt'],
'italian': ['it'],
'dutch': ['nl'],
'thai': ['th'],
'vietnamese': ['vi'],
'turkish': ['tr'],
'polish': ['pl'],
'swedish': ['sv'],
'danish': ['da'],
'norwegian': ['no'],
'finnish': ['fi']
}
}
}
def get_ai_config(self):
"""Get AI Hunter configuration from main config"""
return self.main_config.get('ai_hunter_config', self.default_ai_hunter)
def detect_duplicate_ai_hunter_enhanced(self, result, idx, prog, out, current_chapter_num=None):
"""Enhanced AI Hunter duplicate detection with configurable parameters"""
try:
print(f"\n ========== AI HUNTER DEBUG START ==========")
print(f" 📍 Current chapter index: {idx}")
if current_chapter_num:
print(f" 📖 Current chapter number: {current_chapter_num}")
# Get configuration
config = self.get_ai_config()
if not config.get('enabled', True):
print(f" ⚠️ AI Hunter is disabled")
print(f" ========== AI HUNTER DEBUG END ==========\n")
return False, 0
# Preprocess text
result_clean = self._preprocess_text(result, config['preprocessing'])
print(f" 📄 Text length after preprocessing: {len(result_clean)} chars")
# Check for non-target language detection
if config['language_detection']['enabled']:
non_target_detected, non_target_count = self._check_non_target_language(
result_clean, config['language_detection']
)
if non_target_detected:
print(f"\n 🌐 NON-TARGET LANGUAGE DETECTED!")
print(f" Non-target characters found: {non_target_count}")
print(f" Threshold: {config['language_detection']['threshold_characters']}")
print(f" Target language: {config['language_detection']['target_language']}")
print(f" ========== AI HUNTER DEBUG END ==========\n")
return True, 100 # High confidence for language detection
# Check edge cases
if len(result_clean) < config['edge_filters']['min_text_length']:
print(f" ⚠️ Text too short ({len(result_clean)} < {config['edge_filters']['min_text_length']})")
print(f" ========== AI HUNTER DEBUG END ==========\n")
return False, 0
# Extract features
print(f" 🔬 Extracting text features...")
result_features = self._extract_text_features(result_clean)
# Get lookback from main config, then fall back to env var if not found
lookback = self.main_config.get('duplicate_lookback_chapters',
int(os.getenv('DUPLICATE_LOOKBACK_CHAPTERS', '5')))
# Log configuration
print(f"\n 🔧 Configuration:")
print(f" Detection mode: {config['detection_mode']}")
print(f" Lookback chapters: {lookback}")
print(f" Sample size: {config['sample_size']}")
# FIX: Get all completed chapters sorted by actual chapter number
completed_chapters = []
for chapter_key, chapter_info in prog["chapters"].items():
if chapter_info.get("status") == "completed" and chapter_info.get("output_file"):
# Handle both numeric and hash-based chapter keys
try:
# Get actual_num from progress (this is the real chapter number)
chapter_num = chapter_info.get("actual_num")
if chapter_num is None:
# Try chapter_num as fallback
chapter_num = chapter_info.get("chapter_num")
if chapter_num is None:
# Skip chapters without valid numbers
print(f" ⚠️ No chapter number found for key {chapter_key}, skipping")
continue
completed_chapters.append({
'key': chapter_key,
'num': chapter_num,
'file': chapter_info.get("output_file"),
'ai_features': chapter_info.get("ai_features")
})
except Exception as e:
print(f" ⚠️ Error processing chapter {chapter_key}: {e}")
continue
# Sort by actual chapter number
completed_chapters.sort(key=lambda x: x['num'])
# If no current chapter number provided, try to infer it
if current_chapter_num is None:
# The current chapter should be passed in, but if not, we need to find it
# Since we're using content hash keys, we can't use idx directly
print(f" ⚠️ No current chapter number provided")
print(f" 📊 Current index: {idx}")
# The current chapter number should have been passed from the wrapper
# If it wasn't, we have a problem
print(f" ❌ ERROR: Current chapter number not provided to AI Hunter!")
print(f" ❌ This indicates the wrapper function is not passing the chapter number correctly")
# Emergency: just use a high number so we don't compare against anything
current_chapter_num = 999999
print(f" ⚠️ Using index-based chapter number: {current_chapter_num}")
print(f"\n 📚 Found {len(completed_chapters)} completed chapters in progress")
if completed_chapters:
chapter_nums = [ch['num'] for ch in completed_chapters]
print(f" 📊 Chapter numbers in progress: {sorted(chapter_nums)[:10]}{'...' if len(chapter_nums) > 10 else ''}")
print(f" 🎯 Current chapter number: {current_chapter_num}")
print(f" 🔍 Will check against last {lookback} chapters before chapter {current_chapter_num}")
# Check previous chapters
all_similarities = []
highest_similarity = 0.0
detected_method = None
detected_chapter = None
# FIX: Look at chapters by actual number, not index
chapters_checked = 0
for completed_chapter in reversed(completed_chapters):
# Only check chapters that come before the current one
if completed_chapter['num'] >= current_chapter_num:
continue
# Only check up to lookback number of chapters
if chapters_checked >= lookback:
break
chapters_checked += 1
print(f"\n 📝 Checking against chapter {completed_chapter['num']}...")
# Get previous chapter features
prev_features = completed_chapter.get('ai_features')
prev_clean = None
# Try to get cached features first
if prev_features:
print(f" ✅ Using cached features")
else:
# Read and extract features
prev_path = os.path.join(out, completed_chapter['file'])
if os.path.exists(prev_path):
try:
with open(prev_path, 'r', encoding='utf-8') as f:
prev_content = f.read()
prev_clean = self._preprocess_text(prev_content, config['preprocessing'])
# Check length ratio
len_ratio = len(result_clean) / max(1, len(prev_clean))
if (len_ratio < config['edge_filters']['min_length_ratio'] or
len_ratio > config['edge_filters']['max_length_ratio']):
print(f" ⚠️ Length ratio out of bounds: {len_ratio:.2f}")
continue
prev_features = self._extract_text_features(prev_clean)
print(f" 📄 Extracted features from file")
except Exception as e:
print(f" ❌ Failed to read file: {e}")
continue
else:
print(f" ❌ File not found: {prev_path}")
continue
# Calculate similarities
print(f" 🔍 Calculating similarities...")
similarities = self._calculate_all_similarities(
result_clean, result_features,
prev_clean, prev_features, config
)
# Store for reporting
all_similarities.append({
'chapter': completed_chapter['num'],
'similarities': similarities
})
# Log similarity scores
for method, score in similarities.items():
if score > 0:
print(f" {method}: {int(score*100)}%")
# Check if duplicate based on configured mode
is_duplicate, confidence, methods_triggered = self._evaluate_duplicate(
similarities, config
)
if is_duplicate:
print(f"\n 🚨 DUPLICATE DETECTED!")
print(f" Detection mode: {config['detection_mode']}")
print(f" Confidence: {int(confidence*100)}%")
print(f" Triggered methods: {', '.join(methods_triggered)}")
print(f" Match with: Chapter {completed_chapter['num']}")
print(f" ========== AI HUNTER DEBUG END ==========\n")
return True, int(confidence * 100)
# Track highest for reporting
for method, sim in similarities.items():
if sim > highest_similarity:
highest_similarity = sim
detected_method = method
detected_chapter = completed_chapter['num']
# No duplicate found
print(f"\n ✅ No duplicate found")
if detected_method:
print(f" Highest similarity: {int(highest_similarity*100)}% via {detected_method}")
print(f" Closest match: Chapter {detected_chapter}")
# Show top 3 closest matches
if all_similarities:
print(f"\n 📊 Top 3 closest matches:")
sorted_chapters = sorted(all_similarities,
key=lambda x: self._get_chapter_score(x['similarities'], config),
reverse=True)[:3]
for i, chapter_data in enumerate(sorted_chapters, 1):
score = self._get_chapter_score(chapter_data['similarities'], config)
print(f" {i}. Chapter {chapter_data['chapter']}: {int(score*100)}%")
print(f" ========== AI HUNTER DEBUG END ==========\n")
return False, 0
except Exception as e:
print(f" ❌ AI Hunter detection failed with error: {e}")
import traceback
print(f" {traceback.format_exc()}")
print(f" ========== AI HUNTER DEBUG END ==========\n")
return False, 0
def _preprocess_text(self, text, prep_config):
"""Preprocess text according to configuration"""
# Remove HTML
if prep_config.get('remove_html_spacing', True):
text = re.sub(r'<[^>]+>', ' ', text)
else:
text = re.sub(r'<[^>]+>', '', text)
# Normalize unicode
if prep_config.get('normalize_unicode', True):
text = unicodedata.normalize('NFKD', text)
# Remove extra whitespace
if prep_config.get('remove_extra_whitespace', True):
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\n\s*\n', '\n\n', text)
text = text.strip()
# Convert to lowercase if case-insensitive
if prep_config.get('ignore_case', True):
text = text.lower()
return text
def _calculate_all_similarities(self, result_clean, result_features,
prev_clean, prev_features, config):
"""Calculate all similarity metrics"""
similarities = {}
# Method 1: Exact content match
if prev_clean is not None:
sample_size = min(config['sample_size'], len(result_clean), len(prev_clean))
exact_sim = self._calculate_exact_similarity(
result_clean[:sample_size],
prev_clean[:sample_size]
)
similarities['exact'] = exact_sim
# Method 2: Smart text similarity
text_sim = self._calculate_smart_similarity(
result_clean, prev_clean, config['sample_size']
)
similarities['text'] = text_sim
else:
similarities['exact'] = 0.0
similarities['text'] = 0.0
# Method 3: Semantic fingerprint
semantic_sim = self._calculate_semantic_similarity(
result_features.get('semantic', {}),
prev_features.get('semantic', {})
)
similarities['semantic'] = semantic_sim
# Method 4: Structural signature
structural_sim = self._calculate_structural_similarity(
result_features.get('structural', {}),
prev_features.get('structural', {})
)
similarities['structural'] = structural_sim
# Method 5: Character analysis
char_sim = self._calculate_character_similarity(
result_features.get('characters', []),
prev_features.get('characters', [])
)
similarities['character'] = char_sim
# Method 6: Pattern analysis
pattern_sim = self._calculate_pattern_similarity(
result_features.get('patterns', {}),
prev_features.get('patterns', {})
)
similarities['pattern'] = pattern_sim
return similarities
def _evaluate_duplicate(self, similarities, config):
"""Evaluate if similarities indicate a duplicate based on detection mode"""
mode = config['detection_mode']
thresholds = {k: v/100.0 for k, v in config['thresholds'].items()}
if mode == 'single_method':
# Any method exceeding threshold
for method, sim in similarities.items():
if sim >= thresholds.get(method, 0.85):
return True, sim, [method]
return False, 0, []
elif mode == 'multi_method':
# Multiple methods must agree
triggered_methods = []
for method, sim in similarities.items():
if sim >= thresholds.get(method, 0.85):
triggered_methods.append(method)
# Check if enough methods triggered
required = config.get('multi_method_requirements', {}).get('methods_required', 2)
min_methods = config.get('multi_method_requirements', {}).get('min_methods', [])
if len(triggered_methods) >= required:
# Check if at least one required method is included
if not min_methods or any(m in triggered_methods for m in min_methods):
# Calculate average confidence of triggered methods
confidence = sum(similarities[m] for m in triggered_methods) / len(triggered_methods)
return True, confidence, triggered_methods
return False, 0, []
elif mode == 'weighted_average':
# Calculate weighted average
weights = config.get('weights', {})
total_weight = sum(weights.get(m, 1.0) for m in similarities)
weighted_sum = sum(similarities[m] * weights.get(m, 1.0) for m in similarities)
weighted_avg = weighted_sum / total_weight if total_weight > 0 else 0
# Check if weighted average exceeds average threshold
avg_threshold = sum(thresholds.values()) / len(thresholds) if thresholds else 0.85
if weighted_avg >= avg_threshold:
# Find which methods contributed most
triggered = [m for m, sim in similarities.items()
if sim >= thresholds.get(m, 0.85)]
return True, weighted_avg, triggered
return False, 0, []
return False, 0, []
def _get_chapter_score(self, similarities, config):
"""Calculate overall score for a chapter comparison"""
if config['detection_mode'] == 'weighted_average':
weights = config.get('weights', {})
total_weight = sum(weights.get(m, 1.0) for m in similarities)
return sum(similarities.get(m, 0) * weights.get(m, 1.0) for m in similarities) / total_weight if total_weight > 0 else 0
else:
return max(similarities.values()) if similarities else 0
def _extract_text_features(self, text):
"""Extract multiple features from text for AI Hunter analysis"""
features = {
'semantic': {},
'structural': {},
'characters': [],
'patterns': {}
}
# Semantic fingerprint
lines = text.split('\n')
# Character extraction (names that appear 3+ times)
words = re.findall(r'\b[A-Z][a-z]+\b', text)
word_freq = Counter(words)
features['characters'] = [name for name, count in word_freq.items()
if count >= 3 and name not in {
'The', 'A', 'An', 'In', 'On', 'At', 'To',
'From', 'With', 'By', 'For', 'Of', 'As',
'But', 'And', 'Or', 'He', 'She', 'It',
'They', 'We', 'You', 'What', 'When', 'Where',
'Who', 'Why', 'How', 'That', 'This', 'These'
}]
# Dialogue patterns
dialogue_patterns = re.findall(r'"([^"]+)"', text)
features['semantic']['dialogue_count'] = len(dialogue_patterns)
features['semantic']['dialogue_lengths'] = [len(d) for d in dialogue_patterns[:10]]
# Speaker patterns
speaker_patterns = re.findall(r'(\w+)\s+(?:said|asked|replied|shouted|whispered)', text.lower())
features['semantic']['speakers'] = list(set(speaker_patterns[:20]))
# Number extraction
numbers = re.findall(r'\b\d+\b', text)
features['patterns']['numbers'] = numbers[:20]
# Structural signature
para_lengths = []
dialogue_count = 0
for para in text.split('\n\n'):
if para.strip():
para_lengths.append(len(para))
if '"' in para:
dialogue_count += 1
features['structural']['para_count'] = len(para_lengths)
features['structural']['avg_para_length'] = sum(para_lengths) / max(1, len(para_lengths))
features['structural']['dialogue_ratio'] = dialogue_count / max(1, len(para_lengths))
# Create structural pattern string
pattern = []
for para in text.split('\n\n')[:20]: # First 20 paragraphs
if para.strip():
if '"' in para:
pattern.append('D') # Dialogue
elif len(para) > 300:
pattern.append('L') # Long
elif len(para) < 100:
pattern.append('S') # Short
else:
pattern.append('M') # Medium
features['structural']['pattern'] = ''.join(pattern)
# Action density
action_verbs = len(re.findall(r'\b\w+ed\b', text))
features['semantic']['action_density'] = action_verbs / max(1, len(text.split()))
# Text length
features['semantic']['text_length'] = len(text)
return features
def _calculate_exact_similarity(self, text1, text2):
"""Calculate exact text similarity"""
return SequenceMatcher(None, text1, text2).ratio()
def _calculate_smart_similarity(self, text1, text2, sample_size):
"""Smart similarity with configurable sample size"""
if len(text1) > sample_size * 3 and len(text2) > sample_size * 3:
# Use multiple samples
samples1 = [
text1[:sample_size],
text1[len(text1)//2 - sample_size//2:len(text1)//2 + sample_size//2],
text1[-sample_size:]
]
samples2 = [
text2[:sample_size],
text2[len(text2)//2 - sample_size//2:len(text2)//2 + sample_size//2],
text2[-sample_size:]
]
similarities = [SequenceMatcher(None, s1, s2).ratio()
for s1, s2 in zip(samples1, samples2)]
return sum(similarities) / len(similarities)
else:
# Use full text up to sample size
return SequenceMatcher(None, text1[:sample_size], text2[:sample_size]).ratio()
def _calculate_semantic_similarity(self, sem1, sem2):
"""Calculate semantic fingerprint similarity"""
score = 0.0
weights = 0.0
# Compare dialogue counts
if 'dialogue_count' in sem1 and 'dialogue_count' in sem2:
weights += 0.3
if sem1['dialogue_count'] > 0 or sem2['dialogue_count'] > 0:
ratio = min(sem1['dialogue_count'], sem2['dialogue_count']) / \
max(1, max(sem1['dialogue_count'], sem2['dialogue_count']))
score += ratio * 0.3
# Compare speakers
if 'speakers' in sem1 and 'speakers' in sem2:
weights += 0.4
if sem1['speakers'] and sem2['speakers']:
overlap = len(set(sem1['speakers']) & set(sem2['speakers']))
total = len(set(sem1['speakers']) | set(sem2['speakers']))
score += (overlap / max(1, total)) * 0.4
elif not sem1['speakers'] and not sem2['speakers']:
score += 0.4 # Both have no speakers
# Compare dialogue lengths pattern
if 'dialogue_lengths' in sem1 and 'dialogue_lengths' in sem2:
weights += 0.2
if sem1['dialogue_lengths'] and sem2['dialogue_lengths']:
len1 = sem1['dialogue_lengths'][:10]
len2 = sem2['dialogue_lengths'][:10]
if len1 and len2:
avg1 = sum(len1) / len(len1)
avg2 = sum(len2) / len(len2)
ratio = min(avg1, avg2) / max(1, max(avg1, avg2))
score += ratio * 0.2
elif not sem1['dialogue_lengths'] and not sem2['dialogue_lengths']:
score += 0.2 # Both have no dialogue
# Action density
if 'action_density' in sem1 and 'action_density' in sem2:
weights += 0.1
act_sim = 1 - abs(sem1['action_density'] - sem2['action_density'])
score += act_sim * 0.1
return score / max(0.1, weights)
def _calculate_structural_similarity(self, struct1, struct2):
"""Calculate structural signature similarity"""
score = 0.0
# Compare paragraph patterns
if 'pattern' in struct1 and 'pattern' in struct2:
pattern_sim = SequenceMatcher(None, struct1['pattern'], struct2['pattern']).ratio()
score += pattern_sim * 0.5
# Compare paragraph statistics
if all(k in struct1 for k in ['para_count', 'avg_para_length', 'dialogue_ratio']) and \
all(k in struct2 for k in ['para_count', 'avg_para_length', 'dialogue_ratio']):
# Paragraph count ratio
para_ratio = min(struct1['para_count'], struct2['para_count']) / \
max(1, max(struct1['para_count'], struct2['para_count']))
score += para_ratio * 0.2
# Average length ratio
avg_ratio = min(struct1['avg_para_length'], struct2['avg_para_length']) / \
max(1, max(struct1['avg_para_length'], struct2['avg_para_length']))
score += avg_ratio * 0.15
# Dialogue ratio similarity
dialogue_diff = abs(struct1['dialogue_ratio'] - struct2['dialogue_ratio'])
score += (1 - min(1, dialogue_diff)) * 0.15
return score
def _calculate_character_similarity(self, chars1, chars2):
"""Calculate character overlap similarity"""
if not chars1 or not chars2:
return 0.0
# Convert to sets
set1 = set(chars1)
set2 = set(chars2)
# If no overlap at all, return 0
intersection = set1 & set2
if not intersection:
return 0.0
# Calculate Jaccard index (intersection over union)
union = set1 | set2
jaccard = len(intersection) / len(union)
# Also consider the proportion of matching characters relative to each set
# This prevents small overlaps from scoring too high
overlap1 = len(intersection) / len(set1)
overlap2 = len(intersection) / len(set2)
# Take the minimum overlap to be more conservative
min_overlap = min(overlap1, overlap2)
# Combine jaccard and overlap scores
# Jaccard penalizes when sets are very different sizes
# Min overlap ensures both texts share a significant portion of characters
score = (jaccard + min_overlap) / 2
return score
def _calculate_pattern_similarity(self, pat1, pat2):
"""Calculate pattern similarity (numbers, etc.)"""
score = 0.0
# Number overlap
if 'numbers' in pat1 and 'numbers' in pat2:
nums1 = set(pat1['numbers'])
nums2 = set(pat2['numbers'])
if nums1 or nums2:
overlap = len(nums1 & nums2)
total = len(nums1 | nums2)
score = overlap / max(1, total)
else:
score = 1.0 # Both have no numbers
return score
def _check_non_target_language(self, text, lang_config):
"""Check if text contains too much non-target language"""
target_language = lang_config['target_language'].lower()
threshold = lang_config['threshold_characters']
# Character ranges for different languages
language_ranges = {
'english': [ # Latin script + basic symbols
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
(0x2000, 0x206F), # General Punctuation
(0x20A0, 0x20CF), # Currency Symbols
(0xFF00, 0xFFEF), # Halfwidth and Fullwidth Forms
],
'japanese': [
(0x3040, 0x309F), # Hiragana
(0x30A0, 0x30FF), # Katakana
(0x4E00, 0x9FAF), # CJK Unified Ideographs
(0x3400, 0x4DBF), # CJK Extension A
(0xFF66, 0xFF9F), # Halfwidth Katakana
],
'korean': [
(0xAC00, 0xD7AF), # Hangul Syllables
(0x1100, 0x11FF), # Hangul Jamo
(0x3130, 0x318F), # Hangul Compatibility Jamo
(0xA960, 0xA97F), # Hangul Jamo Extended-A
(0xD7B0, 0xD7FF), # Hangul Jamo Extended-B
],
'chinese': [
(0x4E00, 0x9FAF), # CJK Unified Ideographs
(0x3400, 0x4DBF), # CJK Extension A
(0x20000, 0x2A6DF), # CJK Extension B
(0x2A700, 0x2B73F), # CJK Extension C
(0x2B740, 0x2B81F), # CJK Extension D
(0x3000, 0x303F), # CJK Symbols and Punctuation
],
'arabic': [
(0x0600, 0x06FF), # Arabic
(0x0750, 0x077F), # Arabic Supplement
(0x08A0, 0x08FF), # Arabic Extended-A
(0xFB50, 0xFDFF), # Arabic Presentation Forms-A
(0xFE70, 0xFEFF), # Arabic Presentation Forms-B
],
'russian': [
(0x0400, 0x04FF), # Cyrillic
(0x0500, 0x052F), # Cyrillic Supplement
(0x2DE0, 0x2DFF), # Cyrillic Extended-A
(0xA640, 0xA69F), # Cyrillic Extended-B
],
'thai': [
(0x0E00, 0x0E7F), # Thai
],
'hindi': [
(0x0900, 0x097F), # Devanagari
(0xA8E0, 0xA8FF), # Devanagari Extended
],
'spanish': [ # Same as English (Latin script)
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
],
'french': [ # Same as English (Latin script)
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
],
'german': [ # Same as English (Latin script)
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
],
'portuguese': [ # Same as English (Latin script)
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
],
'italian': [ # Same as English (Latin script)
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
],
'dutch': [ # Same as English (Latin script)
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
],
'vietnamese': [
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
(0x1EA0, 0x1EFF), # Latin Extended Additional (Vietnamese)
],
'turkish': [
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
],
'polish': [
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
],
'swedish': [ # Same as English (Latin script)
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
],
'danish': [ # Same as English (Latin script)
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
],
'norwegian': [ # Same as English (Latin script)
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
],
'finnish': [ # Same as English (Latin script)
(0x0000, 0x007F), # Basic Latin
(0x0080, 0x00FF), # Latin-1 Supplement
(0x0100, 0x017F), # Latin Extended-A
(0x0180, 0x024F), # Latin Extended-B
],
}
# Get target language ranges
target_ranges = language_ranges.get(target_language, language_ranges['english'])
# Count characters that are NOT in target language ranges
non_target_count = 0
total_letters = 0
for char in text:
# Skip whitespace, punctuation, and numbers for counting
if char.isspace() or char.isdigit():
continue
# Count as letter character
total_letters += 1
# Check if character is in any target language range
char_code = ord(char)
is_target_char = any(start <= char_code <= end for start, end in target_ranges)
if not is_target_char:
non_target_count += 1
# Debug logging
if non_target_count > 0:
print(f" 🌐 Language detection: {non_target_count}/{total_letters} non-target chars ({target_language})")
# Return True if non-target character count exceeds threshold
return non_target_count >= threshold, non_target_count
|