File size: 125,741 Bytes
457b8fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
"""

Image Translation Module for EPUB Translator

Handles detection, extraction, and translation of images containing text

Includes support for web novel images and watermark handling

"""

import os
import json
import base64
import zipfile
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
import io
from typing import List, Dict, Optional, Tuple
import re
from bs4 import BeautifulSoup
import logging
import time
import queue
import threading
# OpenCV availability check
try:
    import cv2
    import numpy as np
    CV2_AVAILABLE = True
except ImportError:
    CV2_AVAILABLE = False
    print("⚠️ OpenCV not available - advanced image processing disabled")
import numpy as np
from unified_api_client import UnifiedClientError

logger = logging.getLogger(__name__)

def requires_cv2(func):
    """Decorator to skip methods that require OpenCV"""
    def wrapper(self, *args, **kwargs):
        if not CV2_AVAILABLE:
            # Return sensible defaults based on the function
            if func.__name__ == '_detect_watermark_pattern':
                return False, None
            elif func.__name__ in ['_remove_periodic_watermark', 
                                  '_adaptive_histogram_equalization',
                                  '_bilateral_filter',
                                  '_enhance_text_regions']:
                # Return the image array unchanged
                return args[0] if args else None
            else:
                return None
        return func(self, *args, **kwargs)
    return wrapper
    
def send_image_with_interrupt(client, messages, image_data, temperature, max_tokens, stop_check_fn, chunk_timeout=None, context='image_translation'):
    """Send image API request with interrupt capability and timeout retry"""
    import queue
    import threading
    from unified_api_client import UnifiedClientError
    
    result_queue = queue.Queue()
    
    def api_call():
        try:
            start_time = time.time()
            result = client.send_image(messages, image_data, temperature=temperature, 
                                     max_tokens=max_tokens, context=context)
            elapsed = time.time() - start_time
            result_queue.put((result, elapsed))
        except Exception as e:
            result_queue.put(e)
    
    api_thread = threading.Thread(target=api_call)
    api_thread.daemon = True
    api_thread.start()
    
    # Use chunk timeout if provided, otherwise use default
    timeout = chunk_timeout if chunk_timeout else 300
    check_interval = 0.5
    elapsed = 0
    
    while elapsed < timeout:
        try:
            result = result_queue.get(timeout=check_interval)
            if isinstance(result, Exception):
                raise result
            if isinstance(result, tuple):
                api_result, api_time = result
                # Check if it took too long
                if chunk_timeout and api_time > chunk_timeout:
                    raise UnifiedClientError(f"Image API call took {api_time:.1f}s (timeout: {chunk_timeout}s)")
                return api_result
            return result
        except queue.Empty:
            if stop_check_fn and stop_check_fn():
                raise UnifiedClientError("Image translation stopped by user")
            elapsed += check_interval
    
    raise UnifiedClientError(f"Image API call timed out after {timeout} seconds")

class ImageTranslator:
    def __init__(self, client, output_dir: str, profile_name: str = "", system_prompt: str = "", 

                 temperature: float = 0.3, log_callback=None, progress_manager=None,

                 history_manager=None, chunk_context_manager=None):
        """

        Initialize the image translator

        

        Args:

            client: UnifiedClient instance for API calls

            output_dir: Directory to save translated images

            profile_name: Source language for translation

            system_prompt: System prompt from GUI to use for translation

            temperature: Temperature for translation

            log_callback: Optional callback function for logging

            progress_manager: Shared ProgressManager instance for synchronization

        """
        self.client = client
        self.output_dir = output_dir
        self.profile_name = profile_name
        self.system_prompt = system_prompt
        self.temperature = temperature
        self.log_callback = log_callback
        self.progress_manager = progress_manager  # Use shared progress manager
        self.images_dir = os.path.join(output_dir, "images")
        self.translated_images_dir = os.path.join(output_dir, "translated_images")
        os.makedirs(self.translated_images_dir, exist_ok=True)
        self.api_delay = float(os.getenv("SEND_INTERVAL_SECONDS", "2"))
        
        # Track processed images to avoid duplicates
        self.processed_images = {}
        self.image_translations = {}
        
        # Configuration from environment
        self.process_webnovel = os.getenv("PROCESS_WEBNOVEL_IMAGES", "1") == "1"
        self.webnovel_min_height = int(os.getenv("WEBNOVEL_MIN_HEIGHT", "1000"))
        self.image_max_tokens = int(os.getenv("MAX_OUTPUT_TOKENS", "8192"))
        self.chunk_height = int(os.getenv("IMAGE_CHUNK_HEIGHT", "2000"))
        
        # Add context tracking for image chunks
        self.contextual_enabled = os.getenv("CONTEXTUAL", "1") == "1"
        self.history_manager = history_manager
        self.chunk_context_manager = chunk_context_manager
        self.remove_ai_artifacts = os.getenv("REMOVE_AI_ARTIFACTS", "0") == "1"

        
    def extract_images_from_chapter(self, chapter_html: str) -> List[Dict]:
        """

        Extract image references from chapter HTML

        

        Returns:

            List of dicts with image info: {src, alt, width, height}

        """
        soup = BeautifulSoup(chapter_html, 'html.parser')
        images = []
        
        for img in soup.find_all('img'):
            img_info = {
                'src': img.get('src', ''),
                'alt': img.get('alt', ''),
                'width': img.get('width'),
                'height': img.get('height'),
                'style': img.get('style', '')
            }
            
            if img_info['src']:
                images.append(img_info)
                
        return images

    def compress_image(self, image_path):
        """

        Compress an image based on settings from environment variables

        

        Args:

            image_path: Path to the input image

            

        Returns:

            Path to compressed image (temporary or saved)

        """
        try:
            # Check if compression is enabled
            if os.getenv("ENABLE_IMAGE_COMPRESSION", "0") != "1":
                return image_path  # Return original if compression disabled
            
            print(f"   πŸ—œοΈ Compressing image: {os.path.basename(image_path)}")
            
            # Load compression settings from environment
            target_format = os.getenv("IMAGE_COMPRESSION_FORMAT", "auto")
            max_dimension = int(os.getenv("MAX_IMAGE_DIMENSION", "2048"))
            max_size_mb = float(os.getenv("MAX_IMAGE_SIZE_MB", "10"))
            
            quality_settings = {
                'webp': int(os.getenv("WEBP_QUALITY", "85")),
                'jpeg': int(os.getenv("JPEG_QUALITY", "85")),
                'png': int(os.getenv("PNG_COMPRESSION", "6"))
            }
            
            auto_compress = os.getenv("AUTO_COMPRESS_ENABLED", "1") == "1"
            preserve_transparency = os.getenv("PRESERVE_TRANSPARENCY", "0") == "1"  # Default is now False
            preserve_original_format = os.getenv("PRESERVE_ORIGINAL_FORMAT", "0") == "1"  # New option
            optimize_for_ocr = os.getenv("OPTIMIZE_FOR_OCR", "1") == "1"
            progressive = os.getenv("PROGRESSIVE_ENCODING", "1") == "1"
            save_compressed = os.getenv("SAVE_COMPRESSED_IMAGES", "0") == "1"
            
            # Open image
            with Image.open(image_path) as img:
                original_format = img.format.lower() if img.format else 'png'
                has_transparency = img.mode in ('RGBA', 'LA') or (img.mode == 'P' and 'transparency' in img.info)
                
                # Special handling for GIF files
                is_gif = original_format == 'gif'
                if is_gif and not preserve_original_format:
                    print(f"   🎞️ GIF detected - converting to static image for better compression")
                    # For animated GIFs, we'll take the first frame
                    # Convert to RGBA to preserve any transparency
                    if img.mode == 'P' and 'transparency' in img.info:
                        img = img.convert('RGBA')
                    elif img.mode not in ('RGB', 'RGBA'):
                        img = img.convert('RGB')
                elif is_gif and preserve_original_format:
                    print(f"   🎞️ GIF detected - preserving original format as requested")
                
                # Calculate original size
                original_size_mb = os.path.getsize(image_path) / (1024 * 1024)
                print(f"   πŸ“Š Original: {img.width}x{img.height}, {original_size_mb:.2f}MB, format: {original_format}")
                
                # Get chunk height from environment - this comes from the GUI setting
                chunk_height = int(os.getenv("IMAGE_CHUNK_HEIGHT", "1500"))
                print(f"   πŸ“ Using chunk height from settings: {chunk_height}px")
                
                # Check if resizing is needed - BUT NOT FOR TALL IMAGES THAT WILL BE CHUNKED!
                needs_resize = img.width > max_dimension or img.height > max_dimension
                
                # CRITICAL: Check if this is a tall image that will be chunked
                # If so, DO NOT resize the height!
                is_tall_text_image = img.height > chunk_height
                
                if needs_resize:
                    if is_tall_text_image:
                        # Only resize width if needed, NEVER touch the height for tall images
                        if img.width > max_dimension:
                            # Keep aspect ratio but don't exceed max width
                            ratio = max_dimension / img.width
                            new_width = max_dimension
                            new_height = int(img.height * ratio)
                            print(f"   ⚠️ Tall image ({img.height}px > chunk height {chunk_height}px)")
                            print(f"   πŸ“ Resizing width only: {img.width} β†’ {new_width} (height: {img.height} β†’ {new_height})")
                            img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
                        else:
                            print(f"   βœ… Tall image ({img.height}px) - keeping dimensions (will be chunked into {(img.height + chunk_height - 1) // chunk_height} chunks)")
                    else:
                        # Normal resize for regular images (not tall enough to chunk)
                        ratio = min(max_dimension / img.width, max_dimension / img.height)
                        new_size = (int(img.width * ratio), int(img.height * ratio))
                        img = img.resize(new_size, Image.Resampling.LANCZOS)
                        print(f"   πŸ“ Regular image resized to: {new_size[0]}x{new_size[1]}")
                
                # Auto-select format if needed
                if preserve_original_format and target_format == 'auto':
                    # Keep the original format
                    target_format = original_format
                    # Special handling for formats that might not be ideal
                    if original_format == 'bmp':
                        target_format = 'png'  # Convert BMP to PNG as BMP is uncompressed
                    print(f"   πŸ“Έ Preserving original format: {target_format}")
                elif target_format == 'auto':
                    # For GIFs with text (web novel chapters), prefer PNG or WebP
                    if is_gif:
                        if has_transparency and preserve_transparency:
                            target_format = 'png'  # Better for text with transparency
                        else:
                            target_format = 'webp'  # Good compression for text
                    elif has_transparency and preserve_transparency:
                        target_format = 'webp'
                    elif optimize_for_ocr and img.width * img.height > 1000000:
                        target_format = 'webp'
                    elif original_size_mb > 5:
                        target_format = 'webp'
                    else:
                        target_format = 'jpeg'
                    print(f"   🎯 Auto-selected format: {target_format}")
                
                # Handle transparency conversion if needed
                if target_format == 'jpeg' and (has_transparency or img.mode == 'RGBA'):
                    # Convert to RGB with white background
                    rgb_img = Image.new('RGB', img.size, (255, 255, 255))
                    if img.mode == 'RGBA':
                        rgb_img.paste(img, mask=img.split()[3])
                    else:
                        rgb_img.paste(img)
                    img = rgb_img
                
                # Apply OCR optimization if enabled
                if optimize_for_ocr:
                    # Skip OCR optimization for GIF files in palette mode when preserving format
                    if target_format == 'gif' and img.mode in ('P', 'L'):
                        print(f"   ⚠️ Applying OCR optimization to GIF (converting modes temporarily)")
                        # Convert to RGB temporarily for enhancement, then convert back
                        original_mode = img.mode
                        transparency_info = None
                        
                        if img.mode == 'P':
                            # Preserve transparency info if present
                            transparency_info = img.info.get('transparency', None)
                            # Convert to RGBA if has transparency, otherwise RGB
                            if transparency_info is not None:
                                img = img.convert('RGBA')
                            else:
                                img = img.convert('RGB')
                        elif img.mode == 'L':
                            img = img.convert('RGB')
                        
                        # Apply enhancements
                        from PIL import ImageEnhance
                        enhancer = ImageEnhance.Contrast(img)
                        img = enhancer.enhance(1.2)
                        enhancer = ImageEnhance.Sharpness(img)
                        img = enhancer.enhance(1.1)
                        
                        # Extra sharpening for GIF text
                        img = enhancer.enhance(1.2)
                        
                        # Convert back to original mode for GIF saving
                        if original_mode == 'P':
                            # Quantize back to palette mode
                            img = img.quantize(colors=256, method=2)  # MEDIANCUT
                            if transparency_info is not None:
                                img.info['transparency'] = transparency_info
                        elif original_mode == 'L':
                            img = img.convert('L')
                    else:
                        # Normal OCR optimization for non-GIF formats or RGB-mode images
                        from PIL import ImageEnhance
                        enhancer = ImageEnhance.Contrast(img)
                        img = enhancer.enhance(1.2)
                        enhancer = ImageEnhance.Sharpness(img)
                        img = enhancer.enhance(1.1)
                        
                        # Extra sharpening for GIF text which might be lower quality
                        if is_gif:
                            img = enhancer.enhance(1.2)
                
                # Prepare save parameters based on format
                save_params = {}
                
                if target_format == 'webp':
                    # For WebP, decide whether to keep transparency
                    if has_transparency and preserve_transparency:
                        save_params = {
                            'format': 'WEBP',
                            'quality': quality_settings['webp'],
                            'method': 6,
                            'lossless': False,
                            'exact': True  # Preserve transparency
                        }
                    else:
                        # Convert to RGB with white background for WebP without transparency
                        if img.mode in ('RGBA', 'LA', 'P'):
                            rgb_img = Image.new('RGB', img.size, (255, 255, 255))
                            if img.mode == 'RGBA':
                                rgb_img.paste(img, mask=img.split()[3])
                            elif img.mode == 'LA':
                                rgb_img.paste(img, mask=img.split()[1])
                            else:  # P mode
                                if 'transparency' in img.info:
                                    img = img.convert('RGBA')
                                    rgb_img.paste(img, mask=img.split()[3])
                                else:
                                    rgb_img.paste(img)
                            img = rgb_img
                        
                        save_params = {
                            'format': 'WEBP',
                            'quality': quality_settings['webp'],
                            'method': 6,
                            'lossless': False
                        }
                        
                elif target_format == 'jpeg':
                    save_params = {
                        'format': 'JPEG',
                        'quality': quality_settings['jpeg'],
                        'optimize': True,
                        'progressive': progressive
                    }
                    
                elif target_format == 'png':
                    # For PNG, handle transparency properly
                    if not (has_transparency and preserve_transparency):
                        # Convert to RGB with white background if not preserving transparency
                        if img.mode in ('RGBA', 'LA', 'P'):
                            rgb_img = Image.new('RGB', img.size, (255, 255, 255))
                            if img.mode == 'RGBA':
                                rgb_img.paste(img, mask=img.split()[3])
                            elif img.mode == 'LA':
                                rgb_img.paste(img, mask=img.split()[1])
                            else:  # P mode
                                if 'transparency' in img.info:
                                    img = img.convert('RGBA')
                                    rgb_img.paste(img, mask=img.split()[3])
                                else:
                                    rgb_img.paste(img)
                            img = rgb_img
                    elif img.mode == 'P' and 'transparency' in img.info:
                        # Convert palette mode with transparency to RGBA
                        img = img.convert('RGBA')
                    
                    save_params = {
                        'format': 'PNG',
                        'compress_level': quality_settings['png'],
                        'optimize': True
                    }
                
                elif target_format == 'gif':
                    # GIF format - limited but preserving original when requested
                    print(f"   ⚠️ Warning: GIF format has limited colors (256) and may reduce text quality")
                    if img.mode not in ('P', 'L'):
                        # Convert to palette mode for GIF
                        img = img.quantize(colors=256, method=2)  # MEDIANCUT method
                    
                    save_params = {
                        'format': 'GIF',
                        'optimize': True
                    }
                
                # Auto-compress to meet token target if specified
                if auto_compress:
                    target_tokens = int(os.getenv("TARGET_IMAGE_TOKENS", "1000"))
                    # For text-heavy images (like web novel GIFs), be less aggressive
                    if is_gif or 'chapter' in os.path.basename(image_path).lower():
                        target_mb = min(max_size_mb, 3.0)  # Allow up to 3MB for text clarity
                    else:
                        target_mb = min(max_size_mb, 2.0)  # Regular images
                    print(f"   🎯 Auto-compress target: {target_mb:.1f}MB for token efficiency")
                    max_size_mb = target_mb
                
                # Save compressed image
                output_path = None
                quality = save_params.get('quality', 85)
                
                # Try different quality levels to meet size target
                while quality > 10:
                    from io import BytesIO
                    buffer = BytesIO()
                    
                    if 'quality' in save_params:
                        save_params['quality'] = quality
                    
                    img.save(buffer, **save_params)
                    compressed_size_mb = len(buffer.getvalue()) / (1024 * 1024)
                    
                    if compressed_size_mb <= max_size_mb or quality <= 10:
                        # Size is acceptable or we've reached minimum quality
                        if save_compressed:
                            # FIXED: Handle PyInstaller paths properly
                            try:
                                # Try to determine the proper output directory
                                # First check if self.output_dir is absolute and exists
                                if hasattr(self, 'output_dir') and self.output_dir and os.path.isabs(self.output_dir):
                                    base_output_dir = self.output_dir
                                else:
                                    # Fall back to using the directory of the source image
                                    base_output_dir = os.path.dirname(image_path)
                                    # Look for a typical output structure
                                    if 'translated_images' not in base_output_dir:
                                        # Try to find or create the translated_images directory
                                        parent_dir = base_output_dir
                                        while parent_dir and not os.path.exists(os.path.join(parent_dir, 'translated_images')):
                                            new_parent = os.path.dirname(parent_dir)
                                            if new_parent == parent_dir:  # Reached root
                                                break
                                            parent_dir = new_parent
                                        
                                        if parent_dir and os.path.exists(os.path.join(parent_dir, 'translated_images')):
                                            base_output_dir = parent_dir
                                        else:
                                            # Create translated_images in the same directory as the source
                                            base_output_dir = os.path.dirname(image_path)
                                
                                compressed_dir = os.path.join(base_output_dir, "translated_images", "compressed")
                                
                                # Ensure the directory exists with proper error handling
                                try:
                                    os.makedirs(compressed_dir, exist_ok=True)
                                except OSError as e:
                                    print(f"   ⚠️ Failed to create compressed directory: {e}")
                                    # Fall back to source image directory
                                    compressed_dir = os.path.join(os.path.dirname(image_path), "compressed")
                                    os.makedirs(compressed_dir, exist_ok=True)
                                
                                base_name = os.path.basename(image_path)
                                name, original_ext = os.path.splitext(base_name)
                                
                                # Add source format info to filename if converting from GIF
                                if is_gif and target_format != 'gif':
                                    name = f"{name}_from_gif"
                                
                                ext = '.webp' if target_format == 'webp' else f'.{target_format}'
                                output_path = os.path.join(compressed_dir, f"{name}_compressed{ext}")
                                
                                # Write the file with proper error handling
                                try:
                                    with open(output_path, 'wb') as f:
                                        f.write(buffer.getvalue())
                                    print(f"   πŸ’Ύ Saved compressed image: {output_path}")
                                except OSError as e:
                                    print(f"   ❌ Failed to save compressed image: {e}")
                                    # Fall back to temporary file
                                    raise  # This will trigger the temporary file fallback below
                                    
                            except Exception as e:
                                print(f"   ⚠️ Failed to save to permanent location: {e}")
                                # Fall back to temporary file
                                import tempfile
                                ext = '.webp' if target_format == 'webp' else f'.{target_format}'
                                with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as tmp:
                                    tmp.write(buffer.getvalue())
                                    output_path = tmp.name
                                print(f"   πŸ“ Created temp compressed image instead")
                        else:
                            # Save to temporary file
                            import tempfile
                            ext = '.webp' if target_format == 'webp' else f'.{target_format}'
                            with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as tmp:
                                tmp.write(buffer.getvalue())
                                output_path = tmp.name
                            
                            print(f"   πŸ“ Created temp compressed image")
                        
                        compression_ratio = (1 - compressed_size_mb / original_size_mb) * 100
                        if compression_ratio > 0:
                            print(f"   βœ… Compressed: {original_size_mb:.2f}MB β†’ {compressed_size_mb:.2f}MB "
                                  f"({compression_ratio:.1f}% reduction, quality: {quality})")
                        else:
                            print(f"   ⚠️ Compression increased size: {original_size_mb:.2f}MB β†’ {compressed_size_mb:.2f}MB "
                                  f"({abs(compression_ratio):.1f}% larger, quality: {quality})")
                        
                        # Special note for GIF conversions
                        if is_gif:
                            print(f"   🎞️ GIF converted to {target_format.upper()} for better compression")
                        
                        return output_path
                    
                    # Reduce quality and try again
                    quality -= 5
                    print(f"   πŸ”„ Size {compressed_size_mb:.2f}MB > target {max_size_mb:.2f}MB, "
                          f"reducing quality to {quality}")
                
                # If we couldn't meet the target, return the best we got
                print(f"   ⚠️ Could not meet size target, using minimum quality")
                return output_path if output_path else image_path
                
        except Exception as e:
            print(f"   ❌ Compression failed: {e}")
            import traceback
            traceback.print_exc()
            return image_path  # Return original on error

    def _process_image_with_compression(self, image_path, context, check_stop_fn):
        """Process image with optional compression before translation"""
        try:
            # Apply compression if enabled
            if os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1":
                compressed_path = self.compress_image(image_path)
                if compressed_path != image_path:
                    # Use compressed image for translation
                    result = self._process_single_image_original(compressed_path, context, check_stop_fn)
                    
                    # Clean up temp file if needed
                    if not os.getenv("SAVE_COMPRESSED_IMAGES", "0") == "1":
                        try:
                            os.unlink(compressed_path)
                        except:
                            pass
                    
                    return result
            
            # No compression, use original method
            return self._process_single_image_original(image_path, context, check_stop_fn)
            
        except Exception as e:
            print(f"   ❌ Error in image processing: {e}")
            return None

    def _process_image_chunks_single_api(self, img, width, height, context, check_stop_fn):
            """Process all image chunks in a single API call with compression support"""
            
            num_chunks = (height + self.chunk_height - 1) // self.chunk_height
            overlap_percentage = float(os.getenv('IMAGE_CHUNK_OVERLAP_PERCENT', '1'))
            overlap = int(self.chunk_height * (overlap_percentage / 100))
            
            print("   πŸš€ Using SINGLE API CALL mode for " + str(num_chunks) + " chunks")
            print(f"   πŸ“ Chunk overlap: {overlap_percentage}% ({overlap} pixels)")
            #print("   πŸ“Š This is more efficient and produces better translations")
            #print("   ⏳ Estimated time: 30-90 seconds total")
            
            # Check for stop at the very beginning
            if check_stop_fn and check_stop_fn():
                print("   ❌ Image translation stopped by user")
                return None
            
            # Load progress for resumability
            prog = self.load_progress()
            image_basename = os.path.basename(self.current_image_path) if hasattr(self, 'current_image_path') else str(hash(str(img)))
            
            # Detect original image format from filename or image
            original_format = 'png'  # default
            if hasattr(self, 'current_image_path'):
                ext = os.path.splitext(self.current_image_path)[1].lower()
                if ext in ['.gif', '.jpg', '.jpeg', '.png', '.webp']:
                    original_format = ext[1:]  # Remove the dot
                    if original_format == 'jpg':
                        original_format = 'jpeg'
            
            # Check if we should preserve original format
            preserve_original_format = os.getenv("PRESERVE_ORIGINAL_FORMAT", "0") == "1"
            
            # Try to extract chapter number
            chapter_num = None
            if hasattr(self, 'current_chapter_num'):
                chapter_num = self.current_chapter_num
            else:
                import re
                match = re.search(r'ch(?:apter)?[\s_-]*(\d+)', image_basename, re.IGNORECASE)
                if match:
                    chapter_num = match.group(1)
            
            # Create unique key
            if chapter_num:
                image_key = "ch" + str(chapter_num) + "_" + image_basename
            else:
                image_key = image_basename
            
            # Check if already processed
            if "single_api_chunks" not in prog:
                prog["single_api_chunks"] = {}
            
            if image_key in prog["single_api_chunks"] and prog["single_api_chunks"][image_key].get("completed"):
                print("   ⏭️ Image already translated, using cached result")
                return prog["single_api_chunks"][image_key]["translation"]
            
            # Prepare chunks
            try:
                content_parts = []
                
                print("   πŸ“¦ Preparing " + str(num_chunks) + " image chunks...")
                
                # Check if we should save debug images
                save_cleaned = os.getenv('SAVE_CLEANED_IMAGES', '0') == '1'
                if save_cleaned:
                    debug_dir = os.path.join(self.output_dir, "translated_images", "debug_chunks")
                    os.makedirs(debug_dir, exist_ok=True)
                    print("   πŸ” Debug mode: Saving chunks to " + debug_dir)
                    
                    # Create subdirectory for compressed chunks
                    compressed_debug_dir = os.path.join(debug_dir, "compressed")
                    os.makedirs(compressed_debug_dir, exist_ok=True)
                
                # Check if compression is enabled
                compression_enabled = os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1"
                total_uncompressed_size = 0
                total_compressed_size = 0
                
                # Temporarily set the original format in environment for _image_to_bytes_with_compression
                old_env_format = os.environ.get("ORIGINAL_IMAGE_FORMAT", "")
                if preserve_original_format and original_format:
                    os.environ["ORIGINAL_IMAGE_FORMAT"] = original_format
                
                for i in range(num_chunks):
                    # Check for stop during preparation
                    if check_stop_fn and check_stop_fn():
                        print("   ❌ Stopped while preparing chunk " + str(i+1) + "/" + str(num_chunks))
                        # Restore environment
                        if old_env_format:
                            os.environ["ORIGINAL_IMAGE_FORMAT"] = old_env_format
                        elif "ORIGINAL_IMAGE_FORMAT" in os.environ:
                            del os.environ["ORIGINAL_IMAGE_FORMAT"]
                        return None
                        
                    # Calculate chunk boundaries with overlap
                    start_y = max(0, i * self.chunk_height - (overlap if i > 0 else 0))
                    end_y = min(height, (i + 1) * self.chunk_height)
                    
                    # Crop the chunk
                    chunk = img.crop((0, start_y, width, end_y))
                    
                    # Save uncompressed debug chunk if enabled
                    if save_cleaned:
                        # Use original format for debug chunks if preserving format
                        if preserve_original_format and original_format == 'gif':
                            chunk_ext = 'gif'
                            # Need to convert to palette mode for GIF
                            if chunk.mode not in ('P', 'L'):
                                chunk_to_save = chunk.quantize(colors=256, method=2)  # MEDIANCUT
                            else:
                                chunk_to_save = chunk
                        else:
                            chunk_ext = 'png'
                            chunk_to_save = chunk
                        
                        chunk_filename = image_key + "_chunk_" + str(i+1) + "_of_" + str(num_chunks) + "_y" + str(start_y) + "-" + str(end_y) + "." + chunk_ext
                        chunk_path = os.path.join(debug_dir, chunk_filename)
                        
                        if chunk_ext == 'gif':
                            chunk_to_save.save(chunk_path, "GIF", optimize=True)
                        else:
                            chunk_to_save.save(chunk_path, "PNG")
                        
                        print("   πŸ’Ύ Saved debug chunk: " + chunk_filename)
                        
                        # Get uncompressed size
                        uncompressed_size = os.path.getsize(chunk_path)
                        total_uncompressed_size += uncompressed_size
                    
                    # Convert chunk to bytes with compression if enabled
                    if compression_enabled:
                        print(f"   πŸ—œοΈ Compressing chunk {i+1}/{num_chunks}...")
                        
                        # Use the compression method
                        chunk_bytes = self._image_to_bytes_with_compression(chunk)
                        
                        # Determine format based on compression settings
                        format_setting = os.getenv("IMAGE_COMPRESSION_FORMAT", "auto")
                        if format_setting == "auto":
                            if preserve_original_format and original_format == 'gif':
                                # If original was GIF and we're preserving format, use GIF
                                format_used = 'gif'
                            else:
                                # Check if chunk has transparency
                                has_transparency = chunk.mode in ('RGBA', 'LA') or (chunk.mode == 'P' and 'transparency' in chunk.info)
                                preserve_transparency = os.getenv("PRESERVE_TRANSPARENCY", "0") == "1"
                                if has_transparency and preserve_transparency:
                                    format_used = 'png'
                                else:
                                    format_used = 'webp'  # Default to WebP for best compression
                        else:
                            format_used = format_setting
                        
                        # Calculate compression stats
                        compressed_size = len(chunk_bytes)
                        if save_cleaned:
                            # Get the actual original size of the chunk before compression
                            original_chunk_buffer = io.BytesIO()
                            chunk.save(original_chunk_buffer, format='PNG')
                            actual_original_size = len(original_chunk_buffer.getvalue())
                            compression_ratio = (1 - compressed_size / actual_original_size) * 100
                            print(f"   πŸ“Š Chunk {i+1}: {uncompressed_size:,} β†’ {compressed_size:,} bytes ({compression_ratio:.1f}% reduction, format: {format_used.upper()})")
                            total_compressed_size += compressed_size
                            
                            # Save compressed chunk for debugging
                            compressed_chunk_filename = image_key + "_chunk_" + str(i+1) + "_compressed." + format_used.lower()
                            compressed_chunk_path = os.path.join(compressed_debug_dir, compressed_chunk_filename)
                            with open(compressed_chunk_path, 'wb') as f:
                                f.write(chunk_bytes)
                            print(f"   πŸ’Ύ Saved compressed chunk: {compressed_chunk_filename}")
                    else:
                        # No compression - use original format if preserving, otherwise PNG
                        if preserve_original_format and original_format == 'gif':
                            chunk_bytes = self._image_to_bytes(chunk, format='GIF')
                            format_used = 'gif'
                        else:
                            chunk_bytes = self._image_to_bytes(chunk, format='PNG')
                            format_used = 'png'
                        
                        if save_cleaned:
                            total_compressed_size += len(chunk_bytes)
                    
                    # Convert to base64
                    chunk_base64 = base64.b64encode(chunk_bytes).decode('utf-8')
                    
                    # Add image to content with appropriate format
                    content_parts.append({
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/{format_used.lower()};base64," + chunk_base64
                        }
                    })
                
                # Restore original environment variable
                if old_env_format:
                    os.environ["ORIGINAL_IMAGE_FORMAT"] = old_env_format
                elif "ORIGINAL_IMAGE_FORMAT" in os.environ:
                    del os.environ["ORIGINAL_IMAGE_FORMAT"]
                
                # Count the number of images in content_parts
                num_images = sum(1 for part in content_parts if part.get("type") == "image_url")
                
                # Show overall compression stats if enabled
                if compression_enabled and save_cleaned and total_uncompressed_size > 0:
                    overall_compression = (1 - total_compressed_size / total_uncompressed_size) * 100
                    print(f"\n   πŸ“Š Overall compression stats:")
                    print(f"      Total uncompressed: {total_uncompressed_size:,} bytes ({total_uncompressed_size / 1024 / 1024:.2f} MB)")
                    print(f"      Total compressed: {total_compressed_size:,} bytes ({total_compressed_size / 1024 / 1024:.2f} MB)")
                    print(f"      Reduction: {overall_compression:.1f}%")
                    print(f"      Savings: {(total_uncompressed_size - total_compressed_size):,} bytes\n")
                
            except Exception as e:
                # Make sure to restore environment
                if 'old_env_format' in locals():
                    if old_env_format:
                        os.environ["ORIGINAL_IMAGE_FORMAT"] = old_env_format
                    elif "ORIGINAL_IMAGE_FORMAT" in os.environ:
                        del os.environ["ORIGINAL_IMAGE_FORMAT"]
                        
                print("   ❌ Error preparing chunks: " + str(e))
                import traceback
                traceback.print_exc()
                print("   πŸ”„ Falling back to sequential chunk processing...")
                return self._process_image_chunks(img, width, height, context, check_stop_fn)
            
            # Calculate token estimate based on provider
            if 'gemini' in self.client.model.lower():
                # Gemini charges flat 258 tokens per image
                estimated_image_tokens = num_images * 258
            elif 'gpt-4' in self.client.model.lower() or 'gpt-4o' in self.client.model.lower():
                # GPT-4V uses ~85 tokens per 512x512 tile
                # Adjust estimate based on compression
                if compression_enabled:
                    # Compressed images use fewer tokens
                    tiles_per_chunk = max(1, (self.chunk_height * width * 0.7) // (512 * 512))
                else:
                    tiles_per_chunk = max(1, (self.chunk_height * width) // (512 * 512))
                estimated_image_tokens = num_images * tiles_per_chunk * 85
            elif 'claude' in self.client.model.lower():
                # Claude varies by resolution, estimate based on compression
                if compression_enabled:
                    estimated_image_tokens = num_images * 1500  # Compressed images
                else:
                    estimated_image_tokens = num_images * 2000  # Uncompressed
            else:
                # Default conservative estimate
                estimated_image_tokens = num_images * 1000
            
            # Calculate text tokens
            text_tokens = sum(len(part.get("text", "")) for part in content_parts if part.get("type") == "text") // 4
            estimated_text_tokens = len(self.system_prompt) // 4 + text_tokens + 200
            total_estimated_tokens = estimated_image_tokens + estimated_text_tokens
            
            print("   πŸ“Š Token estimate:")
            print("      Number of images: " + str(num_images))
            print("      Image tokens: ~" + "{:,}".format(estimated_image_tokens) + " (model: " + self.client.model + ")")
            if compression_enabled:
                print("      Compression: ENABLED βœ…")
            print("      Text tokens: ~" + "{:,}".format(estimated_text_tokens))
            print("      Total: ~" + "{:,}".format(total_estimated_tokens) + " tokens")
            
            # Make the API call
            try:
                # Build messages
                messages = [{"role": "system", "content": self.system_prompt}]
                messages.append({
                    "role": "user",
                    "content": content_parts
                })
                
                print("\n   πŸ”„ Sending " + str(num_chunks) + " chunks to API in single call...")
                if compression_enabled:
                    print("   πŸ—œοΈ Using compressed chunks for efficient API usage")
                
                # Final stop check before API call
                if check_stop_fn and check_stop_fn():
                    print("   ❌ Stopped before API call")
                    return None
                
                # Use send_image_with_interrupt for interruptible API call
                start_time = time.time()
                
                # Get timeout settings
                chunk_timeout = int(os.getenv('CHUNK_TIMEOUT', '0'))
                retry_timeout = os.getenv('RETRY_TIMEOUT', '0') == '1'
                
                # Make interruptible API call
                # Since we already have images in content_parts, we need to use regular send, not send_image
                try:
                    # Create a wrapper to make regular send interruptible
                    result_queue = queue.Queue()
                    
                    def api_call():
                        try:
                            start = time.time()
                            result = self.client.send(
                                messages=messages,
                                temperature=self.temperature,
                                max_tokens=self.image_max_tokens
                            )
                            elapsed_time = time.time() - start
                            result_queue.put((result, elapsed_time))
                        except Exception as e:
                            result_queue.put(e)
                    
                    api_thread = threading.Thread(target=api_call)
                    api_thread.daemon = True
                    api_thread.start()
                    
                    # Check for completion or stop
                    timeout = chunk_timeout if chunk_timeout else 900
                    check_interval = 0.5
                    elapsed_check = 0
                    
                    while elapsed_check < timeout:
                        try:
                            result = result_queue.get(timeout=check_interval)
                            if isinstance(result, Exception):
                                raise result
                            if isinstance(result, tuple):
                                response, elapsed_time = result
                                elapsed = elapsed_time
                                break
                        except queue.Empty:
                            if check_stop_fn and check_stop_fn():
                                raise UnifiedClientError("Translation stopped by user")
                            elapsed_check += check_interval
                    else:
                        raise UnifiedClientError("API call timed out after " + str(timeout) + " seconds")
                        
                except UnifiedClientError as e:
                    if "stopped by user" in str(e).lower():
                        print("   ❌ Translation stopped by user during API call")
                        return None
                    elif "timed out" in str(e).lower():
                        print("   ⏱️ API call timed out: " + str(e))
                        print("   πŸ”„ Falling back to sequential chunk processing...")
                        return self._process_image_chunks(img, width, height, context, check_stop_fn)
                    else:
                        raise
                
                # Handle the result based on what's returned
                if isinstance(response, tuple):
                    response, elapsed_time = response
                    # Handle case where elapsed_time might be 'stop' or other non-numeric
                    try:
                        elapsed = float(elapsed_time)
                    except (ValueError, TypeError):
                        elapsed = time.time() - start_time
                
                # Success!
                print("   πŸ“‘ API response received in " + "{:.1f}".format(elapsed) + "s")
                
                # Check if response is valid
                if not response:
                    print("   ❌ No response from API")
                    print("   πŸ”„ Falling back to sequential chunk processing...")
                    return self._process_image_chunks(img, width, height, context, check_stop_fn)

                # Extract content from UnifiedResponse
                if hasattr(response, 'content'):
                    translation_response = response.content
                elif hasattr(response, 'text'):
                    translation_response = response.text
                else:
                    translation_response = str(response)

                # Unescape the response text if it has escaped characters
                if '\\n' in translation_response or translation_response.startswith('('):
                    print("   πŸ”§ Detected escaped text, unescaping...")
                    translation_response = self._unescape_response_text(translation_response)

                # Check if we got actual content
                if not translation_response or not translation_response.strip():
                    print("   ❌ Empty response content from API")
                    print("   πŸ”„ Falling back to sequential chunk processing...")
                    return self._process_image_chunks(img, width, height, context, check_stop_fn)

                # Process response
                trans_finish = getattr(response, 'finish_reason', 'unknown')

                print("   πŸ“‘ Finish reason: " + trans_finish)
                print("   πŸ“„ Response length: " + str(len(translation_response)) + " characters")

                if trans_finish in ["length", "max_tokens"]:
                    print("   ⚠️ Translation was TRUNCATED! Consider increasing Max tokens.")
                    translation_response += "\n\n[TRANSLATION TRUNCATED DUE TO TOKEN LIMIT]"

                # Clean translation based on REMOVE_AI_ARTIFACTS setting
                if self.remove_ai_artifacts:
                    cleaned_translation = self._clean_translation_response(translation_response)
                    print("   🧹 Cleaned translation (artifact removal enabled)")
                else:
                    cleaned_translation = translation_response
                    print("   πŸ“ Using raw translation (artifact removal disabled)")

                # Normalize and sanitize to avoid squared/cubed glyphs
                cleaned_translation = self._normalize_unicode_width(cleaned_translation)
                cleaned_translation = self._sanitize_unicode_characters(cleaned_translation)

                if not cleaned_translation:
                    print("   ❌ No text extracted from response after cleaning")
                    print("   πŸ”„ Falling back to sequential chunk processing...")
                    return self._process_image_chunks(img, width, height, context, check_stop_fn)
                
                # Save to progress
                if "single_api_chunks" not in prog:
                    prog["single_api_chunks"] = {}
                    
                prog["single_api_chunks"][image_key] = {
                    "completed": True,
                    "translation": cleaned_translation,
                    "chunks": num_chunks,
                    "overlap": overlap,
                    "compression_enabled": compression_enabled,
                    "original_format": original_format,
                    "timestamp": time.time()
                }
                self.save_progress(prog)
                
                print("   βœ… Translation complete (" + str(len(cleaned_translation)) + " chars)")
                return cleaned_translation
                
            except Exception as e:
                error_str = str(e)
                error_msg = error_str.lower()
                
                # Log the full error
                print("   ❌ API Error: " + error_str)
                import traceback
                traceback.print_exc()
                
                # Check for stop
                if "stopped by user" in error_msg or (check_stop_fn and check_stop_fn()):
                    print("   ❌ Translation stopped by user")
                    return None
                
                # For any API error at this point, fall back to sequential
                print("   πŸ”„ Single API call failed, falling back to sequential chunk processing...")
                return self._process_image_chunks(img, width, height, context, check_stop_fn)
        
    def should_translate_image(self, image_path: str, check_illustration: bool = True) -> bool:
        """

        Determine if an image should be translated based on various heuristics

        

        Args:

            image_path: Path to the image file

            check_illustration: Whether to check if it's likely an illustration

            

        Returns:

            True if image likely contains translatable text

        """
        # Skip if already processed
        if image_path in self.processed_images:
            return False
            
        # Check file extension - ADD GIF SUPPORT
        ext = os.path.splitext(image_path)[1].lower()
        if ext not in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
            return False
            
        # Check file size (skip very small images)
        if os.path.exists(image_path):
            size = os.path.getsize(image_path)
            if size < 5000:  # Less than 5KB (lowered threshold for GIFs)
                return False
                
        # For GIF files from web novels, always process them
        if ext == '.gif' and 'chapter' in os.path.basename(image_path).lower():
            print(f"   πŸ“œ Web novel GIF detected: {os.path.basename(image_path)}")
            return True
            
        # Check file size (skip very small images)
        if os.path.exists(image_path):
            size = os.path.getsize(image_path)
            if size < 10000:  # Less than 10KB
                return False
                
        # Check image dimensions
        try:
            with Image.open(image_path) as img:
                width, height = img.size
                # Skip very small images (likely icons)
                if width < 100 or height < 100:
                    return False
                    
                # Calculate aspect ratio
                aspect_ratio = width / height
                
                # Check for web novel/long text images (very tall, narrow images)
                if self.process_webnovel and height > self.webnovel_min_height and aspect_ratio < 0.5:
                    # This is likely a web novel chapter or long text screenshot
                    print(f"   πŸ“œ Web novel/long text image detected: {os.path.basename(image_path)}")
                    return True
                    
                # Skip OTHER extreme aspect ratios (but not tall text images)
                if aspect_ratio > 5:  # Very wide images
                    return False
                    
                # Additional check for illustrations (typically larger, square-ish images)
                if check_illustration:
                    # Large images with normal aspect ratios are often illustrations
                    if width > 800 and height > 600 and 0.5 < aspect_ratio < 2:
                        # Check filename for illustration indicators
                        filename = os.path.basename(image_path).lower()
                        illustration_indicators = [
                            'illust', 'illustration', 'art', 'artwork', 'drawing',
                            'painting', 'sketch', 'design', 'visual', 'graphic',
                            'image', 'picture', 'fig', 'figure', 'plate'
                        ]
                        
                        # If filename suggests it's an illustration, skip
                        for indicator in illustration_indicators:
                            if indicator in filename:
                                print(f"   πŸ“Ž Skipping likely illustration: {filename}")
                                return False
                                
        except Exception:
            return False
            
        # Check filename patterns that suggest text content
        filename = os.path.basename(image_path).lower()
        
        # Strong indicators of text content (including web novel patterns)
        text_indicators = [
            'text', 'title', 'chapter', 'page', 'dialog', 'dialogue',
            'bubble', 'sign', 'note', 'letter', 'message', 'notice',
            'banner', 'caption', 'subtitle', 'heading', 'label',
            'menu', 'interface', 'ui', 'screen', 'display',
            'novel', 'webnovel', 'lightnovel', 'wn', 'ln',  # Web novel indicators
            'chap', 'ch', 'episode', 'ep'  # Chapter indicators
        ]
        
        # Strong indicators to skip
        skip_indicators = [
            'cover', 'logo', 'decoration', 'ornament', 'border',
            'background', 'wallpaper', 'texture', 'pattern',
            'icon', 'button', 'avatar', 'profile', 'portrait',
            'landscape', 'scenery', 'character', 'hero', 'heroine'
        ]
        
        # Check for text indicators
        for indicator in text_indicators:
            if indicator in filename:
                print(f"   πŸ“ Text-likely image detected: {filename}")
                return True
                
        # Check for skip indicators
        for indicator in skip_indicators:
            if indicator in filename:
                print(f"   🎨 Skipping decorative/character image: {filename}")
                return False
        
        # For ambiguous cases, if it's a tall image, assume it might be text
        try:
            with Image.open(image_path) as img:
                width, height = img.size
                if height > width * 2:  # Height is more than twice the width
                    print(f"   πŸ“œ Tall image detected, assuming possible text content")
                    return True
        except:
            pass
        
        # Default to False to avoid processing regular illustrations
        return False
    
    def load_progress(self):
        """Load progress tracking for image chunks"""
        if self.progress_manager:
            # Use the shared progress manager's data
            prog = self.progress_manager.prog.copy()
            # Ensure image_chunks key exists
            if "image_chunks" not in prog:
                prog["image_chunks"] = {}
            return prog
        else:
            # Fallback to original behavior if no progress manager provided
            progress_file = os.path.join(self.output_dir, "translation_progress.json")
            if os.path.exists(progress_file):
                try:
                    with open(progress_file, 'r', encoding='utf-8') as f:
                        prog = json.load(f)
                    # Ensure image_chunks key exists
                    if "image_chunks" not in prog:
                        prog["image_chunks"] = {}
                    return prog
                except Exception as e:
                    print(f"⚠️ Warning: Could not load progress file: {e}")
                    # Return minimal structure to avoid breaking
                    return {
                        "chapters": {},
                        "content_hashes": {},
                        "chapter_chunks": {},
                        "image_chunks": {},
                        "version": "2.1"
                    }
            # Return the same structure as TranslateKRtoEN expects
            return {
                "chapters": {},
                "content_hashes": {},
                "chapter_chunks": {},
                "image_chunks": {},
                "version": "2.1"
            }

    def save_progress(self, prog):
        """Save progress tracking - with safe writing"""
        if self.progress_manager:
            # Update the shared progress manager's data
            self.progress_manager.prog["image_chunks"] = prog.get("image_chunks", {})
            # Save through the progress manager
            self.progress_manager.save()
        else:
            # Fallback to original behavior if no progress manager provided
            progress_file = os.path.join(self.output_dir, "translation_progress.json")
            try:
                # Write to a temporary file first
                temp_file = progress_file + '.tmp'
                with open(temp_file, 'w', encoding='utf-8') as f:
                    json.dump(prog, f, ensure_ascii=False, indent=2)
                
                # If successful, replace the original file
                if os.path.exists(progress_file):
                    os.remove(progress_file)
                os.rename(temp_file, progress_file)
            except Exception as e:
                print(f"⚠️ Warning: Failed to save progress: {e}")
                # Clean up temp file if it exists
                if os.path.exists(temp_file):
                    try:
                        os.remove(temp_file)
                    except:
                        pass
    
    def preprocess_image_for_watermarks(self, image_path: str) -> str:
        """

        Enhanced preprocessing for watermark removal and text clarity

        Now returns path to processed image instead of bytes

        

        Args:

            image_path: Path to the image file

            

        Returns:

            Path to processed image (either cleaned permanent file or original)

        """
        try:
            # Check if watermark removal is enabled
            if not os.getenv("ENABLE_WATERMARK_REMOVAL", "1") == "1":
                return image_path  # Return original path
            
            print(f"   🧹 Preprocessing image for watermark removal...")
            
            # Open image
            img = Image.open(image_path)
            
            # Convert to RGB if necessary
            if img.mode not in ('RGB', 'RGBA'):
                img = img.convert('RGB')
            
            # Check if advanced watermark removal is enabled AND cv2 is available
            if os.getenv("ADVANCED_WATERMARK_REMOVAL", "0") == "1":
                if CV2_AVAILABLE:
                    print(f"   πŸ”¬ Using advanced watermark removal...")
                    
                    # Convert to numpy array for advanced processing
                    img_array = np.array(img)
                    
                    # These will safely return defaults if cv2 is not available
                    has_pattern, pattern_mask = self._detect_watermark_pattern(img_array)
                    if has_pattern:
                        print(f"   πŸ” Detected watermark pattern in image")
                        img_array = self._remove_periodic_watermark(img_array, pattern_mask)
                    
                    img_array = self._adaptive_histogram_equalization(img_array)
                    img_array = self._bilateral_filter(img_array)
                    img_array = self._enhance_text_regions(img_array)
                    
                    # Convert back to PIL Image
                    img = Image.fromarray(img_array)
                else:
                    print(f"   ⚠️ Advanced watermark removal requested but OpenCV not available")
            
            # Apply basic PIL enhancements (always works)
            enhancer = ImageEnhance.Contrast(img)
            img = enhancer.enhance(1.5)
            
            enhancer = ImageEnhance.Brightness(img)
            img = enhancer.enhance(1.1)
            
            img = img.filter(ImageFilter.SHARPEN)
            
            # Check if we should save cleaned images
            save_cleaned = os.getenv("SAVE_CLEANED_IMAGES", "1") == "1"
            
            if save_cleaned:
                # Save to permanent location
                cleaned_dir = os.path.join(self.translated_images_dir, "cleaned")
                os.makedirs(cleaned_dir, exist_ok=True)
                
                base_name = os.path.basename(image_path)
                name, ext = os.path.splitext(base_name)
                cleaned_path = os.path.join(cleaned_dir, f"{name}_cleaned{ext}")
                
                img.save(cleaned_path, optimize=True)
                print(f"   πŸ’Ύ Saved cleaned image: {cleaned_path}")
                
                return cleaned_path  # Return path to cleaned image
            else:
                # Save to temporary file
                import tempfile
                _, ext = os.path.splitext(image_path)
                with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as tmp:
                    img.save(tmp.name, optimize=False)
                    print(f"   πŸ“ Created temp cleaned image")
                    return tmp.name  # Return temp path
            
        except Exception as e:
            logger.warning(f"Could not preprocess image: {e}")
            return image_path  # Return original on error
            
    @requires_cv2
    def _detect_watermark_pattern(self, img_array: np.ndarray) -> Tuple[bool, Optional[np.ndarray]]:
        """Detect repeating watermark patterns using FFT"""
        try:
            # Convert to grayscale for pattern detection
            if len(img_array.shape) == 3:
                gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
            else:
                gray = img_array
            
            # Apply FFT to detect periodicity
            f_transform = np.fft.fft2(gray)
            f_shift = np.fft.fftshift(f_transform)
            magnitude = np.log(np.abs(f_shift) + 1)  # Log scale for better visualization
            
            # Look for peaks that indicate repeating patterns
            mean_mag = np.mean(magnitude)
            std_mag = np.std(magnitude)
            threshold = mean_mag + 2 * std_mag
            
            # Create binary mask of high-frequency components
            pattern_mask = magnitude > threshold
            
            # Exclude center (DC component) - represents average brightness
            center_y, center_x = pattern_mask.shape[0] // 2, pattern_mask.shape[1] // 2
            pattern_mask[center_y-10:center_y+10, center_x-10:center_x+10] = False
            
            # Count significant peaks
            pattern_threshold = int(os.getenv("WATERMARK_PATTERN_THRESHOLD", "10"))
            peak_count = np.sum(pattern_mask)
            
            # If we have significant peaks, there's likely a repeating pattern
            has_pattern = peak_count > pattern_threshold
            
            return has_pattern, pattern_mask if has_pattern else None
            
        except Exception as e:
            logger.warning(f"Pattern detection failed: {e}")
            return False, None
            
    @requires_cv2
    def _remove_periodic_watermark(self, img_array: np.ndarray, pattern_mask: np.ndarray) -> np.ndarray:
        """Remove periodic watermark using frequency domain filtering"""
        try:
            result = img_array.copy()
            
            # Process each color channel
            for channel in range(img_array.shape[2] if len(img_array.shape) == 3 else 1):
                if len(img_array.shape) == 3:
                    gray = img_array[:, :, channel]
                else:
                    gray = img_array
                
                # Apply FFT
                f_transform = np.fft.fft2(gray)
                f_shift = np.fft.fftshift(f_transform)
                
                # Apply notch filter to remove periodic components
                f_shift[pattern_mask] = 0
                
                # Inverse FFT
                f_ishift = np.fft.ifftshift(f_shift)
                img_filtered = np.fft.ifft2(f_ishift)
                img_filtered = np.real(img_filtered)
                
                # Ensure values are in valid range
                img_filtered = np.clip(img_filtered, 0, 255)
                
                if len(img_array.shape) == 3:
                    result[:, :, channel] = img_filtered
                else:
                    result = img_filtered
            
            return result.astype(np.uint8)
            
        except Exception as e:
            logger.warning(f"Watermark removal failed: {e}")
            return img_array
            
    @requires_cv2
    def _adaptive_histogram_equalization(self, img_array: np.ndarray) -> np.ndarray:
        """Apply CLAHE (Contrast Limited Adaptive Histogram Equalization)"""
        try:
            # Convert to LAB color space for better results
            lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
            
            # Split channels
            l, a, b = cv2.split(lab)
            
            # Apply CLAHE to L channel only
            clahe_limit = float(os.getenv("WATERMARK_CLAHE_LIMIT", "3.0"))
            clahe = cv2.createCLAHE(clipLimit=clahe_limit, tileGridSize=(8, 8))
            l = clahe.apply(l)
            
            # Merge channels back
            lab = cv2.merge([l, a, b])
            
            # Convert back to RGB
            enhanced = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
            
            return enhanced
            
        except Exception as e:
            logger.warning(f"Adaptive histogram equalization failed: {e}")
            return img_array
    
    @requires_cv2
    def _bilateral_filter(self, img_array: np.ndarray) -> np.ndarray:
        """Apply bilateral filter for edge-preserving denoising"""
        try:
            # Bilateral filter removes noise while keeping edges sharp
            filtered = cv2.bilateralFilter(
                img_array, 
                d=9,
                sigmaColor=75,
                sigmaSpace=75
            )
            return filtered
            
        except Exception as e:
            logger.warning(f"Bilateral filtering failed: {e}")
            return img_array
    
    @requires_cv2
    def _enhance_text_regions(self, img_array: np.ndarray) -> np.ndarray:
        """Specifically enhance regions likely to contain text"""
        try:
            # Convert to grayscale for text detection
            gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
            
            # Step 1: Detect text regions using gradient analysis
            grad_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
            grad_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
            gradient_magnitude = np.sqrt(grad_x**2 + grad_y**2)
            
            # Normalize gradient
            gradient_magnitude = (gradient_magnitude / gradient_magnitude.max() * 255).astype(np.uint8)
            
            # Step 2: Create text probability mask
            kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
            gradient_density = cv2.morphologyEx(gradient_magnitude, cv2.MORPH_CLOSE, kernel)
            
            # Threshold to get text regions
            _, text_mask = cv2.threshold(gradient_density, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
            
            # Dilate to connect text regions
            text_mask = cv2.dilate(text_mask, kernel, iterations=2)
            
            # Step 3: Enhance contrast in text regions
            enhanced = img_array.copy()
            
            # Create 3-channel mask
            text_mask_3ch = cv2.cvtColor(text_mask, cv2.COLOR_GRAY2RGB) / 255.0
            
            # Apply enhancement only to text regions
            enhanced = enhanced.astype(np.float32)
            enhanced = enhanced * (1 + (0.2 * text_mask_3ch))  # 20% enhancement in text regions
            enhanced = np.clip(enhanced, 0, 255).astype(np.uint8)
            
            return enhanced
            
        except Exception as e:
            logger.warning(f"Text region enhancement failed: {e}")
            return img_array
    
    def translate_image(self, image_path: str, context: str = "", check_stop_fn=None) -> Optional[str]:
        """

        Translate text in an image using vision API - with chunking for tall images and stop support

        """
        processed_path = None
        compressed_path = None
        
        try:
            self.current_image_path = image_path
            print(f"   πŸ” translate_image called for: {image_path}")
            
            # Check for stop at the beginning
            if check_stop_fn and check_stop_fn():
                print("   ❌ Image translation stopped by user")
                return None
            
            if not os.path.exists(image_path):
                logger.warning(f"Image not found: {image_path}")
                print(f"   ❌ Image file does not exist!")
                return None
            
            # Get configuration
            hide_label = os.getenv("HIDE_IMAGE_TRANSLATION_LABEL", "0") == "1"
            
            # Apply compression FIRST if enabled
            compressed_path = image_path
            if os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1":
                compressed_path = self.compress_image(image_path)
                # If compression produced a different file, use it
                if compressed_path != image_path:
                    print(f"   πŸ—œοΈ Using compressed image for translation")
            
            # Apply watermark preprocessing (on compressed image if applicable)
            processed_path = self.preprocess_image_for_watermarks(compressed_path)
            
            # Open and process the image (now using processed_path)
            with Image.open(processed_path) as img:
                width, height = img.size
                aspect_ratio = width / height if height > 0 else 1
                print(f"   πŸ“ Image dimensions: {width}x{height}, aspect ratio: {aspect_ratio:.2f}")
                
                # Convert to RGB if necessary
                if img.mode not in ('RGB', 'RGBA'):
                    img = img.convert('RGB')
                
                # Determine if it's a long text image
                is_long_text = height > self.webnovel_min_height and aspect_ratio < 0.5
                
                # Process chunks or single image
                if height > self.chunk_height:
                    # Check if single API mode is enabled
                    if os.getenv("SINGLE_API_IMAGE_CHUNKS", "1") == "1":
                        translated_text = self._process_image_chunks_single_api(img, width, height, context, check_stop_fn)
                    else:
                        translated_text = self._process_image_chunks(img, width, height, context, check_stop_fn)
                else:
                    translated_text = self._process_single_image(img, context, check_stop_fn)
                
                if not translated_text:
                    return None
            
            # Store the result for caching (use original path as key)
            self.processed_images[image_path] = translated_text
            
            # Save translation for debugging
            self._save_translation_debug(image_path, translated_text)
            
            # Create HTML output - use processed_path for the image reference
            # Handle cross-drive paths on Windows
            try:
                img_rel_path = os.path.relpath(processed_path, self.output_dir)
            except ValueError as e:
                # This happens when paths are on different drives in Windows
                print(f"   ⚠️ Cross-drive path detected, copying image to output directory")
                
                # Copy the processed image to the output directory's images folder
                import shutil
                images_output_dir = os.path.join(self.output_dir, "images")
                os.makedirs(images_output_dir, exist_ok=True)
                
                # Generate a unique filename to avoid conflicts
                base_name = os.path.basename(processed_path)
                dest_path = os.path.join(images_output_dir, base_name)
                
                # Handle potential naming conflicts
                if os.path.exists(dest_path):
                    name, ext = os.path.splitext(base_name)
                    counter = 1
                    while os.path.exists(dest_path):
                        dest_path = os.path.join(images_output_dir, f"{name}_{counter}{ext}")
                        counter += 1
                
                # Copy the file
                shutil.copy2(processed_path, dest_path)
                print(f"   πŸ“‹ Copied image to: {dest_path}")
                
                # Calculate relative path from the copied location
                img_rel_path = os.path.relpath(dest_path, self.output_dir)
                
                # Update processed_path for cleanup logic
                processed_path = dest_path
            
            html_output = self._create_html_output(img_rel_path, translated_text, is_long_text, 
                                                 hide_label, check_stop_fn and check_stop_fn())
            
            return html_output
            
        except Exception as e:
            logger.error(f"Error translating image {image_path}: {e}")
            print(f"   ❌ Exception in translate_image: {e}")
            import traceback
            traceback.print_exc()
            return None
            
        finally:
            # Clean up temp files if they were created
            # Clean up compressed file if it's temporary
            if compressed_path and compressed_path != image_path:
                if not os.getenv("SAVE_COMPRESSED_IMAGES", "0") == "1":
                    try:
                        if os.path.exists(compressed_path):
                            os.unlink(compressed_path)
                            print(f"   🧹 Cleaned up temp compressed file")
                    except Exception as e:
                        logger.warning(f"Could not delete temp compressed file: {e}")
            
            # Clean up processed file if it's temporary
            if processed_path and processed_path != image_path and processed_path != compressed_path:
                if not os.getenv("SAVE_CLEANED_IMAGES", "0") == "1":
                    try:
                        if os.path.exists(processed_path):
                            os.unlink(processed_path)
                            print(f"   🧹 Cleaned up temp processed file")
                    except Exception as e:
                        logger.warning(f"Could not delete temp processed file: {e}")


    def _process_single_image(self, img, context, check_stop_fn):
        """Process a single image that doesn't need chunking"""
        
        # Clear any previous context
        self.image_chunk_context = []
        
        print(f"   πŸ‘ Image height OK ({img.height}px), processing as single image...")
        
        # Check for stop before processing
        if check_stop_fn and check_stop_fn():
            print("   ❌ Image translation stopped by user")
            return None
        
        # Convert image to bytes using compression settings
        image_bytes = self._image_to_bytes_with_compression(img)
        
        # Call API
        translation = self._call_vision_api(image_bytes, context, check_stop_fn)
        
        if translation:
            if self.remove_ai_artifacts:
                translation = self._clean_translation_response(translation)
            # Normalize and sanitize output
            translation = self._normalize_unicode_width(translation)
            translation = self._sanitize_unicode_characters(translation)
            return translation
        else:
            print(f"   ❌ Translation returned empty result")
            return None


    def _image_to_bytes_with_compression(self, img):
        """Convert PIL Image to bytes with compression settings applied"""
        # Check if compression is enabled
        if os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1":
            # Get compression settings
            format_setting = os.getenv("IMAGE_COMPRESSION_FORMAT", "auto")
            webp_quality = int(os.getenv("WEBP_QUALITY", "85"))
            jpeg_quality = int(os.getenv("JPEG_QUALITY", "85"))
            png_compression = int(os.getenv("PNG_COMPRESSION", "6"))
            preserve_transparency = os.getenv("PRESERVE_TRANSPARENCY", "0") == "1"
            optimize_for_ocr = os.getenv("OPTIMIZE_FOR_OCR", "1") == "1"
            
            # Store original mode for GIF handling
            original_mode = img.mode
            transparency_info = None
            
            # Check if this is a chunk from a GIF (palette mode)
            is_gif_chunk = img.mode in ('P', 'L')
            
            # Apply OCR optimization if enabled
            if optimize_for_ocr:
                # Handle GIF chunks in palette mode
                if is_gif_chunk:
                    print(f"   🎨 Chunk is in {img.mode} mode - converting for optimization")
                    
                    if img.mode == 'P':
                        # Preserve transparency info if present
                        transparency_info = img.info.get('transparency', None)
                        # Convert to RGBA if has transparency, otherwise RGB
                        if transparency_info is not None:
                            img = img.convert('RGBA')
                        else:
                            img = img.convert('RGB')
                    elif img.mode == 'L':
                        img = img.convert('RGB')
                
                # Apply enhancements (now safe for all modes)
                from PIL import ImageEnhance
                enhancer = ImageEnhance.Contrast(img)
                img = enhancer.enhance(1.2)
                enhancer = ImageEnhance.Sharpness(img)
                img = enhancer.enhance(1.1)
                
                # Extra sharpening for GIF-sourced chunks
                if is_gif_chunk:
                    img = enhancer.enhance(1.2)
                    print(f"   ✨ Applied extra sharpening for GIF-sourced chunk")
            
            # Auto-select format if needed
            if format_setting == "auto":
                # Check if we should preserve original format
                preserve_original_format = os.getenv("PRESERVE_ORIGINAL_FORMAT", "0") == "1"
                original_format = os.getenv("ORIGINAL_IMAGE_FORMAT", "").lower()
                
                # If preserving format and we know the original format
                if preserve_original_format and original_format:
                    if original_format == 'gif':
                        format_setting = 'gif'
                        print(f"   🎞️ Preserving GIF format for chunk")
                    elif original_format in ['png', 'jpeg', 'jpg', 'webp']:
                        format_setting = original_format.replace('jpg', 'jpeg')
                        print(f"   πŸ“Έ Preserving {format_setting.upper()} format for chunk")
                    else:
                        # Fallback to PNG for unknown formats
                        format_setting = "png"
                        print(f"   πŸ“Έ Using PNG for chunk (unknown original format: {original_format})")
                # Legacy fallback: If chunk is in palette mode and preserve format is on, assume GIF
                elif preserve_original_format and is_gif_chunk:
                    format_setting = 'gif'
                    print(f"   🎞️ Preserving GIF format for chunk (palette mode detected)")
                else:
                    # Check image characteristics for auto-selection
                    has_transparency = img.mode in ('RGBA', 'LA') or (img.mode == 'P' and 'transparency' in img.info)
                    
                    # For chunks, prefer WebP for best compression unless transparency is needed
                    if has_transparency and preserve_transparency:
                        format_setting = "png"  # PNG for transparency
                    else:
                        format_setting = "webp"  # WebP for best compression
                    
                    print(f"   🎯 Auto-selected format for chunk: {format_setting}")
            
            # Use the selected format with compression
            if format_setting == "webp":
                print(f"   πŸ—œοΈ Compressing chunk as WebP (quality: {webp_quality})")
                return self._image_to_bytes(img, format='WEBP', quality=webp_quality)
            elif format_setting == "jpeg":
                print(f"   πŸ—œοΈ Compressing chunk as JPEG (quality: {jpeg_quality})")
                return self._image_to_bytes(img, format='JPEG', quality=jpeg_quality)
            elif format_setting == "png":
                # PNG uses compression level, not quality
                print(f"   πŸ—œοΈ Compressing chunk as PNG (compression: {png_compression})")
                img_bytes = io.BytesIO()
                img.save(img_bytes, format='PNG', compress_level=png_compression, optimize=True)
                img_bytes.seek(0)
                data = img_bytes.read()
                
                # Log compression info
                print(f"   πŸ“Š Chunk size: {len(data) / 1024:.1f}KB")
                return data
            elif format_setting == "gif":
                # GIF format for chunks
                print(f"   🎞️ Saving chunk as GIF")
                img_bytes = io.BytesIO()
                # Convert to palette mode if needed
                if img.mode not in ('P', 'L'):
                    img = img.quantize(colors=256, method=2)  # MEDIANCUT
                img.save(img_bytes, format='GIF', optimize=True)
                img_bytes.seek(0)
                data = img_bytes.read()
                
                # Log compression info
                print(f"   πŸ“Š Chunk size: {len(data) / 1024:.1f}KB")
                return data
        
        # Default: use existing method without compression
        print(f"   ⚠️ Compression disabled, using default PNG format")
        return self._image_to_bytes(img)

    def _image_to_bytes(self, img, format='PNG', quality=None):
            """Convert PIL Image to bytes with various format options"""
            img_bytes = io.BytesIO()
            
            if format == 'WEBP':
                # WebP is much better for manga/text images
                # Ensure RGB mode for WebP (no RGBA in some cases)
                if img.mode == 'RGBA' and not os.getenv("PRESERVE_TRANSPARENCY", "0") == "1":
                    # Create white background
                    background = Image.new('RGB', img.size, (255, 255, 255))
                    background.paste(img, mask=img.split()[3])
                    img = background
                elif img.mode not in ['RGB', 'L', 'RGBA']:
                    img = img.convert('RGB')
                    
                if quality:
                    img.save(img_bytes, format='WEBP', quality=quality, method=6)
                else:
                    img.save(img_bytes, format='WEBP', lossless=True)
            elif format == 'JPEG':
                # JPEG doesn't support transparency, so convert RGBA to RGB
                if img.mode == 'RGBA':
                    # Create white background
                    background = Image.new('RGB', img.size, (255, 255, 255))
                    background.paste(img, mask=img.split()[3])
                    img = background
                elif img.mode != 'RGB':
                    img = img.convert('RGB')
                
                # Save as JPEG with specified quality
                if quality:
                    img.save(img_bytes, format='JPEG', quality=quality, optimize=True, 
                            progressive=os.getenv("PROGRESSIVE_ENCODING", "1") == "1")
                else:
                    img.save(img_bytes, format='JPEG', quality=85, optimize=True)
            elif format == 'GIF':
                # GIF format handling
                if img.mode not in ('P', 'L'):
                    # Convert to palette mode for GIF
                    img = img.quantize(colors=256, method=2)  # MEDIANCUT method
                
                # Save as GIF
                img.save(img_bytes, format='GIF', optimize=True)
            else:
                # Default PNG format
                compress_level = int(os.getenv("PNG_COMPRESSION", "6"))
                img.save(img_bytes, format='PNG', compress_level=compress_level, optimize=True)
            
            img_bytes.seek(0)
            data = img_bytes.read()
            
            # Log the size for debugging
            size_kb = len(data) / 1024
            if size_kb > 500:  # Warn if chunk is over 500KB
                print(f"   ⚠️ Large chunk detected: {size_kb:.1f}KB - consider enabling compression!")
            
            return data

    def _process_image_chunks(self, img, width, height, context, check_stop_fn):
        """Process a tall image by splitting it into chunks with contextual support"""
        num_chunks = (height + self.chunk_height - 1) // self.chunk_height
        overlap = 100  # Pixels of overlap between chunks
        
        print(f"   βœ‚οΈ Image too tall ({height}px), splitting into {num_chunks} chunks of {self.chunk_height}px...")
        
        # Clear context for new image
        self.image_chunk_context = []
        
        # Add retry info if enabled
        if os.getenv("RETRY_TIMEOUT", "1") == "1":
            timeout_seconds = int(os.getenv("CHUNK_TIMEOUT", "180"))
            print(f"   ⏱️ Auto-retry enabled: Will retry if chunks take > {timeout_seconds}s")
        
        print(f"   ⏳ This may take {num_chunks * 30}-{num_chunks * 60} seconds to complete")
        print(f"   ℹ️ Stop will take effect after current chunk completes")
        
        # Check if we should save debug chunks
        save_debug_chunks = os.getenv('SAVE_CLEANED_IMAGES', '0') == '1'
        save_compressed_chunks = os.getenv('SAVE_COMPRESSED_IMAGES', '0') == '1'
        
        if save_debug_chunks or save_compressed_chunks:
            debug_dir = os.path.join(self.output_dir, "translated_images", "debug_chunks")
            os.makedirs(debug_dir, exist_ok=True)
            print(f"   πŸ” Debug mode: Saving chunks to {debug_dir}")
        
        # Load progress - maintaining full structure
        prog = self.load_progress()
        
        # Create unique key for this image - include chapter info if available
        image_basename = os.path.basename(self.current_image_path) if hasattr(self, 'current_image_path') else str(hash(str(img)))
        
        # Try to extract chapter number from context or path
        chapter_num = None
        if hasattr(self, 'current_chapter_num'):
            chapter_num = self.current_chapter_num
        else:
            # Try to extract from filename
            import re
            match = re.search(r'ch(?:apter)?[\s_-]*(\d+)', image_basename, re.IGNORECASE)
            if match:
                chapter_num = match.group(1)
        
        # Create a more unique key that includes chapter info
        if chapter_num:
            image_key = f"ch{chapter_num}_{image_basename}"
        else:
            image_key = image_basename
        
        # Initialize image chunk tracking
        if "image_chunks" not in prog:
            prog["image_chunks"] = {}
            
        if image_key not in prog["image_chunks"]:
            prog["image_chunks"][image_key] = {
                "total": num_chunks,
                "completed": [],
                "chunks": {},
                "height": height,
                "width": width,
                "chapter": chapter_num,  # Store chapter association
                "filename": image_basename
            }
        
        all_translations = []
        was_stopped = False
        
        # Process chunks
        for i in range(num_chunks):
            # Check if this chunk was already translated
            if i in prog["image_chunks"][image_key]["completed"]:
                saved_chunk = prog["image_chunks"][image_key]["chunks"].get(str(i))
                if saved_chunk:
                    all_translations.append(saved_chunk)
                    print(f"   ⏭️ Chunk {i+1}/{num_chunks} already translated, skipping")
                    continue
            
            # Check for stop before processing each chunk
            if check_stop_fn and check_stop_fn():
                print(f"   ❌ Stopped at chunk {i+1}/{num_chunks}")
                was_stopped = True
                break
            
            # Calculate chunk boundaries with overlap
            start_y = max(0, i * self.chunk_height - (overlap if i > 0 else 0))
            end_y = min(height, (i + 1) * self.chunk_height)
            
            current_filename = os.path.basename(self.current_image_path) if hasattr(self, 'current_image_path') else 'unknown'
            print(f"   πŸ“„ Processing chunk {i+1}/{num_chunks} (y: {start_y}-{end_y}) for {current_filename}")
            if self.log_callback and hasattr(self.log_callback, '__self__') and hasattr(self.log_callback.__self__, 'append_chunk_progress'):
                self.log_callback.__self__.append_chunk_progress(
                    i + 1, 
                    num_chunks, 
                    "image", 
                    f"Image: {os.path.basename(self.current_image_path) if hasattr(self, 'current_image_path') else 'unknown'}"
                )
            
            print(f"   ⏳ Estimated time: 30-60 seconds for this chunk")
                
            # Crop and process the chunk
            chunk = img.crop((0, start_y, width, end_y))
            
            # Convert chunk to bytes with compression
            chunk_bytes = self._image_to_bytes_with_compression(chunk)
            
            # Save debug chunks if enabled
            if save_debug_chunks or save_compressed_chunks:
                # Save original chunk
                if save_debug_chunks:
                    chunk_path = os.path.join(debug_dir, f"chunk_{i+1}_original.png")
                    chunk.save(chunk_path)
                    print(f"   πŸ’Ύ Saved original chunk: {chunk_path}")
                
                # Save compressed chunk if enabled
                if save_compressed_chunks and os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1":
                    compressed_dir = os.path.join(self.output_dir, "translated_images", "compressed", "chunks")
                    os.makedirs(compressed_dir, exist_ok=True)
                    
                    # Use compression settings to save chunk
                    format_setting = os.getenv("IMAGE_COMPRESSION_FORMAT", "auto")
                    if format_setting == "auto":
                        format_setting = "webp"  # Default to WebP for chunks
                    
                    # Create a temporary in-memory file for the compressed chunk
                    from io import BytesIO
                    compressed_buffer = BytesIO()
                    
                    if format_setting == "webp":
                        quality = int(os.getenv("WEBP_QUALITY", "85"))
                        chunk.save(compressed_buffer, format='WEBP', quality=quality, method=6)
                        compressed_chunk_path = os.path.join(compressed_dir, f"chunk_{i+1}_compressed.webp")
                    elif format_setting == "jpeg":
                        quality = int(os.getenv("JPEG_QUALITY", "85"))
                        # Convert RGBA to RGB for JPEG
                        if chunk.mode == 'RGBA':
                            rgb_chunk = Image.new('RGB', chunk.size, (255, 255, 255))
                            rgb_chunk.paste(chunk, mask=chunk.split()[3])
                            chunk_to_save = rgb_chunk
                        else:
                            chunk_to_save = chunk
                        chunk_to_save.save(compressed_buffer, format='JPEG', quality=quality, optimize=True)
                        compressed_chunk_path = os.path.join(compressed_dir, f"chunk_{i+1}_compressed.jpg")
                    else:  # PNG
                        compress_level = int(os.getenv("PNG_COMPRESSION", "6"))
                        chunk.save(compressed_buffer, format='PNG', compress_level=compress_level, optimize=True)
                        compressed_chunk_path = os.path.join(compressed_dir, f"chunk_{i+1}_compressed.png")
                    
                    # Write the compressed chunk to disk
                    with open(compressed_chunk_path, 'wb') as f:
                        f.write(compressed_buffer.getvalue())
                    
                    # Get actual original chunk size before compression
                    chunk_buffer = BytesIO()
                    chunk.save(chunk_buffer, format='PNG')
                    actual_original_size = len(chunk_buffer.getvalue()) / 1024  # KB

                    # Log compression info
                    compressed_size = len(compressed_buffer.getvalue()) / 1024  # KB
                    compression_ratio = (1 - compressed_size / actual_original_size) * 100 if actual_original_size > 0 else 0
                    
                    print(f"   πŸ’Ύ Saved compressed chunk: {compressed_chunk_path}")
                    print(f"   πŸ“Š Chunk compression: {actual_original_size:.1f}KB β†’ {compressed_size:.1f}KB ({compression_ratio:.1f}% reduction)")
            
            # Get custom image chunk prompt template from environment
            image_chunk_prompt_template = os.getenv("IMAGE_CHUNK_PROMPT", "This is part {chunk_idx} of {total_chunks} of a longer image. You must maintain the narrative flow with the previous chunks while translating it and following all system prompt guidelines previously mentioned. {context}")
            
            # Build context for this chunk
            chunk_context = image_chunk_prompt_template.format(
                chunk_idx=i+1,
                total_chunks=num_chunks,
                context=context
            )
            
            # Translate chunk WITH CONTEXT
            translation = self._call_vision_api(chunk_bytes, chunk_context, check_stop_fn)
            
            if translation:
                # Clean AI artifacts from chunk
                if self.remove_ai_artifacts:
                    chunk_text = self._clean_translation_response(translation)
                else:
                    chunk_text = translation
                # Normalize and sanitize each chunk
                chunk_text = self._normalize_unicode_width(chunk_text)
                chunk_text = self._sanitize_unicode_characters(chunk_text)
                all_translations.append(chunk_text)
                print(f"   πŸ” DEBUG: Chunk {i+1} length: {len(chunk_text)} chars")
                if len(chunk_text) > 10000:  # Flag suspiciously large chunks
                    print(f"   ⚠️ WARNING: Chunk unusually large!")
                    print(f"   First 500 chars: {chunk_text[:500]}")
                    print(f"   Last 500 chars: {chunk_text[-500:]}")
                
                # Store context for next chunks
                if self.contextual_enabled:
                    self.image_chunk_context.append({
                        "user": chunk_context,
                        "assistant": chunk_text
                    })
                
                # Save chunk progress
                prog["image_chunks"][image_key]["completed"].append(i)
                prog["image_chunks"][image_key]["chunks"][str(i)] = chunk_text
                self.save_progress(prog)
                
                print(f"   βœ… Chunk {i+1} translated and saved ({len(chunk_text)} chars)")
            else:
                print(f"   ⚠️ Chunk {i+1} returned no text")
            
            # Delay between chunks if not the last one
            if i < num_chunks - 1 and not was_stopped:
                self._api_delay_with_stop_check(check_stop_fn)
                if check_stop_fn and check_stop_fn():
                    was_stopped = True
                    break
        
        # Combine all chunk translations
        if all_translations:
            translated_text = "\n\n".join(all_translations)
            if was_stopped:
                translated_text += "\n\n[TRANSLATION STOPPED BY USER]"
            print(f"   βœ… Combined {len(all_translations)} chunks into final translation")
            return translated_text
        else:
            print(f"   ❌ No successful translations from any chunks")
            return None

    def set_current_chapter(self, chapter_num):
        """Set the current chapter number for progress tracking"""
        self.current_chapter_num = chapter_num

    def _call_vision_api(self, image_data, context, check_stop_fn):
        """Make the actual API call for vision translation with retry support"""
        # Build messages - NO HARDCODED PROMPT
        messages = [
            {"role": "system", "content": self.system_prompt}
        ]
        
        # Add context from previous chunks if contextual is enabled
        if hasattr(self, 'contextual_enabled') and self.contextual_enabled:
            if hasattr(self, 'image_chunk_context') and self.image_chunk_context:
                # Include ALL previous chunks from this image, not just last 2
                print(f"   πŸ“š Including ALL {len(self.image_chunk_context)} previous chunks as context")
                
                for ctx in self.image_chunk_context:
                    messages.extend([
                        {"role": "user", "content": ctx["user"]},
                        {"role": "assistant", "content": ctx["assistant"]}
                    ])
        
        # Add current chunk (this already exists)
        messages.append({
            "role": "user", 
            "content": context if context else ""
        })
        if hasattr(self, 'current_chapter_num'):
            chapter_num = self.current_chapter_num
            image_idx = getattr(self, 'current_image_index', 0)
            output_filename = f"response_{chapter_num:03d}_Chapter_{chapter_num}_image_{image_idx}.html"
            self.client.set_output_filename(output_filename)        

        retry_timeout_enabled = os.getenv("RETRY_TIMEOUT", "1") == "1"
        chunk_timeout = int(os.getenv("CHUNK_TIMEOUT", "180")) if retry_timeout_enabled else None
        max_timeout_retries = 2
        
        # Store original values
        original_max_tokens = self.image_max_tokens
        original_temp = self.temperature
        
        # Initialize retry counters
        timeout_retry_count = 0
        
        while True:
            try:
                current_max_tokens = self.image_max_tokens
                current_temp = self.temperature
                
                print(f"   πŸ”„ Calling vision API...")
                print(f"   πŸ“Š Using temperature: {current_temp}")
                print(f"   πŸ“Š Output Token Limit: {current_max_tokens}")
                
                if chunk_timeout:
                    print(f"   ⏱️ Timeout enabled: {chunk_timeout} seconds")
                
                # Final stop check before API call
                if check_stop_fn and check_stop_fn():
                    print("   ❌ Stopped before API call")
                    return None
                
                # Use the new interrupt function
                translation_response, trans_finish = send_image_with_interrupt(
                    self.client,
                    messages,
                    image_data,
                    current_temp,
                    current_max_tokens,
                    check_stop_fn,
                    chunk_timeout,
                    'image_translation'
                )
                
                print(f"   πŸ“‘ API response received, finish_reason: {trans_finish}")
                
                # Check if translation was truncated
                if trans_finish in ["length", "max_tokens"]:
                    print(f"   ⚠️ Translation was TRUNCATED! Consider increasing Max tokens.")
                    translation_response += "\n\n[TRANSLATION TRUNCATED DUE TO TOKEN LIMIT]"
                
                # Success - restore original values if they were changed
                if timeout_retry_count > 0:
                    self.image_max_tokens = original_max_tokens
                    self.temperature = original_temp
                    print(f"   βœ… Restored original settings after successful retry")
                
                return translation_response.strip()
                
            except Exception as e:
                from unified_api_client import UnifiedClientError
                error_msg = str(e)
                print(f"\nπŸ” DEBUG: Image Translation Failed")
                print(f"   Error: {error_msg}")
                print(f"   Error Type: {type(e).__name__}")
                
                # Handle user stop
                if "stopped by user" in error_msg:
                    print("   ❌ Image translation stopped by user")
                    return None
                # Handle timeout specifically
                if "took" in error_msg and "timeout:" in error_msg:
                    if timeout_retry_count < max_timeout_retries:
                        timeout_retry_count += 1
                        print(f"    ⏱️ Chunk took too long, retry {timeout_retry_count}/{max_timeout_retries}")
                        
                        print(f"    πŸ”„ Retrying")
                       
                        time.sleep(2)
                        continue
                    else:
                        print(f"   ❌ Max timeout retries reached for image")
                        # Restore original values
                        self.image_max_tokens = original_max_tokens
                        self.temperature = original_temp
                        return f"[Image Translation Error: Timeout after {max_timeout_retries} retries]"
                
                # Handle other timeouts
                elif "timed out" in error_msg and "timeout:" not in error_msg:
                    print(f"   ⚠️ {error_msg}, retrying...")
                    time.sleep(5)
                    continue
                
                # For other errors, restore values and return error
                if timeout_retry_count > 0:
                    self.image_max_tokens = original_max_tokens
                    self.temperature = original_temp
                
                print(f"   ❌ Translation failed: {e}")
                print(f"   ❌ Error type: {type(e).__name__}")
                return f"[Image Translation Error: {str(e)}]"


    def _clean_translation_response(self, response):
        """Clean AI artifacts from translation response while preserving content"""
        if not response or not response.strip():
            return response
        
        # First, preserve the original response length for debugging
        original_length = len(response)
        
        # Remove common AI prefixes - but be more careful
        lines = response.split('\n')
        
        # Check if first line is just a prefix without content
        if len(lines) > 1 and lines[0].strip() and lines[0].strip().lower() in [
            'sure', 'here', "i'll translate", 'certainly', 'okay', 
            'here is the translation:', 'translation:', "here's the translation:",
            "i'll translate the text from the image:", "let me translate that for you:"
        ]:
            # Remove only the first line if it's just a prefix
            response = '\n'.join(lines[1:]).strip()
        elif len(lines) > 1 and lines[0].strip() and any(
            lines[0].strip().lower().startswith(prefix) 
            for prefix in ['sure,', 'here,', "i'll translate", 'certainly,', 'okay,']
        ):
            # Check if the first line contains actual translation content after the prefix
            first_line = lines[0].strip()
            # Look for a colon or period that might separate prefix from content
            for sep in [':', '.', ',']:
                if sep in first_line:
                    parts = first_line.split(sep, 1)
                    if len(parts) > 1 and parts[1].strip():
                        # There's content after the separator, keep it
                        lines[0] = parts[1].strip()
                        response = '\n'.join(lines).strip()
                        break
            else:
                # No separator found with content, remove the whole first line
                response = '\n'.join(lines[1:]).strip()
        
        # Log if we removed significant content
        cleaned_length = len(response)
        if cleaned_length == 0 and original_length > 0:
            print(f"   ⚠️ WARNING: Cleaning removed all content! Original: {original_length} chars")
            print(f"   ⚠️ First 200 chars were: {response[:200]}")
        elif cleaned_length < original_length * 0.5:
            print(f"   ⚠️ WARNING: Cleaning removed >50% of content! {original_length} β†’ {cleaned_length}")
        
        return response

    def _save_translation_debug(self, image_path, translated_text):
        """Save translation to file for debugging"""
        trans_filename = f"translated_{os.path.basename(image_path)}.txt"
        trans_filepath = os.path.join(self.translated_images_dir, trans_filename)
        
        try:
            with open(trans_filepath, 'w', encoding='utf-8') as f:
                f.write(translated_text)
            print(f"   πŸ’Ύ Saved translation to: {trans_filename}")
        except Exception as e:
            print(f"   ⚠️ Could not save translation file: {e}")

    def _remove_http_links(self, text: str) -> str:
        """Remove HTTP/HTTPS URLs from text while preserving other content"""
        # Pattern to match URLs
        url_pattern = r'https?://[^\s<>"{}|\\^`\[\]]+(?:\.[^\s<>"{}|\\^`\[\]]+)*'
        
        # Replace URLs with empty string
        cleaned_text = re.sub(url_pattern, '', text)
        
        # Clean up extra whitespace that may result from URL removal
        cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
        
        return cleaned_text

    def _normalize_unicode_width(self, text: str) -> str:
        """Normalize Unicode width and compatibility forms using NFKC"""
        if not text:
            return text
        try:
            import unicodedata
            original = text
            text = unicodedata.normalize('NFKC', text)
            if text != original:
                try:
                    if self.log_callback:
                        self.log_callback(f"πŸ”€ Normalized width/compat: '{original[:30]}...' β†’ '{text[:30]}...'")
                except Exception:
                    pass
            return text
        except Exception:
            return text
    
    def _sanitize_unicode_characters(self, text: str) -> str:
        """Remove invalid Unicode characters and common fallback boxes"""
        if not text:
            return text
        import re
        original = text
        # Replacement character and common geometric fallbacks
        text = text.replace('\ufffd', '')
        for ch in ['β–‘','β—‡','β—†','β– ','β–’','β–£','β–€','β–₯','β–¦','β–§','β–¨','β–©']:
            text = text.replace(ch, '')
        text = re.sub(r'[\u200b-\u200f\u2028-\u202f\u205f-\u206f\ufeff]', '', text)
        text = re.sub(r'[\x00-\x08\x0B-\x0C\x0E-\x1F\x7F-\x9F]', '', text)
        try:
            text = text.encode('utf-8', errors='ignore').decode('utf-8')
        except UnicodeError:
            pass
        # Normalize whitespace
        text = re.sub(r'\s+', ' ', text).strip()
        return text
    
    def _create_html_output(self, img_rel_path, translated_text, is_long_text, hide_label, was_stopped):
        print(f"   πŸ” DEBUG: Creating HTML output")
        print(f"   Total translation length: {len(translated_text)} chars")
        if len(translated_text) > 50000:
            print(f"   ⚠️ WARNING: Translation suspiciously large!")
        """Create the final HTML output"""
        # Check if the translation is primarily a URL (only a URL and nothing else)
        url_pattern = r'https?://[^\s<>"{}|\\^`\[\]]+(?:\.[^\s<>"{}|\\^`\[\]]+)*'
        
        # Check if the entire content is just a URL
        url_match = re.match(r'^\s*' + url_pattern + r'\s*$', translated_text.strip())
        is_only_url = bool(url_match)
        
        # Build the label HTML if needed
        if hide_label:
            label_html = ""
            # Remove URLs from the text, but keep other content
            cleaned_text = self._remove_http_links(translated_text)
            
            # If after removing URLs there's no content left, and original was only URL
            if not cleaned_text and is_only_url:
                translated_text = "[Image contains only URL]"
            else:
                # Use the cleaned text (URLs removed, other content preserved)
                translated_text = cleaned_text
        else:
            if was_stopped:
                label_html = f'<p><em>(partial)</em></p>\n'
            else:
                label_html = ""
        
        # Build the image HTML based on type - or skip it entirely if hide_label is enabled
        if hide_label:
            # Don't include the image at all when hide_label is enabled
            image_html = ""
            css_class = "translated-text-only"
        elif is_long_text:
            image_html = f"""<details>

                <summary>πŸ“– View Original Image</summary>

                <img src="{img_rel_path}" alt="Original image" />

            </details>"""
            css_class = "image-with-translation webnovel-image"
        else:
            image_html = f'<img src="{img_rel_path}" alt="Original image" />'
            css_class = "image-with-translation"
        
        # Combine everything
        return f"""<div class="{css_class}">

            {image_html}

            <div class="image-translation">

                {label_html}{self._format_translation_as_html(translated_text)}

            </div>

        </div>"""
            
    def _api_delay_with_stop_check(self, check_stop_fn):
        """API delay with stop checking"""
        # Check for stop during delay (split into 0.1s intervals)
        for i in range(int(self.api_delay * 10)):
            if check_stop_fn and check_stop_fn():
                return True
            time.sleep(0.1)
        return False
    
    def _format_translation_as_html(self, text: str) -> str:
        """Format translated text as HTML paragraphs"""
        # Convert to string and strip whitespace
        text = str(text).strip()
        
        # Remove various tuple wrapping patterns
        # Handle complete tuple wrapping
        if text.startswith('("') and text.endswith('")'):
            text = text[2:-2]
        elif text.startswith("('") and text.endswith("')"):
            text = text[2:-2]
        # Handle incomplete tuple wrapping (like just (" at the start)
        elif text.startswith('("'):
            text = text[2:]
        elif text.startswith("('"):
            text = text[2:]
        elif text.startswith('('):
            # Check if it looks like a tuple representation
            if len(text) > 1 and text[1] in ['"', "'"]:
                text = text[2:]  # Remove (" or ('
            else:
                text = text[1:]  # Just remove the (
        
        # Remove trailing tuple markers if present
        if text.endswith('")'):
            text = text[:-2]
        elif text.endswith("')"):
            text = text[:-2]
        elif text.endswith(')') and len(text) > 1 and text[-2] in ['"', "'"]:
            text = text[:-2]
        
        # Ensure we have actual newlines, not escaped ones
        if '\\n' in text:
            print(f"   πŸ”§ Found literal \\n in text, converting to actual newlines")
            text = text.replace('\\n', '\n')
        
        # Split by double newlines for paragraphs
        paragraphs = text.split('\n\n')
        html_parts = []
        
        for para in paragraphs:
            para = para.strip()
            if para:
                # Check if it's dialogue (starts with quotes)
                if para.startswith(('"', '"', 'γ€Œ', 'γ€Ž', '"')):
                    html_parts.append(f'<p class="dialogue">{para}</p>')
                else:
                    html_parts.append(f'<p>{para}</p>')
        
        # If no paragraphs were created (single line), wrap it
        if not html_parts and text.strip():
            html_parts.append(f'<p>{text.strip()}</p>')
        
        result = '\n'.join(html_parts)
        
        # Debug output
        print(f"   πŸ“ Created {len(html_parts)} paragraphs from text")
        
        return result

    def _unescape_response_text(self, text):
        """Unescape text that comes back with literal \n characters"""
        if not text:
            return text
        
        # Convert to string if needed
        text = str(text)
        
        # Remove tuple wrapping if present (e.g., ('text') or ("text"))
        if text.startswith('("') and text.endswith('")'):
            text = text[2:-2]
        elif text.startswith("('") and text.endswith("')"):
            text = text[2:-2]
        elif text.startswith('(') and text.endswith(')') and len(text) > 2:
            # Check if it's a single-item tuple representation
            inner = text[1:-1].strip()
            if (inner.startswith('"') and inner.endswith('"')) or (inner.startswith("'") and inner.endswith("'")):
                text = inner[1:-1]
        
        # Handle escaped characters - convert literal \n to actual newlines
        text = text.replace('\\n', '\n')
        text = text.replace('\\t', '\t')
        text = text.replace('\\"', '"')
        text = text.replace("\\'", "'")
        text = text.replace('\\\\', '\\')
        
        return text
    
    def update_chapter_with_translated_images(self, chapter_html: str, image_translations: Dict[str, str]) -> str:
        """

        Update chapter HTML to include image translations

        

        Args:

            chapter_html: Original chapter HTML

            image_translations: Dict mapping original image paths to translation HTML

            

        Returns:

            Updated HTML

        """
        soup = BeautifulSoup(chapter_html, 'html.parser')
        
        for img in soup.find_all('img'):
            src = img.get('src', '')
            if src in image_translations:
                # Replace the img tag with the translation HTML
                translation_html = image_translations[src]
                new_element = BeautifulSoup(translation_html, 'html.parser')
                img.replace_with(new_element)
                
        return str(soup)
    
    def save_translation_log(self, chapter_num: int, translations: Dict[str, str]):
        """

        Save a log of all translations for a chapter

        

        Args:

            chapter_num: Chapter number

            translations: Dict of image path to translated text

        """
        if not translations:
            return
            
        log_dir = os.path.join(self.translated_images_dir, 'logs')
        os.makedirs(log_dir, exist_ok=True)
        
        log_file = os.path.join(log_dir, f'chapter_{chapter_num}_translations.json')
        
        log_data = {
            'chapter': chapter_num,
            'timestamp': os.environ.get('TZ', 'UTC'),
            'translations': {}
        }
        
        for img_path, translation in translations.items():
            # Extract just the text from HTML if needed
            if '<div class="image-translation">' in translation:
                soup = BeautifulSoup(translation, 'html.parser')
                text_div = soup.find('div', class_='image-translation')
                if text_div:
                    # Remove the header paragraph
                    header = text_div.find('p')
                    if header and ('(partial)' in header.text or '[Image text translation' in header.text):
                        header.decompose()
                    text = text_div.get_text(separator='\n').strip()
                else:
                    text = translation
            else:
                text = translation
                
            log_data['translations'][os.path.basename(img_path)] = text
        
        with open(log_file, 'w', encoding='utf-8') as f:
            json.dump(log_data, f, ensure_ascii=False, indent=2)
            
        print(f"   πŸ“ Saved translation log: {os.path.basename(log_file)}")