Spaces:
Running
Running
File size: 131,583 Bytes
f66ccd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 |
"""
Local inpainting implementation - COMPATIBLE VERSION WITH JIT SUPPORT
Maintains full backward compatibility while adding proper JIT model support
"""
import os
import sys
import json
import numpy as np
import cv2
from typing import Optional, List, Tuple, Dict, Any
import logging
import traceback
import re
import hashlib
import urllib.request
from pathlib import Path
import threading
import time
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Check if we're running in a frozen environment
IS_FROZEN = getattr(sys, 'frozen', False)
if IS_FROZEN:
MEIPASS = sys._MEIPASS
os.environ['TORCH_HOME'] = MEIPASS
os.environ['TRANSFORMERS_CACHE'] = os.path.join(MEIPASS, 'transformers')
os.environ['HF_HOME'] = os.path.join(MEIPASS, 'huggingface')
logger.info(f"Running in frozen environment: {MEIPASS}")
# Environment variables for ONNX
ONNX_CACHE_DIR = os.environ.get('ONNX_CACHE_DIR', 'models')
AUTO_CONVERT_TO_ONNX = os.environ.get('AUTO_CONVERT_TO_ONNX', 'false').lower() == 'true'
SKIP_ONNX_FOR_CKPT = os.environ.get('SKIP_ONNX_FOR_CKPT', 'true').lower() == 'true'
FORCE_ONNX_REBUILD = os.environ.get('FORCE_ONNX_REBUILD', 'false').lower() == 'true'
CACHE_DIR = os.environ.get('MODEL_CACHE_DIR', os.path.expanduser('~/.cache/inpainting'))
# Modified import handling for frozen environment
TORCH_AVAILABLE = False
torch = None
nn = None
F = None
BaseModel = object
try:
import onnxruntime_extensions
ONNX_EXTENSIONS_AVAILABLE = True
except ImportError:
ONNX_EXTENSIONS_AVAILABLE = False
logger.info("ONNX Runtime Extensions not available - FFT models won't work in ONNX")
if IS_FROZEN:
# In frozen environment, try harder to import
try:
import torch
import torch.nn as nn
import torch.nn.functional as F
TORCH_AVAILABLE = True
BaseModel = nn.Module
logger.info("✓ PyTorch loaded in frozen environment")
except Exception as e:
logger.error(f"PyTorch not available in frozen environment: {e}")
logger.error("❌ Inpainting disabled - PyTorch is required")
else:
# Normal environment
try:
import torch
import torch.nn as nn
import torch.nn.functional as F
TORCH_AVAILABLE = True
BaseModel = nn.Module
except ImportError:
TORCH_AVAILABLE = False
logger.error("PyTorch not available - inpainting disabled")
# Configure ORT memory behavior before importing
try:
os.environ.setdefault('ORT_DISABLE_MEMORY_ARENA', '1')
except Exception:
pass
# ONNX Runtime - usually works well in frozen environments
ONNX_AVAILABLE = False
try:
import onnx
import onnxruntime as ort
ONNX_AVAILABLE = True
logger.info("✓ ONNX Runtime available")
except ImportError:
ONNX_AVAILABLE = False
logger.warning("ONNX Runtime not available")
# Bubble detector - optional
BUBBLE_DETECTOR_AVAILABLE = False
try:
from bubble_detector import BubbleDetector
BUBBLE_DETECTOR_AVAILABLE = True
logger.info("✓ Bubble detector available")
except ImportError:
logger.info("Bubble detector not available - basic inpainting will be used")
# JIT Model URLs (for automatic download)
LAMA_JIT_MODELS = {
'lama': {
'url': 'https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt',
'md5': 'e3aa4aaa15225a33ec84f9f4bc47e500',
'name': 'BigLama'
},
'anime': {
'url': 'https://github.com/Sanster/models/releases/download/AnimeMangaInpainting/anime-manga-big-lama.pt',
'md5': '29f284f36a0a510bcacf39ecf4c4d54f',
'name': 'Anime-Manga BigLama'
},
'lama_official': {
'url': 'https://github.com/Sanster/models/releases/download/lama/lama.pt',
'md5': '4b1a1de53b7a74e0ff9dd622834e8e1e',
'name': 'LaMa Official'
},
'aot': {
'url': 'https://huggingface.co/ogkalu/aot-inpainting-jit/resolve/main/aot_traced.pt',
'md5': '5ecdac562c1d56267468fc4fbf80db27',
'name': 'AOT GAN'
},
'aot_onnx': {
'url': 'https://huggingface.co/ogkalu/aot-inpainting/resolve/main/aot.onnx',
'md5': 'ffd39ed8e2a275869d3b49180d030f0d8b8b9c2c20ed0e099ecd207201f0eada',
'name': 'AOT ONNX (Fast)',
'is_onnx': True
},
'lama_onnx': {
'url': 'https://huggingface.co/Carve/LaMa-ONNX/resolve/main/lama_fp32.onnx',
'md5': None, # Add MD5 if you want to verify
'name': 'LaMa ONNX (Carve)',
'is_onnx': True # Flag to indicate this is ONNX, not JIT
},
'anime_onnx': {
'url': 'https://huggingface.co/ogkalu/lama-manga-onnx-dynamic/resolve/main/lama-manga-dynamic.onnx',
'md5': 'de31ffa5ba26916b8ea35319f6c12151ff9654d4261bccf0583a69bb095315f9',
'name': 'Anime/Manga ONNX (Dynamic)',
'is_onnx': True # Flag to indicate this is ONNX
}
}
def norm_img(img: np.ndarray) -> np.ndarray:
"""Normalize image to [0, 1] range"""
if img.dtype == np.uint8:
return img.astype(np.float32) / 255.0
return img
def get_cache_path_by_url(url: str) -> str:
"""Get cache path for a model URL"""
os.makedirs(CACHE_DIR, exist_ok=True)
filename = os.path.basename(url)
return os.path.join(CACHE_DIR, filename)
def download_model(url: str, md5: str = None) -> str:
"""Download model if not cached"""
cache_path = get_cache_path_by_url(url)
if os.path.exists(cache_path):
logger.info(f"✅ Model already cached: {cache_path}")
return cache_path
logger.info(f"📥 Downloading model from {url}")
try:
urllib.request.urlretrieve(url, cache_path)
logger.info(f"✅ Model downloaded to: {cache_path}")
return cache_path
except Exception as e:
logger.error(f"❌ Download failed: {e}")
if os.path.exists(cache_path):
os.remove(cache_path)
raise
class FFCInpaintModel(BaseModel): # Use BaseModel instead of nn.Module
"""FFC model for LaMa inpainting - for checkpoint compatibility"""
def __init__(self):
if not TORCH_AVAILABLE:
# Initialize as a simple object when PyTorch is not available
super().__init__()
logger.warning("PyTorch not available - FFCInpaintModel initialized as placeholder")
self._pytorch_available = False
return
# Additional safety check for nn being None
if nn is None:
super().__init__()
logger.error("Neural network modules not available - FFCInpaintModel disabled")
self._pytorch_available = False
return
super().__init__()
self._pytorch_available = True
try:
# Encoder
self.model_1_ffc_convl2l = nn.Conv2d(4, 64, 7, padding=3)
self.model_1_bn_l = nn.BatchNorm2d(64)
self.model_2_ffc_convl2l = nn.Conv2d(64, 128, 3, padding=1)
self.model_2_bn_l = nn.BatchNorm2d(128)
self.model_3_ffc_convl2l = nn.Conv2d(128, 256, 3, padding=1)
self.model_3_bn_l = nn.BatchNorm2d(256)
self.model_4_ffc_convl2l = nn.Conv2d(256, 128, 3, padding=1)
self.model_4_ffc_convl2g = nn.Conv2d(256, 384, 3, padding=1)
self.model_4_bn_l = nn.BatchNorm2d(128)
self.model_4_bn_g = nn.BatchNorm2d(384)
# FFC blocks
for i in range(5, 23):
for conv_type in ['conv1', 'conv2']:
setattr(self, f'model_{i}_{conv_type}_ffc_convl2l', nn.Conv2d(128, 128, 3, padding=1))
setattr(self, f'model_{i}_{conv_type}_ffc_convl2g', nn.Conv2d(128, 384, 3, padding=1))
setattr(self, f'model_{i}_{conv_type}_ffc_convg2l', nn.Conv2d(384, 128, 3, padding=1))
setattr(self, f'model_{i}_{conv_type}_ffc_convg2g_conv1_0', nn.Conv2d(384, 192, 1))
setattr(self, f'model_{i}_{conv_type}_ffc_convg2g_conv1_1', nn.BatchNorm2d(192))
setattr(self, f'model_{i}_{conv_type}_ffc_convg2g_fu_conv_layer', nn.Conv2d(384, 384, 1))
setattr(self, f'model_{i}_{conv_type}_ffc_convg2g_fu_bn', nn.BatchNorm2d(384))
setattr(self, f'model_{i}_{conv_type}_ffc_convg2g_conv2', nn.Conv2d(192, 384, 1))
setattr(self, f'model_{i}_{conv_type}_bn_l', nn.BatchNorm2d(128))
setattr(self, f'model_{i}_{conv_type}_bn_g', nn.BatchNorm2d(384))
# Decoder
self.model_24 = nn.Conv2d(512, 256, 3, padding=1)
self.model_25 = nn.BatchNorm2d(256)
self.model_27 = nn.Conv2d(256, 128, 3, padding=1)
self.model_28 = nn.BatchNorm2d(128)
self.model_30 = nn.Conv2d(128, 64, 3, padding=1)
self.model_31 = nn.BatchNorm2d(64)
self.model_34 = nn.Conv2d(64, 3, 7, padding=3)
# Activation functions
self.relu = nn.ReLU(inplace=True)
self.tanh = nn.Tanh()
logger.info("FFCInpaintModel initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize FFCInpaintModel: {e}")
self._pytorch_available = False
raise
def forward(self, image, mask):
if not self._pytorch_available:
logger.error("PyTorch not available for forward pass")
raise RuntimeError("PyTorch not available for forward pass")
if not TORCH_AVAILABLE or torch is None:
logger.error("PyTorch not available for forward pass")
raise RuntimeError("PyTorch not available for forward pass")
try:
x = torch.cat([image, mask], dim=1)
x = self.relu(self.model_1_bn_l(self.model_1_ffc_convl2l(x)))
x = self.relu(self.model_2_bn_l(self.model_2_ffc_convl2l(x)))
x = self.relu(self.model_3_bn_l(self.model_3_ffc_convl2l(x)))
x_l = self.relu(self.model_4_bn_l(self.model_4_ffc_convl2l(x)))
x_g = self.relu(self.model_4_bn_g(self.model_4_ffc_convl2g(x)))
for i in range(5, 23):
identity_l, identity_g = x_l, x_g
x_l, x_g = self._ffc_block(x_l, x_g, i, 'conv1')
x_l, x_g = self._ffc_block(x_l, x_g, i, 'conv2')
x_l = x_l + identity_l
x_g = x_g + identity_g
x = torch.cat([x_l, x_g], dim=1)
x = self.relu(self.model_25(self.model_24(x)))
x = self.relu(self.model_28(self.model_27(x)))
x = self.relu(self.model_31(self.model_30(x)))
x = self.tanh(self.model_34(x))
mask_3ch = mask.repeat(1, 3, 1, 1)
return x * mask_3ch + image * (1 - mask_3ch)
except Exception as e:
logger.error(f"Forward pass failed: {e}")
raise RuntimeError(f"Forward pass failed: {e}")
def _ffc_block(self, x_l, x_g, idx, conv_type):
if not self._pytorch_available:
raise RuntimeError("PyTorch not available for FFC block")
if not TORCH_AVAILABLE:
raise RuntimeError("PyTorch not available for FFC block")
try:
convl2l = getattr(self, f'model_{idx}_{conv_type}_ffc_convl2l')
convl2g = getattr(self, f'model_{idx}_{conv_type}_ffc_convl2g')
convg2l = getattr(self, f'model_{idx}_{conv_type}_ffc_convg2l')
convg2g_conv1 = getattr(self, f'model_{idx}_{conv_type}_ffc_convg2g_conv1_0')
convg2g_bn1 = getattr(self, f'model_{idx}_{conv_type}_ffc_convg2g_conv1_1')
fu_conv = getattr(self, f'model_{idx}_{conv_type}_ffc_convg2g_fu_conv_layer')
fu_bn = getattr(self, f'model_{idx}_{conv_type}_ffc_convg2g_fu_bn')
convg2g_conv2 = getattr(self, f'model_{idx}_{conv_type}_ffc_convg2g_conv2')
bn_l = getattr(self, f'model_{idx}_{conv_type}_bn_l')
bn_g = getattr(self, f'model_{idx}_{conv_type}_bn_g')
out_xl = convl2l(x_l) + convg2l(x_g)
out_xg = convl2g(x_l) + convg2g_conv2(self.relu(convg2g_bn1(convg2g_conv1(x_g)))) + self.relu(fu_bn(fu_conv(x_g)))
return self.relu(bn_l(out_xl)), self.relu(bn_g(out_xg))
except Exception as e:
logger.error(f"FFC block failed: {e}")
raise RuntimeError(f"FFC block failed: {e}")
class LocalInpainter:
"""Local inpainter with full backward compatibility"""
# MAINTAIN ORIGINAL SUPPORTED_METHODS for compatibility
SUPPORTED_METHODS = {
'lama': ('LaMa Inpainting', FFCInpaintModel),
'mat': ('MAT Inpainting', FFCInpaintModel),
'aot': ('AOT GAN Inpainting', FFCInpaintModel),
'aot_onnx': ('AOT ONNX (Fast)', FFCInpaintModel),
'sd': ('Stable Diffusion Inpainting', FFCInpaintModel),
'anime': ('Anime/Manga Inpainting', FFCInpaintModel),
'anime_onnx': ('Anime ONNX (Fast)', FFCInpaintModel),
'lama_official': ('Official LaMa', FFCInpaintModel),
}
def __init__(self, config_path="config.json"):
# Set thread limits early if environment indicates single-threaded mode
try:
if os.environ.get('OMP_NUM_THREADS') == '1':
# Already in single-threaded mode, ensure it's applied to this process
# Check if torch is available at module level before trying to use it
if TORCH_AVAILABLE and torch is not None:
try:
torch.set_num_threads(1)
except (RuntimeError, AttributeError):
pass
try:
import cv2
cv2.setNumThreads(1)
except (ImportError, AttributeError):
pass
except Exception:
pass
self.config_path = config_path
self.config = self._load_config()
self.model = None
self.model_loaded = False
self.current_method = None
self.use_opencv_fallback = False # FORCED DISABLED - No OpenCV fallback allowed
self.onnx_session = None
self.use_onnx = False
self.is_jit_model = False
self.pad_mod = 8
# Default tiling settings - OFF by default for most models
self.tiling_enabled = False
self.tile_size = 512
self.tile_overlap = 64
# ONNX-specific settings
self.onnx_model_loaded = False
self.onnx_input_size = None # Will be detected from model
# Quantization diagnostics flags
self.onnx_quantize_applied = False
self.torch_quantize_applied = False
# Bubble detection
self.bubble_detector = None
self.bubble_model_loaded = False
# Create directories
os.makedirs(ONNX_CACHE_DIR, exist_ok=True)
os.makedirs(CACHE_DIR, exist_ok=True)
logger.info(f"📁 ONNX cache directory: {ONNX_CACHE_DIR}")
logger.info(f" Contents: {os.listdir(ONNX_CACHE_DIR) if os.path.exists(ONNX_CACHE_DIR) else 'Directory does not exist'}")
# Check GPU availability safely
self.use_gpu = False
self.device = None
if TORCH_AVAILABLE and torch is not None:
try:
self.use_gpu = torch.cuda.is_available()
self.device = torch.device('cuda' if self.use_gpu else 'cpu')
if self.use_gpu:
logger.info(f"🚀 GPU: {torch.cuda.get_device_name(0)}")
else:
logger.info("💻 Using CPU")
except AttributeError:
# torch module exists but doesn't have cuda attribute
self.use_gpu = False
self.device = None
logger.info("⚠️ PyTorch incomplete - inpainting disabled")
else:
logger.info("⚠️ PyTorch not available - inpainting disabled")
# Quantization/precision toggle (off by default)
try:
adv_cfg = self.config.get('manga_settings', {}).get('advanced', {}) if isinstance(self.config, dict) else {}
# Track singleton mode from settings for thread limiting (deprecated - kept for compatibility)
self.singleton_mode = bool(adv_cfg.get('use_singleton_models', True))
env_quant = os.environ.get('MODEL_QUANTIZE', 'false').lower() == 'true'
self.quantize_enabled = bool(env_quant or adv_cfg.get('quantize_models', False))
# ONNX quantization is now strictly opt-in (config or env), decoupled from general quantize_models
self.onnx_quantize_enabled = bool(
adv_cfg.get('onnx_quantize', os.environ.get('ONNX_QUANTIZE', 'false').lower() == 'true')
)
self.torch_precision = str(adv_cfg.get('torch_precision', os.environ.get('TORCH_PRECISION', 'auto'))).lower()
logger.info(f"Quantization: {'ENABLED' if self.quantize_enabled else 'disabled'} for Local Inpainter; onnx_quantize={'on' if self.onnx_quantize_enabled else 'off'}; torch_precision={self.torch_precision}")
self.int8_enabled = bool(
adv_cfg.get('int8_quantize', False)
or adv_cfg.get('quantize_int8', False)
or os.environ.get('TORCH_INT8', 'false').lower() == 'true'
or self.torch_precision in ('int8', 'int8_dynamic')
)
logger.info(
f"Quantization: {'ENABLED' if self.quantize_enabled else 'disabled'} for Local Inpainter; "
f"onnx_quantize={'on' if self.onnx_quantize_enabled else 'off'}; "
f"torch_precision={self.torch_precision}; int8={'on' if self.int8_enabled else 'off'}"
)
except Exception:
self.quantize_enabled = False
self.onnx_quantize_enabled = False
self.torch_precision = 'auto'
self.int8_enabled = False
# HD strategy defaults (mirror of comic-translate behavior)
try:
adv_cfg = self.config.get('manga_settings', {}).get('advanced', {}) if isinstance(self.config, dict) else {}
except Exception:
adv_cfg = {}
try:
self.hd_strategy = str(os.environ.get('HD_STRATEGY', adv_cfg.get('hd_strategy', 'resize'))).lower()
except Exception:
self.hd_strategy = 'resize'
try:
self.hd_resize_limit = int(os.environ.get('HD_RESIZE_LIMIT', adv_cfg.get('hd_strategy_resize_limit', 1536)))
except Exception:
self.hd_resize_limit = 1536
try:
self.hd_crop_margin = int(os.environ.get('HD_CROP_MARGIN', adv_cfg.get('hd_strategy_crop_margin', 16)))
except Exception:
self.hd_crop_margin = 16
try:
self.hd_crop_trigger_size = int(os.environ.get('HD_CROP_TRIGGER', adv_cfg.get('hd_strategy_crop_trigger_size', 1024)))
except Exception:
self.hd_crop_trigger_size = 1024
logger.info(f"HD strategy: {self.hd_strategy} (resize_limit={self.hd_resize_limit}, crop_margin={self.hd_crop_margin}, crop_trigger={self.hd_crop_trigger_size})")
# Stop flag support
self.stop_flag = None
self._stopped = False
self.log_callback = None
# Initialize bubble detector if available
if BUBBLE_DETECTOR_AVAILABLE:
try:
self.bubble_detector = BubbleDetector()
logger.info("🗨️ Bubble detection available")
except:
self.bubble_detector = None
logger.info("🗨️ Bubble detection not available")
def _load_config(self):
try:
if self.config_path and os.path.exists(self.config_path):
with open(self.config_path, 'r', encoding='utf-8') as f:
content = f.read().strip()
if not content:
return {}
try:
return json.loads(content)
except json.JSONDecodeError:
# Likely a concurrent write; retry once after a short delay
try:
import time
time.sleep(0.05)
with open(self.config_path, 'r', encoding='utf-8') as f2:
return json.load(f2)
except Exception:
return {}
except Exception:
return {}
return {}
def _save_config(self):
# Don't save if config is empty (prevents purging)
if not getattr(self, 'config', None):
return
try:
# Load existing (best-effort)
full_config = {}
if self.config_path and os.path.exists(self.config_path):
try:
with open(self.config_path, 'r', encoding='utf-8') as f:
full_config = json.load(f)
except Exception as read_err:
logger.debug(f"Config read during save failed (non-critical): {read_err}")
full_config = {}
# Update
full_config.update(self.config)
# Atomic write: write to temp then replace
tmp_path = (self.config_path or 'config.json') + '.tmp'
with open(tmp_path, 'w', encoding='utf-8') as f:
json.dump(full_config, f, indent=2, ensure_ascii=False)
try:
os.replace(tmp_path, self.config_path or 'config.json')
except Exception as replace_err:
logger.debug(f"Config atomic replace failed, trying direct write: {replace_err}")
# Fallback to direct write
with open(self.config_path or 'config.json', 'w', encoding='utf-8') as f:
json.dump(full_config, f, indent=2, ensure_ascii=False)
except Exception as save_err:
# Never crash on config save, but log for debugging
logger.debug(f"Config save failed (non-critical): {save_err}")
pass
def set_stop_flag(self, stop_flag):
"""Set the stop flag for checking interruptions"""
self.stop_flag = stop_flag
self._stopped = False
def set_log_callback(self, log_callback):
"""Set log callback for GUI integration"""
self.log_callback = log_callback
def _check_stop(self) -> bool:
"""Check if stop has been requested"""
if self._stopped:
return True
if self.stop_flag and self.stop_flag.is_set():
self._stopped = True
return True
# Check global manga translator cancellation
try:
from manga_translator import MangaTranslator
if MangaTranslator.is_globally_cancelled():
self._stopped = True
return True
except Exception:
pass
return False
def _log(self, message: str, level: str = "info"):
"""Log message with stop suppression"""
# Suppress logs when stopped (allow only essential stop confirmation messages)
if self._check_stop():
essential_stop_keywords = [
"⏹️ Translation stopped by user",
"⏹️ Inpainting stopped",
"cleanup", "🧹"
]
if not any(keyword in message for keyword in essential_stop_keywords):
return
if self.log_callback:
self.log_callback(message, level)
else:
logger.info(message) if level == 'info' else getattr(logger, level, logger.info)(message)
def reset_stop_flags(self):
"""Reset stop flags when starting new processing"""
self._stopped = False
def convert_to_onnx(self, model_path: str, method: str) -> Optional[str]:
"""Convert a PyTorch model to ONNX format with FFT handling via custom operators"""
if not ONNX_AVAILABLE:
logger.warning("ONNX not available, skipping conversion")
return None
try:
# Generate ONNX path
model_name = os.path.basename(model_path).replace('.pt', '')
onnx_path = os.path.join(ONNX_CACHE_DIR, f"{model_name}_{method}.onnx")
# Check if ONNX already exists
if os.path.exists(onnx_path) and not FORCE_ONNX_REBUILD:
logger.info(f"✅ ONNX model already exists: {onnx_path}")
return onnx_path
logger.info(f"🔄 Converting {method} model to ONNX...")
# The model should already be loaded at this point
if not self.model_loaded or self.current_method != method:
logger.error("Model not loaded for ONNX conversion")
return None
# Create dummy inputs
dummy_image = torch.randn(1, 3, 512, 512).to(self.device)
dummy_mask = torch.randn(1, 1, 512, 512).to(self.device)
# For FFT models, we can't convert directly
fft_models = ['lama', 'anime', 'lama_official']
if method in fft_models:
logger.warning(f"⚠️ {method.upper()} uses FFT operations that cannot be exported")
return None # Just return None, don't suggest Carve
# Standard export for non-FFT models
try:
torch.onnx.export(
self.model,
(dummy_image, dummy_mask),
onnx_path,
export_params=True,
opset_version=13,
do_constant_folding=True,
input_names=['image', 'mask'],
output_names=['output'],
dynamic_axes={
'image': {0: 'batch', 2: 'height', 3: 'width'},
'mask': {0: 'batch', 2: 'height', 3: 'width'},
'output': {0: 'batch', 2: 'height', 3: 'width'}
}
)
logger.info(f"✅ ONNX model saved to: {onnx_path}")
return onnx_path
except torch.onnx.errors.UnsupportedOperatorError as e:
logger.error(f"❌ Unsupported operator: {e}")
return None
except Exception as e:
logger.error(f"❌ ONNX conversion failed: {e}")
logger.error(traceback.format_exc())
return None
def load_onnx_model(self, onnx_path: str) -> bool:
"""Load an ONNX model with custom operator support"""
if not ONNX_AVAILABLE:
logger.error("ONNX Runtime not available")
return False
# Check if this exact ONNX model is already loaded
if (self.onnx_session is not None and
hasattr(self, 'current_onnx_path') and
self.current_onnx_path == onnx_path):
logger.debug(f"✅ ONNX model already loaded: {onnx_path}")
return True
try:
# Don't log here if we already logged in load_model
logger.debug(f"📦 ONNX Runtime loading: {onnx_path}")
# Store the path for later checking
self.current_onnx_path = onnx_path
# Check if this is a Carve model (fixed 512x512)
is_carve_model = "lama_fp32" in onnx_path or "carve" in onnx_path.lower()
if is_carve_model:
logger.info("📦 Detected Carve ONNX model (fixed 512x512 input)")
self.onnx_fixed_size = (512, 512)
else:
self.onnx_fixed_size = None
# Standard ONNX loading: prefer CUDA if available; otherwise CPU. Do NOT use DML.
try:
avail = ort.get_available_providers() if ONNX_AVAILABLE else []
except Exception:
avail = []
if 'CUDAExecutionProvider' in avail:
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
else:
providers = ['CPUExecutionProvider']
session_path = onnx_path
try:
fname_lower = os.path.basename(onnx_path).lower()
except Exception:
fname_lower = str(onnx_path).lower()
# Device-aware policy for LaMa-type ONNX (Carve or contains 'lama')
is_lama_model = is_carve_model or ('lama' in fname_lower)
if is_lama_model:
base = os.path.splitext(onnx_path)[0]
if self.use_gpu:
# Prefer FP16 on CUDA
fp16_path = base + '.fp16.onnx'
if (not os.path.exists(fp16_path)) or FORCE_ONNX_REBUILD:
try:
import onnx as _onnx
try:
from onnxruntime_tools.transformers.float16 import convert_float_to_float16 as _to_fp16
except Exception:
try:
from onnxconverter_common import float16
def _to_fp16(m, keep_io_types=True):
return float16.convert_float_to_float16(m, keep_io_types=keep_io_types)
except Exception:
_to_fp16 = None
if _to_fp16 is not None:
m = _onnx.load(onnx_path)
m_fp16 = _to_fp16(m, keep_io_types=True)
_onnx.save(m_fp16, fp16_path)
logger.info(f"✅ Generated FP16 ONNX for LaMa: {fp16_path}")
except Exception as e:
logger.warning(f"FP16 conversion for LaMa failed: {e}")
if os.path.exists(fp16_path):
session_path = fp16_path
else:
# CPU path for LaMa: quantize only if enabled, and MatMul-only to avoid artifacts
if self.onnx_quantize_enabled:
try:
from onnxruntime.quantization import quantize_dynamic, QuantType
quant_path = base + '.matmul.int8.onnx'
if (not os.path.exists(quant_path)) or FORCE_ONNX_REBUILD:
logger.info("🔻 LaMa: Quantizing ONNX weights to INT8 (dynamic, ops=['MatMul'])...")
quantize_dynamic(
model_input=onnx_path,
model_output=quant_path,
weight_type=QuantType.QInt8,
op_types_to_quantize=['MatMul']
)
self.onnx_quantize_applied = True
# Validate dynamic quant result
try:
import onnx as _onnx
_m_q = _onnx.load(quant_path)
_onnx.checker.check_model(_m_q)
except Exception as _qchk:
logger.warning(f"LaMa dynamic quant model invalid; deleting and falling back: {_qchk}")
try:
os.remove(quant_path)
except Exception:
pass
quant_path = None
except Exception as dy_err:
logger.warning(f"LaMa dynamic quantization failed: {dy_err}")
quant_path = None
# Fallback: static QDQ MatMul-only with zero data reader
if quant_path is None:
try:
import onnx as _onnx
from onnxruntime.quantization import (
CalibrationDataReader, quantize_static,
QuantFormat, QuantType, CalibrationMethod
)
m = _onnx.load(onnx_path)
shapes = {}
for inp in m.graph.input:
dims = []
for d in inp.type.tensor_type.shape.dim:
dims.append(d.dim_value if d.dim_value > 0 else 1)
shapes[inp.name] = dims
class _ZeroReader(CalibrationDataReader):
def __init__(self, shapes):
self.shapes = shapes
self.done = False
def get_next(self):
if self.done:
return None
feed = {}
for name, s in self.shapes.items():
ss = list(s)
if len(ss) == 4:
if ss[2] <= 1: ss[2] = 512
if ss[3] <= 1: ss[3] = 512
if ss[1] <= 1 and 'mask' not in name.lower():
ss[1] = 3
feed[name] = np.zeros(ss, dtype=np.float32)
self.done = True
return feed
dr = _ZeroReader(shapes)
quant_path = base + '.matmul.int8.onnx'
quantize_static(
model_input=onnx_path,
model_output=quant_path,
calibration_data_reader=dr,
quant_format=QuantFormat.QDQ,
activation_type=QuantType.QUInt8,
weight_type=QuantType.QInt8,
per_channel=False,
calibrate_method=CalibrationMethod.MinMax,
op_types_to_quantize=['MatMul']
)
# Validate
try:
_m_q = _onnx.load(quant_path)
_onnx.checker.check_model(_m_q)
except Exception as _qchk2:
logger.warning(f"LaMa static MatMul-only quant model invalid; deleting: {_qchk2}")
try:
os.remove(quant_path)
except Exception:
pass
quant_path = None
else:
logger.info(f"✅ Generated MatMul-only INT8 ONNX for LaMa: {quant_path}")
self.onnx_quantize_applied = True
except Exception as st_err:
logger.warning(f"LaMa static MatMul-only quantization failed: {st_err}")
quant_path = None
# Use the quantized model if valid
if quant_path and os.path.exists(quant_path):
session_path = quant_path
logger.info(f"✅ Using LaMa quantized ONNX model: {quant_path}")
# If quantization not enabled or failed, session_path remains onnx_path (FP32)
# Optional dynamic/static quantization for other models (opt-in)
if (not is_lama_model) and self.onnx_quantize_enabled:
base = os.path.splitext(onnx_path)[0]
fname = os.path.basename(onnx_path).lower()
is_aot = 'aot' in fname
# For AOT: ignore any MatMul-only file and prefer Conv+MatMul
if is_aot:
try:
ignored_matmul = base + ".matmul.int8.onnx"
if os.path.exists(ignored_matmul):
logger.info(f"⏭️ Ignoring MatMul-only quantized file for AOT: {ignored_matmul}")
except Exception:
pass
# Choose target quant file and ops
if is_aot:
quant_path = base + ".int8.onnx"
ops_to_quant = ['MatMul']
# Use MatMul-only for safer quantization across models
ops_for_static = ['MatMul']
# Try to simplify AOT graph prior to quantization
quant_input_path = onnx_path
try:
import onnx as _onnx
try:
from onnxsim import simplify as _onnx_simplify
_model = _onnx.load(onnx_path)
_sim_model, _check = _onnx_simplify(_model)
if _check:
sim_path = base + ".sim.onnx"
_onnx.save(_sim_model, sim_path)
quant_input_path = sim_path
logger.info(f"🧰 Simplified AOT ONNX before quantization: {sim_path}")
except Exception as _sim_err:
logger.info(f"AOT simplification skipped: {_sim_err}")
# No ONNX shape inference; keep original graph structure
# Ensure opset >= 13 for QDQ (axis attribute on DequantizeLinear)
try:
_m_tmp = _onnx.load(quant_input_path)
_opset = max([op.version for op in _m_tmp.opset_import]) if _m_tmp.opset_import else 11
if _opset < 13:
from onnx import version_converter as _vc
_m13 = _vc.convert_version(_m_tmp, 13)
up_path = base + ".op13.onnx"
_onnx.save(_m13, up_path)
quant_input_path = up_path
logger.info(f"🧰 Upgraded ONNX opset to 13 before QDQ quantization: {up_path}")
except Exception as _operr:
logger.info(f"Opset upgrade skipped: {_operr}")
except Exception:
quant_input_path = onnx_path
else:
quant_path = base + ".matmul.int8.onnx"
ops_to_quant = ['MatMul']
ops_for_static = ops_to_quant
quant_input_path = onnx_path
# Perform quantization if needed
if not os.path.exists(quant_path) or FORCE_ONNX_REBUILD:
if is_aot:
# Directly perform static QDQ quantization for MatMul only (avoid Conv activations)
try:
import onnx as _onnx
from onnxruntime.quantization import CalibrationDataReader, quantize_static, QuantFormat, QuantType, CalibrationMethod
_model = _onnx.load(quant_input_path)
# Build input shapes from the model graph
input_shapes = {}
for inp in _model.graph.input:
dims = []
for d in inp.type.tensor_type.shape.dim:
if d.dim_value > 0:
dims.append(d.dim_value)
else:
# default fallback dimension
dims.append(1)
input_shapes[inp.name] = dims
class _ZeroDataReader(CalibrationDataReader):
def __init__(self, input_shapes):
self._shapes = input_shapes
self._provided = False
def get_next(self):
if self._provided:
return None
feed = {}
for name, shape in self._shapes.items():
# Ensure reasonable default spatial size
s = list(shape)
if len(s) == 4:
if s[2] <= 1:
s[2] = 512
if s[3] <= 1:
s[3] = 512
# channel fallback
if s[1] <= 1 and 'mask' not in name.lower():
s[1] = 3
feed[name] = (np.zeros(s, dtype=np.float32))
self._provided = True
return feed
dr = _ZeroDataReader(input_shapes)
quantize_static(
model_input=quant_input_path,
model_output=quant_path,
calibration_data_reader=dr,
quant_format=QuantFormat.QDQ,
activation_type=QuantType.QUInt8,
weight_type=QuantType.QInt8,
per_channel=True,
calibrate_method=CalibrationMethod.MinMax,
op_types_to_quantize=ops_for_static
)
# Validate quantized model to catch structural errors early
try:
_m_q = _onnx.load(quant_path)
_onnx.checker.check_model(_m_q)
except Exception as _qchk:
logger.warning(f"Quantized AOT model validation failed: {_qchk}")
# Remove broken quantized file to force fallback
try:
os.remove(quant_path)
except Exception:
pass
else:
logger.info(f"✅ Static INT8 quantization produced: {quant_path}")
except Exception as st_err:
logger.warning(f"Static ONNX quantization failed: {st_err}")
else:
# First attempt: dynamic quantization (MatMul)
try:
from onnxruntime.quantization import quantize_dynamic, QuantType
logger.info("🔻 Quantizing ONNX inpainting model weights to INT8 (dynamic, ops=['MatMul'])...")
quantize_dynamic(
model_input=quant_input_path,
model_output=quant_path,
weight_type=QuantType.QInt8,
op_types_to_quantize=['MatMul']
)
except Exception as dy_err:
logger.warning(f"Dynamic ONNX quantization failed: {dy_err}; attempting static quantization...")
# Fallback: static quantization with a zero data reader
try:
import onnx as _onnx
from onnxruntime.quantization import CalibrationDataReader, quantize_static, QuantFormat, QuantType, CalibrationMethod
_model = _onnx.load(quant_input_path)
# Build input shapes from the model graph
input_shapes = {}
for inp in _model.graph.input:
dims = []
for d in inp.type.tensor_type.shape.dim:
if d.dim_value > 0:
dims.append(d.dim_value)
else:
# default fallback dimension
dims.append(1)
input_shapes[inp.name] = dims
class _ZeroDataReader(CalibrationDataReader):
def __init__(self, input_shapes):
self._shapes = input_shapes
self._provided = False
def get_next(self):
if self._provided:
return None
feed = {}
for name, shape in self._shapes.items():
# Ensure reasonable default spatial size
s = list(shape)
if len(s) == 4:
if s[2] <= 1:
s[2] = 512
if s[3] <= 1:
s[3] = 512
# channel fallback
if s[1] <= 1 and 'mask' not in name.lower():
s[1] = 3
feed[name] = (np.zeros(s, dtype=np.float32))
self._provided = True
return feed
dr = _ZeroDataReader(input_shapes)
quantize_static(
model_input=quant_input_path,
model_output=quant_path,
calibration_data_reader=dr,
quant_format=QuantFormat.QDQ,
activation_type=QuantType.QUInt8,
weight_type=QuantType.QInt8,
per_channel=True,
calibrate_method=CalibrationMethod.MinMax,
op_types_to_quantize=ops_for_static
)
# Validate quantized model to catch structural errors early
try:
_m_q = _onnx.load(quant_path)
_onnx.checker.check_model(_m_q)
except Exception as _qchk:
logger.warning(f"Quantized AOT model validation failed: {_qchk}")
# Remove broken quantized file to force fallback
try:
os.remove(quant_path)
except Exception:
pass
else:
logger.info(f"✅ Static INT8 quantization produced: {quant_path}")
except Exception as st_err:
logger.warning(f"Static ONNX quantization failed: {st_err}")
# Prefer the quantized file if it now exists
if os.path.exists(quant_path):
# Validate existing quantized model before using it
try:
import onnx as _onnx
_m_q = _onnx.load(quant_path)
_onnx.checker.check_model(_m_q)
except Exception as _qchk:
logger.warning(f"Existing quantized ONNX invalid; deleting and falling back: {_qchk}")
try:
os.remove(quant_path)
except Exception:
pass
else:
session_path = quant_path
logger.info(f"✅ Using quantized ONNX model: {quant_path}")
else:
logger.warning("ONNX quantization not applied: quantized file not created")
# Use conservative ORT memory options to reduce RAM growth
so = ort.SessionOptions()
try:
so.enable_mem_pattern = False
so.enable_cpu_mem_arena = False
except Exception:
pass
# Enable optimal performance settings (let ONNX use all CPU cores)
try:
# Use all available CPU threads for best performance
# ONNX Runtime will automatically use optimal thread count
so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
except Exception:
pass
# Try to create an inference session, with graceful fallbacks
try:
self.onnx_session = ort.InferenceSession(session_path, sess_options=so, providers=providers)
except Exception as e:
err = str(e)
logger.warning(f"ONNX session creation failed for {session_path}: {err}")
# If quantized path failed due to unsupported ops or invalid graph, remove it and retry unquantized
if session_path != onnx_path and ('ConvInteger' in err or 'NOT_IMPLEMENTED' in err or 'INVALID_ARGUMENT' in err):
try:
if os.path.exists(session_path):
os.remove(session_path)
logger.info(f"🧹 Deleted invalid quantized model: {session_path}")
except Exception:
pass
try:
logger.info("Retrying with unquantized ONNX model...")
self.onnx_session = ort.InferenceSession(onnx_path, sess_options=so, providers=providers)
session_path = onnx_path
except Exception as e2:
logger.warning(f"Unquantized ONNX session failed with current providers: {e2}")
# As a last resort, try CPU-only
try:
logger.info("Retrying ONNX on CPUExecutionProvider only...")
self.onnx_session = ort.InferenceSession(onnx_path, sess_options=so, providers=['CPUExecutionProvider'])
session_path = onnx_path
providers = ['CPUExecutionProvider']
except Exception as e3:
logger.error(f"Failed to create ONNX session on CPU: {e3}")
raise
else:
# If we weren't quantized but failed on CUDA, try CPU-only once
if self.use_gpu and 'NOT_IMPLEMENTED' in err:
try:
logger.info("Retrying ONNX on CPUExecutionProvider only...")
self.onnx_session = ort.InferenceSession(session_path, sess_options=so, providers=['CPUExecutionProvider'])
providers = ['CPUExecutionProvider']
except Exception as e4:
logger.error(f"Failed to create ONNX session on CPU: {e4}")
raise
# Get input/output names
if self.onnx_session is None:
raise RuntimeError("ONNX session was not created")
self.onnx_input_names = [i.name for i in self.onnx_session.get_inputs()]
self.onnx_output_names = [o.name for o in self.onnx_session.get_outputs()]
# Check input shapes to detect fixed-size models
input_shape = self.onnx_session.get_inputs()[0].shape
if len(input_shape) == 4 and input_shape[2] == 512 and input_shape[3] == 512:
self.onnx_fixed_size = (512, 512)
logger.info(f" Model expects fixed size: 512x512")
# Log success with I/O info in a single line
logger.debug(f"✅ ONNX session created - Inputs: {self.onnx_input_names}, Outputs: {self.onnx_output_names}")
self.use_onnx = True
# CRITICAL: Set model_loaded flag when ONNX session is successfully created
# This ensures preloaded spares are recognized as valid loaded instances
self.model_loaded = True
return True
except Exception as e:
logger.error(f"❌ Failed to load ONNX: {e}")
import traceback
logger.debug(f"ONNX load traceback: {traceback.format_exc()}")
self.use_onnx = False
self.model_loaded = False
return False
def _convert_checkpoint_key(self, key):
"""Convert checkpoint key format to model format"""
# model.24.weight -> model_24.weight
if re.match(r'^model\.(\d+)\.(weight|bias|running_mean|running_var)$', key):
return re.sub(r'model\.(\d+)\.', r'model_\1.', key)
# model.5.conv1.ffc.weight -> model_5_conv1_ffc.weight
if key.startswith('model.'):
parts = key.split('.')
if parts[-1] in ['weight', 'bias', 'running_mean', 'running_var']:
return '_'.join(parts[:-1]).replace('model_', 'model_') + '.' + parts[-1]
return key.replace('.', '_')
def _load_weights_with_mapping(self, model, state_dict):
"""Load weights with proper mapping"""
model_dict = model.state_dict()
logger.info(f"📊 Model expects {len(model_dict)} weights")
logger.info(f"📊 Checkpoint has {len(state_dict)} weights")
# Filter out num_batches_tracked
actual_weights = {k: v for k, v in state_dict.items() if 'num_batches_tracked' not in k}
logger.info(f" Actual weights: {len(actual_weights)}")
mapped = {}
unmapped_ckpt = []
unmapped_model = list(model_dict.keys())
# Map checkpoint weights
for ckpt_key, ckpt_val in actual_weights.items():
success = False
converted_key = self._convert_checkpoint_key(ckpt_key)
if converted_key in model_dict:
target_shape = model_dict[converted_key].shape
if target_shape == ckpt_val.shape:
mapped[converted_key] = ckpt_val
success = True
elif len(ckpt_val.shape) == 4 and len(target_shape) == 4:
# 4D permute for decoder convs
permuted = ckpt_val.permute(1, 0, 2, 3)
if target_shape == permuted.shape:
mapped[converted_key] = permuted
logger.info(f" ✅ Permuted: {ckpt_key}")
success = True
elif len(ckpt_val.shape) == 2 and len(target_shape) == 2:
# 2D transpose
transposed = ckpt_val.transpose(0, 1)
if target_shape == transposed.shape:
mapped[converted_key] = transposed
success = True
if success and converted_key in unmapped_model:
unmapped_model.remove(converted_key)
if not success:
unmapped_ckpt.append(ckpt_key)
# Try fallback mapping for unmapped
if unmapped_ckpt:
logger.info(f" 🔧 Fallback mapping for {len(unmapped_ckpt)} weights...")
for ckpt_key in unmapped_ckpt[:]:
ckpt_val = actual_weights[ckpt_key]
for model_key in unmapped_model[:]:
if model_dict[model_key].shape == ckpt_val.shape:
if ('weight' in ckpt_key and 'weight' in model_key) or \
('bias' in ckpt_key and 'bias' in model_key):
mapped[model_key] = ckpt_val
unmapped_model.remove(model_key)
unmapped_ckpt.remove(ckpt_key)
logger.info(f" ✅ Mapped: {ckpt_key} -> {model_key}")
break
# Initialize missing weights
complete_dict = model_dict.copy()
complete_dict.update(mapped)
for key in unmapped_model:
param = complete_dict[key]
if 'weight' in key:
if 'conv' in key.lower():
nn.init.kaiming_normal_(param, mode='fan_out', nonlinearity='relu')
else:
nn.init.xavier_uniform_(param)
elif 'bias' in key:
nn.init.zeros_(param)
elif 'running_mean' in key:
nn.init.zeros_(param)
elif 'running_var' in key:
nn.init.ones_(param)
# Report
logger.info(f"✅ Mapped {len(actual_weights) - len(unmapped_ckpt)}/{len(actual_weights)} checkpoint weights")
logger.info(f" Filled {len(mapped)}/{len(model_dict)} model positions")
if unmapped_model:
pct = (len(unmapped_model) / len(model_dict)) * 100
logger.info(f" ⚠️ Initialized {len(unmapped_model)} missing weights ({pct:.1f}%)")
if pct > 20:
logger.warning(" ⚠️ May produce artifacts - checkpoint is incomplete")
logger.warning(" 💡 Consider downloading JIT model for better quality:")
logger.warning(f" inpainter.download_jit_model('{self.current_method or 'lama'}')")
model.load_state_dict(complete_dict, strict=True)
return True
def download_jit_model(self, method: str) -> str:
"""Download JIT model for a method"""
if method in LAMA_JIT_MODELS:
model_info = LAMA_JIT_MODELS[method]
logger.info(f"📥 Downloading {model_info['name']}...")
try:
model_path = download_model(model_info['url'], model_info['md5'])
return model_path
except Exception as e:
logger.error(f"Failed to download {method}: {e}")
else:
logger.warning(f"No JIT model available for {method}")
return None
def load_model(self, method, model_path, force_reload=False):
"""Load model - supports both JIT and checkpoint files with ONNX conversion"""
try:
if not TORCH_AVAILABLE:
logger.warning("PyTorch not available in this build")
logger.info("Inpainting features will be disabled - this is normal for lightweight builds")
logger.info("The application will continue to work without local inpainting")
self.model_loaded = False
return False
# Additional safety check for torch being None
if torch is None or nn is None:
logger.warning("PyTorch modules not properly loaded")
logger.info("Inpainting features will be disabled - this is normal for lightweight builds")
self.model_loaded = False
return False
# Check if model path changed - but only if we had a previous path saved
current_saved_path = self.config.get(f'{method}_model_path', '')
if current_saved_path and current_saved_path != model_path:
logger.info(f"📍 Model path changed for {method}")
logger.info(f" Old: {current_saved_path}")
logger.info(f" New: {model_path}")
force_reload = True
if not os.path.exists(model_path):
# Try to auto-download JIT model if path doesn't exist
logger.warning(f"Model not found: {model_path}")
logger.info("Attempting to download JIT model...")
try:
jit_path = self.download_jit_model(method)
if jit_path and os.path.exists(jit_path):
model_path = jit_path
logger.info(f"Using downloaded JIT model: {jit_path}")
else:
logger.error(f"Model not found and download failed: {model_path}")
logger.info("Inpainting will be unavailable for this session")
return False
except Exception as download_error:
logger.error(f"Download failed: {download_error}")
logger.info("Inpainting will be unavailable for this session")
return False
# Check if already loaded in THIS instance
if self.model_loaded and self.current_method == method and not force_reload:
# Additional check for ONNX - make sure the session exists
if self.use_onnx and self.onnx_session is not None:
logger.debug(f"✅ {method.upper()} ONNX already loaded (skipping reload)")
return True
elif not self.use_onnx and self.model is not None:
logger.debug(f"✅ {method.upper()} already loaded (skipping reload)")
return True
else:
# Model claims to be loaded but objects are missing - force reload
logger.warning(f"⚠️ Model claims loaded but session/model object is None - forcing reload")
force_reload = True
self.model_loaded = False
# Clear previous model if force reload
if force_reload:
logger.info(f"🔄 Force reloading {method} model...")
self.model = None
self.onnx_session = None
self.model_loaded = False
self.is_jit_model = False
# Only log loading message when actually loading
logger.info(f"📥 Loading {method} from {model_path}")
elif self.model_loaded and self.current_method != method:
# If we have a model loaded but it's a different method, clear it
logger.info(f"🔄 Switching from {self.current_method} to {method}")
self.model = None
self.onnx_session = None
self.model_loaded = False
self.is_jit_model = False
# Only log loading message when actually loading
logger.info(f"📥 Loading {method} from {model_path}")
elif not self.model_loaded:
# Only log when we're actually going to load
logger.info(f"📥 Loading {method} from {model_path}")
# else: model is loaded and current, no logging needed
# Normalize path and enforce expected extension for certain methods
try:
_ext = os.path.splitext(model_path)[1].lower()
_method_lower = str(method).lower()
# For explicit ONNX methods, ensure we use a .onnx path
if _method_lower in ("lama_onnx", "anime_onnx", "aot_onnx") and _ext != ".onnx":
# If the file exists, try to detect if it's actually an ONNX model and correct the extension
if os.path.exists(model_path) and ONNX_AVAILABLE:
try:
import onnx as _onnx
_ = _onnx.load(model_path) # will raise if not ONNX
# Build a corrected path under the ONNX cache dir
base_name = os.path.splitext(os.path.basename(model_path))[0]
if base_name.endswith('.pt'):
base_name = base_name[:-3]
corrected_path = os.path.join(ONNX_CACHE_DIR, base_name + ".onnx")
# Avoid overwriting a valid file with an invalid one
if model_path != corrected_path:
try:
import shutil as _shutil
_shutil.copy2(model_path, corrected_path)
model_path = corrected_path
logger.info(f"🔧 Corrected ONNX model extension/path: {model_path}")
except Exception as _cp_e:
# As a fallback, try in-place rename to .onnx
try:
in_place = os.path.splitext(model_path)[0] + ".onnx"
os.replace(model_path, in_place)
model_path = in_place
logger.info(f"🔧 Renamed ONNX model to: {model_path}")
except Exception:
logger.warning(f"Could not correct ONNX extension automatically: {_cp_e}")
except Exception:
# Not an ONNX file; leave as-is
pass
# If the path doesn't exist or still wrong, prefer the known ONNX download for this method
if (not os.path.exists(model_path)) or (os.path.splitext(model_path)[1].lower() != ".onnx"):
try:
# Download the appropriate ONNX model based on the method
if _method_lower == "anime_onnx":
_dl = self.download_jit_model("anime_onnx")
elif _method_lower == "aot_onnx":
_dl = self.download_jit_model("aot_onnx")
else:
_dl = self.download_jit_model("lama_onnx")
if _dl and os.path.exists(_dl):
model_path = _dl
logger.info(f"🔧 Using downloaded {_method_lower.upper()} model: {model_path}")
except Exception:
pass
except Exception:
pass
# Check file signature to detect ONNX files (even with wrong extension)
# or check file extension
ext = model_path.lower().split('.')[-1]
is_onnx = False
# Check by file signature
try:
with open(model_path, 'rb') as f:
file_header = f.read(8)
if file_header.startswith(b'\x08'):
is_onnx = True
logger.debug("📦 Detected ONNX file signature")
except Exception:
pass
# Check by extension
if ext == 'onnx':
is_onnx = True
# Handle ONNX files
if is_onnx:
# Note: load_onnx_model will handle its own logging
try:
onnx_load_result = self.load_onnx_model(model_path)
if onnx_load_result:
# CRITICAL: Set model_loaded flag FIRST before any other operations
# This ensures concurrent threads see the correct state immediately
self.model_loaded = True
self.use_onnx = True
self.is_jit_model = False
# Ensure aot_onnx is properly set as current method
if 'aot' in method.lower():
self.current_method = 'aot_onnx'
else:
self.current_method = method
# Save with BOTH key formats for compatibility (non-critical - do last)
try:
self.config[f'{method}_model_path'] = model_path
self.config[f'manga_{method}_model_path'] = model_path
self._save_config()
except Exception as cfg_err:
logger.debug(f"Config save after ONNX load failed (non-critical): {cfg_err}")
logger.info(f"✅ {method.upper()} ONNX loaded with method: {self.current_method}")
# Double-check model_loaded flag is still set
if not self.model_loaded:
logger.error("❌ CRITICAL: model_loaded flag was unset after successful ONNX load!")
self.model_loaded = True
return True
else:
logger.error("Failed to load ONNX model - load_onnx_model returned False")
self.model_loaded = False
return False
except Exception as onnx_err:
logger.error(f"Exception during ONNX model loading: {onnx_err}")
import traceback
logger.debug(traceback.format_exc())
self.model_loaded = False
return False
# Check if it's a JIT model (.pt) or checkpoint (.ckpt/.pth)
if model_path.endswith('.pt'):
try:
# Try loading as JIT/TorchScript
logger.info("📦 Attempting to load as JIT model...")
self.model = torch.jit.load(model_path, map_location=self.device or 'cpu')
self.model.eval()
if self.use_gpu and self.device:
try:
self.model = self.model.to(self.device)
except Exception as gpu_error:
logger.warning(f"Could not move model to GPU: {gpu_error}")
logger.info("Using CPU instead")
self.is_jit_model = True
self.model_loaded = True
self.current_method = method
logger.info("✅ JIT model loaded successfully!")
time.sleep(0.1) # Brief pause for stability
logger.debug("💤 JIT model loading pausing briefly for stability")
# Optional FP16 precision on GPU to reduce VRAM
if self.quantize_enabled and self.use_gpu:
try:
if self.torch_precision in ('fp16', 'auto'):
self.model = self.model.half()
logger.info("🔻 Applied FP16 precision to inpainting model (GPU)")
else:
logger.info("Torch precision set to fp32; skipping half()")
except Exception as _e:
logger.warning(f"Could not switch inpainting model precision: {_e}")
# Optional INT8 dynamic quantization for CPU TorchScript (best-effort)
if (self.int8_enabled or (self.quantize_enabled and not self.use_gpu and self.torch_precision in ('auto', 'int8'))) and not self.use_gpu:
try:
applied = False
# Try TorchScript dynamic quantization API (older PyTorch)
try:
from torch.quantization import quantize_dynamic_jit # type: ignore
self.model = quantize_dynamic_jit(self.model, {"aten::linear"}, dtype=torch.qint8) # type: ignore
applied = True
except Exception:
pass
# Try eager-style dynamic quantization on the scripted module (may no-op)
if not applied:
try:
import torch.ao.quantization as tq # type: ignore
self.model = tq.quantize_dynamic(self.model, {nn.Linear}, dtype=torch.qint8) # type: ignore
applied = True
except Exception:
pass
# Always try to optimize TorchScript for inference
try:
self.model = torch.jit.optimize_for_inference(self.model) # type: ignore
except Exception:
pass
if applied:
logger.info("🔻 Applied INT8 dynamic quantization to JIT inpainting model (CPU)")
self.torch_quantize_applied = True
else:
logger.info("ℹ️ INT8 dynamic quantization not applied (unsupported for this JIT graph); using FP32 CPU")
except Exception as _qe:
logger.warning(f"INT8 quantization skipped: {_qe}")
# Save with BOTH key formats for compatibility
self.config[f'{method}_model_path'] = model_path
self.config[f'manga_{method}_model_path'] = model_path
self._save_config()
# ONNX CONVERSION (optionally in background)
if AUTO_CONVERT_TO_ONNX and self.model_loaded:
def _convert_and_switch():
try:
onnx_path = self.convert_to_onnx(model_path, method)
if onnx_path and self.load_onnx_model(onnx_path):
logger.info("🚀 Using ONNX model for inference")
else:
logger.info("📦 Using PyTorch JIT model for inference")
except Exception as onnx_error:
logger.warning(f"ONNX conversion failed: {onnx_error}")
logger.info("📦 Using PyTorch JIT model for inference")
if os.environ.get('AUTO_CONVERT_TO_ONNX_BACKGROUND', 'true').lower() == 'true':
threading.Thread(target=_convert_and_switch, daemon=True).start()
else:
_convert_and_switch()
return True
except Exception as jit_error:
logger.info(f" Not a JIT model, trying as regular checkpoint... ({jit_error})")
try:
checkpoint = torch.load(model_path, map_location='cpu', weights_only=False)
self.is_jit_model = False
except Exception as load_error:
logger.error(f"Failed to load checkpoint: {load_error}")
return False
else:
# Load as regular checkpoint
try:
checkpoint = torch.load(model_path, map_location='cpu', weights_only=False)
self.is_jit_model = False
except Exception as load_error:
logger.error(f"Failed to load checkpoint: {load_error}")
logger.info("This may happen if PyTorch is not fully available in the .exe build")
return False
# If we get here, it's not JIT, so load as checkpoint
if not self.is_jit_model:
try:
# Try to create the model - this might fail if nn.Module is None
self.model = FFCInpaintModel()
if isinstance(checkpoint, dict):
if 'gen_state_dict' in checkpoint:
state_dict = checkpoint['gen_state_dict']
logger.info("📦 Found gen_state_dict")
elif 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
elif 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
else:
state_dict = checkpoint
self._load_weights_with_mapping(self.model, state_dict)
self.model.eval()
if self.use_gpu and self.device:
try:
self.model = self.model.to(self.device)
except Exception as gpu_error:
logger.warning(f"Could not move model to GPU: {gpu_error}")
logger.info("Using CPU instead")
# Optional INT8 dynamic quantization for CPU eager model
if (self.int8_enabled or (self.quantize_enabled and not self.use_gpu and self.torch_precision in ('auto', 'int8'))) and not self.use_gpu:
try:
import torch.ao.quantization as tq # type: ignore
self.model = tq.quantize_dynamic(self.model, {nn.Linear}, dtype=torch.qint8) # type: ignore
logger.info("🔻 Applied dynamic INT8 quantization to inpainting model (CPU)")
self.torch_quantize_applied = True
except Exception as qe:
logger.warning(f"INT8 dynamic quantization not applied: {qe}")
except Exception as model_error:
logger.error(f"Failed to create or initialize model: {model_error}")
logger.info("This may happen if PyTorch neural network modules are not available in the .exe build")
return False
self.model_loaded = True
self.current_method = method
self.config[f'{method}_model_path'] = model_path
self._save_config()
logger.info(f"✅ {method.upper()} loaded!")
# ONNX CONVERSION (optionally in background)
if AUTO_CONVERT_TO_ONNX and model_path.endswith('.pt') and self.model_loaded:
def _convert_and_switch():
try:
onnx_path = self.convert_to_onnx(model_path, method)
if onnx_path and self.load_onnx_model(onnx_path):
logger.info("🚀 Using ONNX model for inference")
except Exception as onnx_error:
logger.warning(f"ONNX conversion failed: {onnx_error}")
logger.info("📦 Continuing with PyTorch model")
if os.environ.get('AUTO_CONVERT_TO_ONNX_BACKGROUND', 'true').lower() == 'true':
threading.Thread(target=_convert_and_switch, daemon=True).start()
else:
_convert_and_switch()
return True
except Exception as e:
logger.error(f"❌ Failed to load model: {e}")
logger.error(traceback.format_exc())
logger.info("Note: If running from .exe, some ML libraries may not be included")
logger.info("This is normal for lightweight builds - inpainting will be disabled")
self.model_loaded = False
return False
def load_model_with_retry(self, method, model_path, force_reload=False, retries: int = 2, retry_delay: float = 0.5) -> bool:
"""Attempt to load a model with retries.
Returns True if loaded; False if all attempts fail. On failure, the inpainter will safely no-op.
"""
try:
attempts = max(0, int(retries)) + 1
except Exception:
attempts = 1
for attempt in range(attempts):
try:
ok = self.load_model(method, model_path, force_reload=force_reload)
if ok:
return True
except Exception as e:
logger.warning(f"Load attempt {attempt+1} failed with exception: {e}")
# brief delay before next try
if attempt < attempts - 1:
try:
time.sleep(max(0.0, float(retry_delay)))
except Exception:
pass
# If we reach here, loading failed. Leave model unloaded so inpaint() no-ops and returns original image.
logger.warning("All load attempts failed; local inpainting will fall back to returning original images (no-op)")
self.model_loaded = False
# Keep current_method for logging/context if provided
try:
self.current_method = method
except Exception:
pass
return False
def unload(self):
"""Release all heavy resources held by this inpainter instance."""
try:
# Release ONNX session and metadata
try:
if self.onnx_session is not None:
self.onnx_session = None
except Exception:
pass
for attr in ['onnx_input_names', 'onnx_output_names', 'current_onnx_path', 'onnx_fixed_size']:
try:
if hasattr(self, attr):
setattr(self, attr, None)
except Exception:
pass
# Release PyTorch model
try:
if self.model is not None:
if TORCH_AVAILABLE and torch is not None:
try:
# Move to CPU then drop reference
self.model = self.model.to('cpu') if hasattr(self.model, 'to') else None
except Exception:
pass
self.model = None
except Exception:
pass
# Drop bubble detector reference (not the global cache)
try:
self.bubble_detector = None
except Exception:
pass
# Update flags
self.model_loaded = False
self.use_onnx = False
self.is_jit_model = False
# Free CUDA cache and trigger GC
try:
if TORCH_AVAILABLE and torch is not None and torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception:
pass
try:
import gc
gc.collect()
except Exception:
pass
except Exception:
# Never raise from unload
pass
def pad_img_to_modulo(self, img: np.ndarray, mod: int) -> Tuple[np.ndarray, Tuple[int, int, int, int]]:
"""Pad image to be divisible by mod"""
if len(img.shape) == 2:
height, width = img.shape
else:
height, width = img.shape[:2]
pad_height = (mod - height % mod) % mod
pad_width = (mod - width % mod) % mod
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top
pad_left = pad_width // 2
pad_right = pad_width - pad_left
if len(img.shape) == 2:
padded = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), mode='reflect')
else:
padded = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), mode='reflect')
return padded, (pad_top, pad_bottom, pad_left, pad_right)
def remove_padding(self, img: np.ndarray, padding: Tuple[int, int, int, int]) -> np.ndarray:
"""Remove padding from image"""
pad_top, pad_bottom, pad_left, pad_right = padding
if len(img.shape) == 2:
return img[pad_top:img.shape[0]-pad_bottom, pad_left:img.shape[1]-pad_right]
else:
return img[pad_top:img.shape[0]-pad_bottom, pad_left:img.shape[1]-pad_right, :]
def _inpaint_tiled(self, image, mask, tile_size, overlap, refinement='normal'):
"""Process image in tiles"""
orig_h, orig_w = image.shape[:2]
result = image.copy()
# Calculate tile positions
for y in range(0, orig_h, tile_size - overlap):
for x in range(0, orig_w, tile_size - overlap):
# Calculate tile boundaries
x_end = min(x + tile_size, orig_w)
y_end = min(y + tile_size, orig_h)
# Adjust start to ensure full tile size if possible
if x_end - x < tile_size and x > 0:
x = max(0, x_end - tile_size)
if y_end - y < tile_size and y > 0:
y = max(0, y_end - tile_size)
# Extract tile
tile_img = image[y:y_end, x:x_end]
tile_mask = mask[y:y_end, x:x_end]
# Skip if no inpainting needed
if np.sum(tile_mask) == 0:
continue
# Process this tile with the actual model
processed_tile = self._process_single_tile(tile_img, tile_mask, tile_size, refinement)
# Auto-retry for tile if no visible change
try:
if self._is_noop(tile_img, processed_tile, tile_mask):
kernel = np.ones((3, 3), np.uint8)
expanded = cv2.dilate(tile_mask, kernel, iterations=1)
processed_retry = self._process_single_tile(tile_img, expanded, tile_size, 'fast')
if self._is_noop(tile_img, processed_retry, expanded):
logger.warning("Tile remained unchanged after retry; proceeding without further fallback")
processed_tile = processed_retry
else:
processed_tile = processed_retry
except Exception as e:
logger.debug(f"Tiled no-op detection error: {e}")
# Blend tile back into result
if overlap > 0 and (x > 0 or y > 0):
result[y:y_end, x:x_end] = self._blend_tile(
result[y:y_end, x:x_end],
processed_tile,
x > 0,
y > 0,
overlap
)
else:
result[y:y_end, x:x_end] = processed_tile
logger.info(f"✅ Tiled inpainting complete ({orig_w}x{orig_h} in {tile_size}x{tile_size} tiles)")
time.sleep(0.1) # Brief pause for stability
logger.debug("💤 Tiled inpainting completion pausing briefly for stability")
return result
def _process_single_tile(self, tile_img, tile_mask, tile_size, refinement):
"""Process a single tile without tiling"""
# Temporarily disable tiling
old_tiling = self.tiling_enabled
self.tiling_enabled = False
result = self.inpaint(tile_img, tile_mask, refinement, _skip_hd=True)
self.tiling_enabled = old_tiling
return result
def _blend_tile(self, existing, new_tile, blend_x, blend_y, overlap):
"""Blend a tile with existing result"""
if not blend_x and not blend_y:
# No blending needed for first tile
return new_tile
h, w = new_tile.shape[:2]
result = new_tile.copy()
# Create blend weights
if blend_x and overlap > 0 and w > overlap:
# Horizontal blend on left edge
for i in range(overlap):
alpha = i / overlap
result[:, i] = existing[:, i] * (1 - alpha) + new_tile[:, i] * alpha
if blend_y and overlap > 0 and h > overlap:
# Vertical blend on top edge
for i in range(overlap):
alpha = i / overlap
result[i, :] = existing[i, :] * (1 - alpha) + new_tile[i, :] * alpha
return result
def _is_noop(self, original: np.ndarray, result: np.ndarray, mask: np.ndarray, threshold: float = 0.75) -> bool:
"""Return True if inpainting produced negligible change within the masked area."""
try:
if original is None or result is None:
return True
if original.shape != result.shape:
return False
# Normalize mask to single channel boolean
if mask is None:
return False
if len(mask.shape) == 3:
mask_gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
else:
mask_gray = mask
m = mask_gray > 0
if not np.any(m):
return False
# Fast path
if np.array_equal(original, result):
return True
diff = cv2.absdiff(result, original)
if len(diff.shape) == 3:
diff_gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
else:
diff_gray = diff
mean_diff = float(np.mean(diff_gray[m]))
return mean_diff < threshold
except Exception as e:
logger.debug(f"No-op detection failed: {e}")
return False
def _is_white_paste(self, result: np.ndarray, mask: np.ndarray, white_threshold: int = 245, ratio: float = 0.90) -> bool:
"""Detect 'white paste' failure: masked area mostly saturated near white."""
try:
if result is None or mask is None:
return False
if len(mask.shape) == 3:
mask_gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
else:
mask_gray = mask
m = mask_gray > 0
if not np.any(m):
return False
if len(result.shape) == 3:
white = (result[..., 0] >= white_threshold) & (result[..., 1] >= white_threshold) & (result[..., 2] >= white_threshold)
else:
white = result >= white_threshold
count_mask = int(np.count_nonzero(m))
count_white = int(np.count_nonzero(white & m))
if count_mask == 0:
return False
frac = count_white / float(count_mask)
return frac >= ratio
except Exception as e:
logger.debug(f"White paste detection failed: {e}")
return False
def _log_inpaint_diag(self, path: str, result: np.ndarray, mask: np.ndarray):
try:
h, w = result.shape[:2]
if len(result.shape) == 3:
stats = (float(result.min()), float(result.max()), float(result.mean()))
else:
stats = (float(result.min()), float(result.max()), float(result.mean()))
logger.info(f"[Diag] Path={path} onnx_quant={self.onnx_quantize_applied} torch_quant={self.torch_quantize_applied} size={w}x{h} stats(min,max,mean)={stats}")
if self._is_white_paste(result, mask):
logger.warning(f"[Diag] White-paste detected (mask>0 mostly white)")
except Exception as e:
logger.debug(f"Diag log failed: {e}")
def inpaint(self, image, mask, refinement='normal', _retry_attempt: int = 0, _skip_hd: bool = False, _skip_tiling: bool = False):
"""Inpaint - compatible with JIT, checkpoint, and ONNX models
Implements HD strategy (Resize/Crop) similar to comic-translate to speed up large images.
"""
# Check for stop at start
if self._check_stop():
self._log("⏹️ Inpainting stopped by user", "warning")
return image
if not self.model_loaded:
self._log("No model loaded", "error")
return image
try:
# Store original dimensions
orig_h, orig_w = image.shape[:2]
# HD strategy (mirror of comic-translate): optional RESIZE or CROP before core inpainting
if not _skip_hd:
try:
strategy = getattr(self, 'hd_strategy', 'resize') or 'resize'
except Exception:
strategy = 'resize'
H, W = orig_h, orig_w
if strategy == 'resize' and max(H, W) > max(16, int(getattr(self, 'hd_resize_limit', 1536))):
limit = max(16, int(getattr(self, 'hd_resize_limit', 1536)))
ratio = float(limit) / float(max(H, W))
new_w = max(1, int(W * ratio + 0.5))
new_h = max(1, int(H * ratio + 0.5))
image_small = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
mask_small = mask if len(mask.shape) == 2 else cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
mask_small = cv2.resize(mask_small, (new_w, new_h), interpolation=cv2.INTER_NEAREST)
result_small = self.inpaint(image_small, mask_small, refinement, 0, _skip_hd=True, _skip_tiling=True)
result_full = cv2.resize(result_small, (W, H), interpolation=cv2.INTER_LANCZOS4)
# Paste only masked area
mask_gray = mask_small # already gray but at small size
mask_gray = cv2.resize(mask_gray, (W, H), interpolation=cv2.INTER_NEAREST)
m = mask_gray > 0
out = image.copy()
out[m] = result_full[m]
return out
elif strategy == 'crop' and max(H, W) > max(16, int(getattr(self, 'hd_crop_trigger_size', 1024))):
mask_gray0 = mask if len(mask.shape) == 2 else cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(mask_gray0, 127, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
out = image.copy()
margin = max(0, int(getattr(self, 'hd_crop_margin', 16)))
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
l = max(0, x - margin); t = max(0, y - margin)
r = min(W, x + w + margin); b = min(H, y + h + margin)
if r <= l or b <= t:
continue
crop_img = image[t:b, l:r]
crop_mask = mask_gray0[t:b, l:r]
patch = self.inpaint(crop_img, crop_mask, refinement, 0, _skip_hd=True, _skip_tiling=True)
out[t:b, l:r] = patch
return out
if len(mask.shape) == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# Apply dilation for anime method
if self.current_method == 'anime':
kernel = np.ones((7, 7), np.uint8)
mask = cv2.dilate(mask, kernel, iterations=1)
# Use instance tiling settings for ALL models
logger.info(f"🔍 Tiling check: enabled={self.tiling_enabled}, tile_size={self.tile_size}, image_size={orig_h}x{orig_w}")
# If tiling is enabled and image is larger than tile size
if (not _skip_tiling) and self.tiling_enabled and (orig_h > self.tile_size or orig_w > self.tile_size):
logger.info(f"🔲 Using tiled inpainting: {self.tile_size}x{self.tile_size} tiles with {self.tile_overlap}px overlap")
return self._inpaint_tiled(image, mask, self.tile_size, self.tile_overlap, refinement)
# ONNX inference path
if self.use_onnx and self.onnx_session:
logger.debug("Using ONNX inference")
# CRITICAL: Convert BGR (OpenCV default) to RGB (ML model expected)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Check if this is a Carve model
is_carve_model = False
if hasattr(self, 'current_onnx_path'):
is_carve_model = "lama_fp32" in self.current_onnx_path or "carve" in self.current_onnx_path.lower()
# Handle fixed-size models (resize instead of padding)
if hasattr(self, 'onnx_fixed_size') and self.onnx_fixed_size:
fixed_h, fixed_w = self.onnx_fixed_size
# Resize to fixed size
image_resized = cv2.resize(image_rgb, (fixed_w, fixed_h), interpolation=cv2.INTER_LANCZOS4)
mask_resized = cv2.resize(mask, (fixed_w, fixed_h), interpolation=cv2.INTER_NEAREST)
# Prepare inputs based on model type
if is_carve_model:
# Carve model expects normalized input [0, 1] range
logger.debug("Using Carve model normalization [0, 1]")
img_np = image_resized.astype(np.float32) / 255.0
mask_np = mask_resized.astype(np.float32) / 255.0
mask_np = (mask_np > 0.5) * 1.0 # Binary mask
elif self.current_method == 'aot' or 'aot' in str(self.current_method).lower():
# AOT normalization: [-1, 1] range for image
logger.debug("Using AOT model normalization [-1, 1] for image, [0, 1] for mask")
img_np = (image_resized.astype(np.float32) / 127.5) - 1.0
mask_np = mask_resized.astype(np.float32) / 255.0
mask_np = (mask_np > 0.5) * 1.0 # Binary mask
img_np = img_np * (1 - mask_np[:, :, np.newaxis]) # Mask out regions
elif 'anime' in str(self.current_method).lower():
# Anime/Manga LaMa normalization: [0, 1] range with optional input masking for stability
logger.debug("Using Anime/Manga LaMa normalization [0, 1] with input masking")
img_np = image_resized.astype(np.float32) / 255.0
mask_np = mask_resized.astype(np.float32) / 255.0
mask_np = (mask_np > 0.5) * 1.0 # Binary mask
# CRITICAL: Mask out input regions for better text region stability
# This helps the model focus on generating content rather than being influenced by text artifacts
img_np = img_np * (1 - mask_np[:, :, np.newaxis])
else:
# Standard LaMa normalization: [0, 1] range
logger.debug("Using standard LaMa normalization [0, 1]")
img_np = image_resized.astype(np.float32) / 255.0
mask_np = mask_resized.astype(np.float32) / 255.0
mask_np = (mask_np > 0) * 1.0
# Convert to NCHW format
img_np = img_np.transpose(2, 0, 1)[np.newaxis, ...]
mask_np = mask_np[np.newaxis, np.newaxis, ...]
# Run ONNX inference
ort_inputs = {
self.onnx_input_names[0]: img_np.astype(np.float32),
self.onnx_input_names[1]: mask_np.astype(np.float32)
}
ort_outputs = self.onnx_session.run(self.onnx_output_names, ort_inputs)
output = ort_outputs[0]
# Post-process output based on model type
if is_carve_model:
# CRITICAL: Carve model outputs values ALREADY in [0, 255] range!
# DO NOT multiply by 255 or apply any scaling
logger.debug("Carve model output is already in [0, 255] range")
raw_output = output[0].transpose(1, 2, 0)
logger.debug(f"Carve output stats: min={raw_output.min():.3f}, max={raw_output.max():.3f}, mean={raw_output.mean():.3f}")
result = raw_output # Just transpose, no scaling
elif self.current_method == 'aot' or 'aot' in str(self.current_method).lower():
# AOT: [-1, 1] to [0, 255]
result = ((output[0].transpose(1, 2, 0) + 1.0) * 127.5)
else:
# Standard: [0, 1] to [0, 255]
result = output[0].transpose(1, 2, 0) * 255
result = np.clip(np.round(result), 0, 255).astype(np.uint8)
# CRITICAL: Convert RGB (model output) back to BGR (OpenCV expected)
result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
# Resize back to original size
result = cv2.resize(result, (orig_w, orig_h), interpolation=cv2.INTER_LANCZOS4)
self._log_inpaint_diag('onnx-fixed', result, mask)
else:
# Variable-size models (use padding)
image_padded, padding = self.pad_img_to_modulo(image_rgb, self.pad_mod)
mask_padded, _ = self.pad_img_to_modulo(mask, self.pad_mod)
# Prepare inputs based on model type
if is_carve_model:
# Carve model normalization [0, 1]
logger.debug("Using Carve model normalization [0, 1]")
img_np = image_padded.astype(np.float32) / 255.0
mask_np = mask_padded.astype(np.float32) / 255.0
mask_np = (mask_np > 0.5) * 1.0
elif self.current_method == 'aot' or 'aot' in str(self.current_method).lower():
# AOT normalization: [-1, 1] for image
logger.debug("Using AOT model normalization [-1, 1] for image, [0, 1] for mask")
img_np = (image_padded.astype(np.float32) / 127.5) - 1.0
mask_np = mask_padded.astype(np.float32) / 255.0
mask_np = (mask_np > 0.5) * 1.0
img_np = img_np * (1 - mask_np[:, :, np.newaxis]) # Mask out regions
elif 'anime' in str(self.current_method).lower():
# Anime/Manga LaMa normalization: [0, 1] range with optional input masking for stability
logger.debug("Using Anime/Manga LaMa normalization [0, 1] with input masking")
img_np = image_padded.astype(np.float32) / 255.0
mask_np = mask_padded.astype(np.float32) / 255.0
mask_np = (mask_np > 0.5) * 1.0 # Binary mask
# CRITICAL: Mask out input regions for better text region stability
# This helps the model focus on generating content rather than being influenced by text artifacts
img_np = img_np * (1 - mask_np[:, :, np.newaxis])
else:
# Standard LaMa normalization: [0, 1]
logger.debug("Using standard LaMa normalization [0, 1]")
img_np = image_padded.astype(np.float32) / 255.0
mask_np = mask_padded.astype(np.float32) / 255.0
mask_np = (mask_np > 0) * 1.0
# Convert to NCHW format
img_np = img_np.transpose(2, 0, 1)[np.newaxis, ...]
mask_np = mask_np[np.newaxis, np.newaxis, ...]
# Check for stop before inference
if self._check_stop():
self._log("⏹️ ONNX inference stopped by user", "warning")
return image
# Run ONNX inference
ort_inputs = {
self.onnx_input_names[0]: img_np.astype(np.float32),
self.onnx_input_names[1]: mask_np.astype(np.float32)
}
ort_outputs = self.onnx_session.run(self.onnx_output_names, ort_inputs)
output = ort_outputs[0]
# Post-process output
if is_carve_model:
# CRITICAL: Carve model outputs values ALREADY in [0, 255] range!
logger.debug("Carve model output is already in [0, 255] range")
raw_output = output[0].transpose(1, 2, 0)
logger.debug(f"Carve output stats: min={raw_output.min():.3f}, max={raw_output.max():.3f}, mean={raw_output.mean():.3f}")
result = raw_output # Just transpose, no scaling
elif self.current_method == 'aot' or 'aot' in str(self.current_method).lower():
result = ((output[0].transpose(1, 2, 0) + 1.0) * 127.5)
else:
result = output[0].transpose(1, 2, 0) * 255
result = np.clip(np.round(result), 0, 255).astype(np.uint8)
# CRITICAL: Convert RGB (model output) back to BGR (OpenCV expected)
result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
# Remove padding
result = self.remove_padding(result, padding)
self._log_inpaint_diag('onnx-padded', result, mask)
elif self.is_jit_model:
# JIT model processing
if self.current_method == 'aot':
# Special handling for AOT model
logger.debug("Using AOT-specific preprocessing")
# CRITICAL: Convert BGR (OpenCV) to RGB (AOT model expected)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Pad images to be divisible by mod
image_padded, padding = self.pad_img_to_modulo(image_rgb, self.pad_mod)
mask_padded, _ = self.pad_img_to_modulo(mask, self.pad_mod)
# AOT normalization: [-1, 1] range
img_torch = torch.from_numpy(image_padded).permute(2, 0, 1).unsqueeze_(0).float() / 127.5 - 1.0
mask_torch = torch.from_numpy(mask_padded).unsqueeze_(0).unsqueeze_(0).float() / 255.0
# Binarize mask for AOT
mask_torch[mask_torch < 0.5] = 0
mask_torch[mask_torch >= 0.5] = 1
# Move to device
img_torch = img_torch.to(self.device)
mask_torch = mask_torch.to(self.device)
# Optional FP16 on GPU for lower VRAM
if self.quantize_enabled and self.use_gpu:
try:
if self.torch_precision == 'fp16' or self.torch_precision == 'auto':
img_torch = img_torch.half()
mask_torch = mask_torch.half()
except Exception:
pass
# CRITICAL FOR AOT: Apply mask to input image
img_torch = img_torch * (1 - mask_torch)
logger.debug(f"AOT Image shape: {img_torch.shape}, Mask shape: {mask_torch.shape}")
# Run inference
with torch.no_grad():
inpainted = self.model(img_torch, mask_torch)
# Post-process AOT output: denormalize from [-1, 1] to [0, 255]
result = ((inpainted.cpu().squeeze_(0).permute(1, 2, 0).numpy() + 1.0) * 127.5)
result = np.clip(np.round(result), 0, 255).astype(np.uint8)
# CRITICAL: Convert RGB (model output) back to BGR (OpenCV expected)
result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
# Remove padding
result = self.remove_padding(result, padding)
self._log_inpaint_diag('jit-aot', result, mask)
else:
# LaMa/Anime model processing
logger.debug(f"Using standard processing for {self.current_method}")
# CRITICAL: Convert BGR (OpenCV) to RGB (LaMa/JIT models expected)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Pad images to be divisible by mod
image_padded, padding = self.pad_img_to_modulo(image_rgb, self.pad_mod)
mask_padded, _ = self.pad_img_to_modulo(mask, self.pad_mod)
# CRITICAL: Normalize to [0, 1] range for LaMa models
image_norm = image_padded.astype(np.float32) / 255.0
mask_norm = mask_padded.astype(np.float32) / 255.0
# Binary mask (values > 0 become 1)
mask_binary = (mask_norm > 0) * 1.0
# For anime models: mask out input regions for better text stability
if 'anime' in str(self.current_method).lower():
logger.debug("Applying input masking for anime model (text region stability)")
image_norm = image_norm * (1 - mask_binary[:, :, np.newaxis])
# Convert to PyTorch tensors with correct shape
# Image should be [B, C, H, W]
image_tensor = torch.from_numpy(image_norm).permute(2, 0, 1).unsqueeze(0).float()
mask_tensor = torch.from_numpy(mask_binary).unsqueeze(0).unsqueeze(0).float()
# Move to device
image_tensor = image_tensor.to(self.device)
mask_tensor = mask_tensor.to(self.device)
# Optional FP16 on GPU for lower VRAM
if self.quantize_enabled and self.use_gpu:
try:
if self.torch_precision == 'fp16' or self.torch_precision == 'auto':
image_tensor = image_tensor.half()
mask_tensor = mask_tensor.half()
except Exception:
pass
# Debug shapes
logger.debug(f"Image tensor shape: {image_tensor.shape}") # Should be [1, 3, H, W]
logger.debug(f"Mask tensor shape: {mask_tensor.shape}") # Should be [1, 1, H, W]
# Ensure spatial dimensions match
if image_tensor.shape[2:] != mask_tensor.shape[2:]:
logger.warning(f"Spatial dimension mismatch: image {image_tensor.shape[2:]}, mask {mask_tensor.shape[2:]}")
# Resize mask to match image
mask_tensor = F.interpolate(mask_tensor, size=image_tensor.shape[2:], mode='nearest')
# Run inference with proper error handling
with torch.no_grad():
try:
# Standard LaMa JIT models expect (image, mask)
inpainted = self.model(image_tensor, mask_tensor)
except RuntimeError as e:
error_str = str(e)
logger.error(f"Model inference failed: {error_str}")
# If tensor size mismatch, log detailed info
if "size of tensor" in error_str.lower():
logger.error(f"Image shape: {image_tensor.shape}")
logger.error(f"Mask shape: {mask_tensor.shape}")
# Try transposing if needed
if "dimension 3" in error_str and "880" in error_str:
# This suggests the tensors might be in wrong format
# Try different permutation
logger.info("Attempting to fix tensor format...")
# Ensure image is [B, C, H, W] not [B, H, W, C]
if image_tensor.shape[1] > 3:
image_tensor = image_tensor.permute(0, 3, 1, 2)
logger.info(f"Permuted image to: {image_tensor.shape}")
# Try again
inpainted = self.model(image_tensor, mask_tensor)
else:
# As last resort, try swapped arguments
logger.info("Trying swapped arguments (mask, image)...")
inpainted = self.model(mask_tensor, image_tensor)
else:
raise e
# Process output
# Output should be [B, C, H, W]
if len(inpainted.shape) == 4:
# Remove batch dimension and permute to [H, W, C]
result = inpainted[0].permute(1, 2, 0).detach().cpu().numpy()
else:
# Handle unexpected output shape
result = inpainted.detach().cpu().numpy()
if len(result.shape) == 3 and result.shape[0] == 3:
result = result.transpose(1, 2, 0)
# Denormalize to 0-255 range
result = np.clip(result * 255, 0, 255).astype(np.uint8)
# CRITICAL: Convert RGB (model output) back to BGR (OpenCV expected)
result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
# Remove padding
result = self.remove_padding(result, padding)
self._log_inpaint_diag('jit-lama', result, mask)
else:
# Original checkpoint model processing (keep as is)
h, w = image.shape[:2]
size = 768 if self.current_method == 'anime' else 512
img_resized = cv2.resize(image, (size, size), interpolation=cv2.INTER_LANCZOS4)
mask_resized = cv2.resize(mask, (size, size), interpolation=cv2.INTER_NEAREST)
img_norm = img_resized.astype(np.float32) / 127.5 - 1
mask_norm = mask_resized.astype(np.float32) / 255.0
img_tensor = torch.from_numpy(img_norm).permute(2, 0, 1).unsqueeze(0).float()
mask_tensor = torch.from_numpy(mask_norm).unsqueeze(0).unsqueeze(0).float()
if self.use_gpu and self.device:
img_tensor = img_tensor.to(self.device)
mask_tensor = mask_tensor.to(self.device)
with torch.no_grad():
output = self.model(img_tensor, mask_tensor)
result = output.squeeze(0).permute(1, 2, 0).cpu().numpy()
result = ((result + 1) * 127.5).clip(0, 255).astype(np.uint8)
result = cv2.resize(result, (w, h), interpolation=cv2.INTER_LANCZOS4)
self._log_inpaint_diag('ckpt', result, mask)
# Ensure result matches original size exactly
if result.shape[:2] != (orig_h, orig_w):
result = cv2.resize(result, (orig_w, orig_h), interpolation=cv2.INTER_LANCZOS4)
# Apply refinement blending if requested
if refinement != 'fast':
# Ensure mask is same size as result
if mask.shape[:2] != (orig_h, orig_w):
mask = cv2.resize(mask, (orig_w, orig_h), interpolation=cv2.INTER_NEAREST)
mask_3ch = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) / 255.0
kernel = cv2.getGaussianKernel(21, 5)
kernel = kernel @ kernel.T
mask_blur = cv2.filter2D(mask_3ch, -1, kernel)
result = (result * mask_blur + image * (1 - mask_blur)).astype(np.uint8)
# No-op detection and auto-retry
try:
if self._is_noop(image, result, mask):
if _retry_attempt == 0:
logger.warning("⚠️ Inpainting produced no visible change; retrying with slight mask dilation and fast refinement")
kernel = np.ones((3, 3), np.uint8)
expanded_mask = cv2.dilate(mask, kernel, iterations=1)
return self.inpaint(image, expanded_mask, refinement='fast', _retry_attempt=1)
elif _retry_attempt == 1:
logger.warning("⚠️ Still no visible change after retry; attempting a second dilation and fast refinement")
kernel = np.ones((5, 5), np.uint8)
expanded_mask2 = cv2.dilate(mask, kernel, iterations=1)
return self.inpaint(image, expanded_mask2, refinement='fast', _retry_attempt=2)
else:
logger.warning("⚠️ No further retries; returning last result without fallback")
except Exception as e:
logger.debug(f"No-op detection step failed: {e}")
logger.info("✅ Inpainted successfully!")
# Force garbage collection to reduce memory spikes
try:
import gc
gc.collect()
# Clear CUDA cache if using GPU
if torch is not None and hasattr(torch, 'cuda') and torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception:
pass
time.sleep(0.1) # Brief pause for stability
logger.debug("💤 Inpainting completion pausing briefly for stability")
return result
except Exception as e:
logger.error(f"❌ Inpainting failed: {e}")
logger.error(traceback.format_exc())
# Return original image on failure
logger.warning("Returning original image due to error")
return image
def inpaint_with_prompt(self, image, mask, prompt=None):
"""Compatibility method"""
return self.inpaint(image, mask)
def batch_inpaint(self, images, masks):
"""Batch inpainting"""
return [self.inpaint(img, mask) for img, mask in zip(images, masks)]
def load_bubble_model(self, model_path: str) -> bool:
"""Load bubble detection model"""
if not BUBBLE_DETECTOR_AVAILABLE:
logger.warning("Bubble detector not available")
return False
if self.bubble_detector is None:
self.bubble_detector = BubbleDetector()
if self.bubble_detector.load_model(model_path):
self.bubble_model_loaded = True
self.config['bubble_model_path'] = model_path
self._save_config()
logger.info("✅ Bubble detection model loaded")
return True
return False
def detect_bubbles(self, image_path: str, confidence: float = 0.5) -> List[Tuple[int, int, int, int]]:
"""Detect speech bubbles in image"""
if not self.bubble_model_loaded or self.bubble_detector is None:
logger.warning("No bubble model loaded")
return []
return self.bubble_detector.detect_bubbles(image_path, confidence=confidence)
def create_bubble_mask(self, image: np.ndarray, bubbles: List[Tuple[int, int, int, int]],
expand_pixels: int = 5) -> np.ndarray:
"""Create mask from detected bubbles"""
h, w = image.shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
for x, y, bw, bh in bubbles:
x1 = max(0, x - expand_pixels)
y1 = max(0, y - expand_pixels)
x2 = min(w, x + bw + expand_pixels)
y2 = min(h, y + bh + expand_pixels)
cv2.rectangle(mask, (x1, y1), (x2, y2), 255, -1)
return mask
def inpaint_with_bubble_detection(self, image_path: str, confidence: float = 0.5,
expand_pixels: int = 5, refinement: str = 'normal') -> np.ndarray:
"""Inpaint using automatic bubble detection"""
image = cv2.imread(image_path)
if image is None:
logger.error(f"Failed to load image: {image_path}")
return None
bubbles = self.detect_bubbles(image_path, confidence)
if not bubbles:
logger.warning("No bubbles detected")
return image
logger.info(f"Detected {len(bubbles)} bubbles")
mask = self.create_bubble_mask(image, bubbles, expand_pixels)
result = self.inpaint(image, mask, refinement)
return result
def batch_inpaint_with_bubbles(self, image_paths: List[str], **kwargs) -> List[np.ndarray]:
"""Batch inpaint multiple images with bubble detection"""
results = []
for i, image_path in enumerate(image_paths):
logger.info(f"Processing image {i+1}/{len(image_paths)}")
result = self.inpaint_with_bubble_detection(image_path, **kwargs)
results.append(result)
return results
# Compatibility classes - MAINTAIN ALL ORIGINAL CLASSES
class LaMaModel(FFCInpaintModel):
pass
class MATModel(FFCInpaintModel):
pass
class AOTModel(FFCInpaintModel):
pass
class SDInpaintModel(FFCInpaintModel):
pass
class AnimeMangaInpaintModel(FFCInpaintModel):
pass
class LaMaOfficialModel(FFCInpaintModel):
pass
class HybridInpainter:
"""Hybrid inpainter for compatibility"""
def __init__(self):
self.inpainters = {}
def add_method(self, name, method, model_path):
"""Add a method - maintains compatibility"""
try:
inpainter = LocalInpainter()
if inpainter.load_model(method, model_path):
self.inpainters[name] = inpainter
return True
except:
pass
return False
def inpaint_ensemble(self, image: np.ndarray, mask: np.ndarray,
weights: Dict[str, float] = None) -> np.ndarray:
"""Ensemble inpainting"""
if not self.inpainters:
logger.error("No inpainters loaded")
return image
if weights is None:
weights = {name: 1.0 / len(self.inpainters) for name in self.inpainters}
results = []
for name, inpainter in self.inpainters.items():
result = inpainter.inpaint(image, mask)
weight = weights.get(name, 1.0 / len(self.inpainters))
results.append(result * weight)
ensemble = np.sum(results, axis=0).astype(np.uint8)
return ensemble
# Helper function for quick setup
def setup_inpainter_for_manga(auto_download=True):
"""Quick setup for manga inpainting"""
inpainter = LocalInpainter()
if auto_download:
# Try to download anime JIT model
jit_path = inpainter.download_jit_model('anime')
if jit_path:
inpainter.load_model('anime', jit_path)
logger.info("✅ Manga inpainter ready with JIT model")
return inpainter
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
if sys.argv[1] == "download_jit":
# Download JIT models
inpainter = LocalInpainter()
for method in ['lama', 'anime', 'lama_official']:
print(f"\nDownloading {method}...")
path = inpainter.download_jit_model(method)
if path:
print(f" ✅ Downloaded to: {path}")
elif len(sys.argv) > 2:
# Test with model
inpainter = LocalInpainter()
inpainter.load_model('lama', sys.argv[1])
print("Model loaded - check logs for details")
else:
print("\nLocal Inpainter - Compatible Version")
print("=====================================")
print("\nSupports both:")
print(" - JIT models (.pt) - RECOMMENDED")
print(" - Checkpoint files (.ckpt) - With warnings")
print("\nTo download JIT models:")
print(" python local_inpainter.py download_jit")
print("\nTo test:")
print(" python local_inpainter.py <model_path>") |