Spaces:
Running
Running
File size: 83,573 Bytes
f66ccd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 |
# ocr_manager.py
"""
OCR Manager for handling multiple OCR providers
Handles installation, model downloading, and OCR processing
Updated with HuggingFace donut model and proper bubble detection integration
"""
import os
import sys
import cv2
import json
import subprocess
import threading
import traceback
from typing import List, Dict, Optional, Tuple, Any
import numpy as np
from dataclasses import dataclass
from PIL import Image
import logging
import time
import random
import base64
import io
import requests
try:
import gptqmodel
HAS_GPTQ = True
except ImportError:
try:
import auto_gptq
HAS_GPTQ = True
except ImportError:
HAS_GPTQ = False
try:
import optimum
HAS_OPTIMUM = True
except ImportError:
HAS_OPTIMUM = False
try:
import accelerate
HAS_ACCELERATE = True
except ImportError:
HAS_ACCELERATE = False
logger = logging.getLogger(__name__)
@dataclass
class OCRResult:
"""Unified OCR result format with built-in sanitization to prevent data corruption."""
text: str
bbox: Tuple[int, int, int, int] # x, y, w, h
confidence: float
vertices: Optional[List[Tuple[int, int]]] = None
def __post_init__(self):
"""
This special method is called automatically after the object is created.
It acts as a final safeguard to ensure the 'text' attribute is ALWAYS a clean string.
"""
# --- THIS IS THE DEFINITIVE FIX ---
# If the text we received is a tuple, we extract the first element.
# This makes it impossible for a tuple to exist in a finished object.
if isinstance(self.text, tuple):
# Log that we are fixing a critical data error.
print(f"CRITICAL WARNING: Corrupted tuple detected in OCRResult. Sanitizing '{self.text}' to '{self.text[0]}'.")
self.text = self.text[0]
# Ensure the final result is always a stripped string.
self.text = str(self.text).strip()
class OCRProvider:
"""Base class for OCR providers"""
def __init__(self, log_callback=None):
# Set thread limits early if environment indicates single-threaded mode
try:
if os.environ.get('OMP_NUM_THREADS') == '1':
# Already in single-threaded mode, ensure it's applied to this process
try:
import sys
if 'torch' in sys.modules:
import torch
torch.set_num_threads(1)
except (ImportError, RuntimeError, AttributeError):
pass
try:
import cv2
cv2.setNumThreads(1)
except (ImportError, AttributeError):
pass
except Exception:
pass
self.log_callback = log_callback
self.is_installed = False
self.is_loaded = False
self.model = None
self.stop_flag = None
self._stopped = False
def _log(self, message: str, level: str = "info"):
"""Log message with stop suppression"""
# Suppress logs when stopped (allow only essential stop confirmation messages)
if self._check_stop():
essential_stop_keywords = [
"βΉοΈ Translation stopped by user",
"βΉοΈ OCR processing stopped",
"cleanup", "π§Ή"
]
if not any(keyword in message for keyword in essential_stop_keywords):
return
if self.log_callback:
self.log_callback(message, level)
else:
print(f"[{level.upper()}] {message}")
def set_stop_flag(self, stop_flag):
"""Set the stop flag for checking interruptions"""
self.stop_flag = stop_flag
self._stopped = False
def _check_stop(self) -> bool:
"""Check if stop has been requested"""
if self._stopped:
return True
if self.stop_flag and self.stop_flag.is_set():
self._stopped = True
return True
# Check global manga translator cancellation
try:
from manga_translator import MangaTranslator
if MangaTranslator.is_globally_cancelled():
self._stopped = True
return True
except Exception:
pass
return False
def reset_stop_flags(self):
"""Reset stop flags when starting new processing"""
self._stopped = False
def check_installation(self) -> bool:
"""Check if provider is installed"""
raise NotImplementedError
def install(self, progress_callback=None) -> bool:
"""Install the provider"""
raise NotImplementedError
def load_model(self, **kwargs) -> bool:
"""Load the OCR model"""
raise NotImplementedError
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Detect text in image"""
raise NotImplementedError
class CustomAPIProvider(OCRProvider):
"""Custom API OCR provider that uses existing GUI variables"""
def __init__(self, log_callback=None):
super().__init__(log_callback)
# Use EXISTING environment variables from TranslatorGUI
self.api_url = os.environ.get('OPENAI_CUSTOM_BASE_URL', '')
self.api_key = os.environ.get('API_KEY', '') or os.environ.get('OPENAI_API_KEY', '')
self.model_name = os.environ.get('MODEL', 'gpt-4o-mini')
# OCR prompt - use system prompt or a dedicated OCR prompt variable
self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT',
os.environ.get('SYSTEM_PROMPT',
"YOU ARE A TEXT EXTRACTION MACHINE. EXTRACT EXACTLY WHAT YOU SEE.\n\n"
"ABSOLUTE RULES:\n"
"1. OUTPUT ONLY THE VISIBLE TEXT/SYMBOLS - NOTHING ELSE\n"
"2. NEVER TRANSLATE OR MODIFY\n"
"3. NEVER EXPLAIN, DESCRIBE, OR COMMENT\n"
"4. NEVER SAY \"I can't\" or \"I cannot\" or \"no text\" or \"blank image\"\n"
"5. IF YOU SEE DOTS, OUTPUT THE DOTS: .\n"
"6. IF YOU SEE PUNCTUATION, OUTPUT THE PUNCTUATION\n"
"7. IF YOU SEE A SINGLE CHARACTER, OUTPUT THAT CHARACTER\n"
"8. IF YOU SEE NOTHING, OUTPUT NOTHING (empty response)\n\n"
"LANGUAGE PRESERVATION:\n"
"- Korean text β Output in Korean\n"
"- Japanese text β Output in Japanese\n"
"- Chinese text β Output in Chinese\n"
"- English text β Output in English\n"
"- CJK quotation marks (γγγγγγγγγγ) β Preserve exactly as shown\n\n"
"FORMATTING:\n"
"- OUTPUT ALL TEXT ON A SINGLE LINE WITH NO LINE BREAKS\n"
"- NEVER use \\n or line breaks in your output\n\n"
"FORBIDDEN RESPONSES:\n"
"- \"I can see this appears to be...\"\n"
"- \"I cannot make out any clear text...\"\n"
"- \"This appears to be blank...\"\n"
"- \"If there is text present...\"\n"
"- ANY explanatory text\n\n"
"YOUR ONLY OUTPUT: The exact visible text. Nothing more. Nothing less.\n"
"If image has a dot β Output: .\n"
"If image has two dots β Output: . .\n"
"If image has text β Output: [that text]\n"
"If image is truly blank β Output: [empty/no response]"
))
# Use existing temperature and token settings
self.temperature = float(os.environ.get('TRANSLATION_TEMPERATURE', '0.01'))
# NOTE: max_tokens is NOT cached here - it's read fresh from environment in detect_text()
# to ensure we always get the latest value from the GUI
# Image settings from existing compression variables
self.image_format = 'jpeg' if os.environ.get('IMAGE_COMPRESSION_FORMAT', 'auto') != 'png' else 'png'
self.image_quality = int(os.environ.get('JPEG_QUALITY', '100'))
# Simple defaults
self.api_format = 'openai' # Most custom endpoints are OpenAI-compatible
self.timeout = int(os.environ.get('CHUNK_TIMEOUT', '30'))
self.api_headers = {} # Additional custom headers
# Retry configuration for Custom API OCR calls
self.max_retries = int(os.environ.get('CUSTOM_OCR_MAX_RETRIES', '3'))
self.retry_initial_delay = float(os.environ.get('CUSTOM_OCR_RETRY_INITIAL_DELAY', '0.8'))
self.retry_backoff = float(os.environ.get('CUSTOM_OCR_RETRY_BACKOFF', '1.8'))
self.retry_jitter = float(os.environ.get('CUSTOM_OCR_RETRY_JITTER', '0.4'))
self.retry_on_empty = os.environ.get('CUSTOM_OCR_RETRY_ON_EMPTY', '1') == '1'
def check_installation(self) -> bool:
"""Always installed - uses UnifiedClient"""
self.is_installed = True
return True
def install(self, progress_callback=None) -> bool:
"""No installation needed for API-based provider"""
return self.check_installation()
def load_model(self, **kwargs) -> bool:
"""Initialize UnifiedClient with current settings"""
try:
from unified_api_client import UnifiedClient
# Support passing API key from GUI if available
if 'api_key' in kwargs:
api_key = kwargs['api_key']
else:
api_key = os.environ.get('API_KEY', '') or os.environ.get('OPENAI_API_KEY', '')
if 'model' in kwargs:
model = kwargs['model']
else:
model = os.environ.get('MODEL', 'gpt-4o-mini')
if not api_key:
self._log("β No API key configured", "error")
return False
# Create UnifiedClient just like translations do
self.client = UnifiedClient(model=model, api_key=api_key)
#self._log(f"β
Using {model} for OCR via UnifiedClient")
self.is_loaded = True
return True
except Exception as e:
self._log(f"β Failed to initialize UnifiedClient: {str(e)}", "error")
return False
def _test_connection(self) -> bool:
"""Test API connection with a simple request"""
try:
# Create a small test image
test_image = np.ones((100, 100, 3), dtype=np.uint8) * 255
cv2.putText(test_image, "TEST", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
# Encode image
image_base64 = self._encode_image(test_image)
# Prepare test request based on API format
if self.api_format == 'openai':
test_payload = {
"model": self.model_name,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What text do you see?"},
{"type": "image_url", "image_url": {"url": f"data:image/{self.image_format};base64,{image_base64}"}}
]
}
],
"max_tokens": 50
}
else:
# For other formats, just try a basic health check
return True
headers = self._prepare_headers()
response = requests.post(
self.api_url,
headers=headers,
json=test_payload,
timeout=10
)
return response.status_code == 200
except Exception:
return False
def _encode_image(self, image: np.ndarray) -> str:
"""Encode numpy array to base64 string"""
# Convert BGR to RGB if needed
if len(image.shape) == 3 and image.shape[2] == 3:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
image_rgb = image
# Convert to PIL Image
pil_image = Image.fromarray(image_rgb)
# Save to bytes buffer
buffer = io.BytesIO()
if self.image_format.lower() == 'png':
pil_image.save(buffer, format='PNG')
else:
pil_image.save(buffer, format='JPEG', quality=self.image_quality)
# Encode to base64
buffer.seek(0)
image_base64 = base64.b64encode(buffer.read()).decode('utf-8')
return image_base64
def _prepare_headers(self) -> dict:
"""Prepare request headers"""
headers = {
"Content-Type": "application/json"
}
# Add API key if configured
if self.api_key:
if self.api_format == 'anthropic':
headers["x-api-key"] = self.api_key
else:
headers["Authorization"] = f"Bearer {self.api_key}"
# Add any custom headers
headers.update(self.api_headers)
return headers
def _prepare_request_payload(self, image_base64: str) -> dict:
"""Prepare request payload based on API format"""
if self.api_format == 'openai':
return {
"model": self.model_name,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": self.ocr_prompt},
{
"type": "image_url",
"image_url": {
"url": f"data:image/{self.image_format};base64,{image_base64}"
}
}
]
}
],
"max_tokens": self.max_tokens,
"temperature": self.temperature
}
elif self.api_format == 'anthropic':
return {
"model": self.model_name,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": self.ocr_prompt
},
{
"type": "image",
"source": {
"type": "base64",
"media_type": f"image/{self.image_format}",
"data": image_base64
}
}
]
}
]
}
else:
# Custom format - use environment variable for template
template = os.environ.get('CUSTOM_OCR_REQUEST_TEMPLATE', '{}')
payload = json.loads(template)
# Replace placeholders
payload_str = json.dumps(payload)
payload_str = payload_str.replace('{{IMAGE_BASE64}}', image_base64)
payload_str = payload_str.replace('{{PROMPT}}', self.ocr_prompt)
payload_str = payload_str.replace('{{MODEL}}', self.model_name)
payload_str = payload_str.replace('{{MAX_TOKENS}}', str(self.max_tokens))
payload_str = payload_str.replace('{{TEMPERATURE}}', str(self.temperature))
return json.loads(payload_str)
def _extract_text_from_response(self, response_data: dict) -> str:
"""Extract text from API response based on format"""
try:
if self.api_format == 'openai':
# OpenAI format: response.choices[0].message.content
return response_data.get('choices', [{}])[0].get('message', {}).get('content', '')
elif self.api_format == 'anthropic':
# Anthropic format: response.content[0].text
content = response_data.get('content', [])
if content and isinstance(content, list):
return content[0].get('text', '')
return ''
else:
# Custom format - use environment variable for path
response_path = os.environ.get('CUSTOM_OCR_RESPONSE_PATH', 'text')
# Navigate through the response using the path
result = response_data
for key in response_path.split('.'):
if isinstance(result, dict):
result = result.get(key, '')
elif isinstance(result, list) and key.isdigit():
idx = int(key)
result = result[idx] if idx < len(result) else ''
else:
result = ''
break
return str(result)
except Exception as e:
self._log(f"Failed to extract text from response: {e}", "error")
return ''
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Process image using UnifiedClient.send_image()"""
results = []
try:
# CRITICAL: Reload OCR prompt from environment before each detection
# This ensures we use the latest prompt set by manga_integration.py
self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT', self.ocr_prompt)
# Get fresh max_tokens from environment - GUI will have set this
max_tokens = int(os.environ.get('MAX_OUTPUT_TOKENS', '8192'))
if not self.is_loaded:
if not self.load_model():
return results
import cv2
from PIL import Image
import base64
import io
# Validate and resize image if too small (consistent with Google/Azure logic)
h, w = image.shape[:2]
MIN_SIZE = 50 # Minimum dimension for good OCR quality
MIN_AREA = 2500 # Minimum area (50x50)
# Skip completely invalid/corrupted images (0 or negative dimensions)
if h <= 0 or w <= 0:
self._log(f"β οΈ Invalid image dimensions ({w}x{h}px), skipping", "warning")
return results
if h < MIN_SIZE or w < MIN_SIZE or h * w < MIN_AREA:
# Image too small - resize it
scale_w = MIN_SIZE / w if w < MIN_SIZE else 1.0
scale_h = MIN_SIZE / h if h < MIN_SIZE else 1.0
scale = max(scale_w, scale_h)
if scale > 1.0:
new_w = int(w * scale)
new_h = int(h * scale)
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
self._log(f"π Image resized from {w}x{h}px to {new_w}x{new_h}px for Custom API OCR", "debug")
h, w = new_h, new_w
# Convert numpy array to PIL Image
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image_rgb)
# Convert PIL Image to base64 string
buffer = io.BytesIO()
# Use the image format from settings
if self.image_format.lower() == 'png':
pil_image.save(buffer, format='PNG')
else:
pil_image.save(buffer, format='JPEG', quality=self.image_quality)
buffer.seek(0)
image_base64 = base64.b64encode(buffer.read()).decode('utf-8')
# For OpenAI vision models, we need BOTH:
# 1. System prompt with instructions
# 2. User message that includes the image
messages = [
{
"role": "system",
"content": self.ocr_prompt # The OCR instruction as system prompt
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "Image:" # Minimal text, just to have something
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
}
}
]
}
]
# Now send this properly formatted message
# The UnifiedClient should handle this correctly
# But we're NOT using send_image, we're using regular send
# Retry-aware call
from unified_api_client import UnifiedClientError # local import to avoid hard dependency at module import time
max_attempts = max(1, self.max_retries)
attempt = 0
last_error = None
# Common refusal/error phrases that indicate a non-OCR response (expanded list)
refusal_phrases = [
"I can't extract", "I cannot extract",
"I'm sorry", "I am sorry",
"I'm unable", "I am unable",
"cannot process images",
"I can't help with that",
"cannot view images",
"no text in the image",
"I can see this appears",
"I cannot make out",
"appears to be blank",
"appears to be a mostly blank",
"mostly blank or white image",
"If there is text present",
"too small, faint, or unclear",
"cannot accurately extract",
"may be too",
"However, I cannot",
"I don't see any",
"no clear text",
"no visible text",
"does not contain",
"doesn't contain",
"I do not see"
]
while attempt < max_attempts:
# Check for stop before each attempt
if self._check_stop():
self._log("βΉοΈ OCR processing stopped by user", "warning")
return results
try:
response = self.client.send(
messages=messages,
temperature=self.temperature,
max_tokens=max_tokens
)
# Extract content from response object
content, finish_reason = response
# Validate content
has_content = bool(content and str(content).strip())
refused = False
if has_content:
# Filter out explicit failure markers
if "[" in content and "FAILED]" in content:
refused = True
elif any(phrase.lower() in content.lower() for phrase in refusal_phrases):
refused = True
# Decide success or retry
if has_content and not refused:
text = str(content).strip()
results.append(OCRResult(
text=text,
bbox=(0, 0, w, h),
confidence=kwargs.get('confidence', 0.85),
vertices=[(0, 0), (w, 0), (w, h), (0, h)]
))
self._log(f"β
Detected: {text[:50]}...")
break # success
else:
reason = "empty result" if not has_content else "refusal/non-OCR response"
last_error = f"{reason} (finish_reason: {finish_reason})"
# Check if we should retry on empty or refusal
should_retry = (not has_content and self.retry_on_empty) or refused
attempt += 1
if attempt >= max_attempts or not should_retry:
# No more retries or shouldn't retry
if not has_content:
self._log(f"β οΈ No text detected (finish_reason: {finish_reason})")
else:
self._log(f"β Model returned non-OCR response: {str(content)[:120]}", "warning")
break
# Backoff before retrying
delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter)
self._log(f"π Retry {attempt}/{max_attempts - 1} after {delay:.1f}s due to {reason}...", "warning")
time.sleep(delay)
time.sleep(0.1) # Brief pause for stability
self._log("π€ OCR retry pausing briefly for stability", "debug")
continue
except UnifiedClientError as ue:
msg = str(ue)
last_error = msg
# Do not retry on explicit user cancellation
if 'cancelled' in msg.lower() or 'stopped by user' in msg.lower():
self._log(f"β OCR cancelled: {msg}", "error")
break
attempt += 1
if attempt >= max_attempts:
self._log(f"β OCR failed after {attempt} attempts: {msg}", "error")
break
delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter)
self._log(f"π API error, retry {attempt}/{max_attempts - 1} after {delay:.1f}s: {msg}", "warning")
time.sleep(delay)
time.sleep(0.1) # Brief pause for stability
self._log("π€ OCR API error retry pausing briefly for stability", "debug")
continue
except Exception as e_inner:
last_error = str(e_inner)
attempt += 1
if attempt >= max_attempts:
self._log(f"β OCR exception after {attempt} attempts: {last_error}", "error")
break
delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter)
self._log(f"π Exception, retry {attempt}/{max_attempts - 1} after {delay:.1f}s: {last_error}", "warning")
time.sleep(delay)
time.sleep(0.1) # Brief pause for stability
self._log("π€ OCR exception retry pausing briefly for stability", "debug")
continue
except Exception as e:
self._log(f"β Error: {str(e)}", "error")
import traceback
self._log(traceback.format_exc(), "debug")
return results
class MangaOCRProvider(OCRProvider):
"""Manga OCR provider using HuggingFace model directly"""
def __init__(self, log_callback=None):
super().__init__(log_callback)
self.processor = None
self.model = None
self.tokenizer = None
def check_installation(self) -> bool:
"""Check if transformers is installed"""
try:
import transformers
import torch
self.is_installed = True
return True
except ImportError:
return False
def install(self, progress_callback=None) -> bool:
"""Install transformers and torch"""
pass
def _is_valid_local_model_dir(self, path: str) -> bool:
"""Check that a local HF model directory has required files."""
try:
if not path or not os.path.isdir(path):
return False
needed_any_weights = any(
os.path.exists(os.path.join(path, name)) for name in (
'pytorch_model.bin',
'model.safetensors'
)
)
has_config = os.path.exists(os.path.join(path, 'config.json'))
has_processor = (
os.path.exists(os.path.join(path, 'preprocessor_config.json')) or
os.path.exists(os.path.join(path, 'processor_config.json'))
)
has_tokenizer = (
os.path.exists(os.path.join(path, 'tokenizer.json')) or
os.path.exists(os.path.join(path, 'tokenizer_config.json'))
)
return has_config and needed_any_weights and has_processor and has_tokenizer
except Exception:
return False
def load_model(self, **kwargs) -> bool:
"""Load the manga-ocr model, preferring a local directory to avoid re-downloading"""
print("\n>>> MangaOCRProvider.load_model() called")
try:
if not self.is_installed and not self.check_installation():
print("ERROR: Transformers not installed")
self._log("β Transformers not installed", "error")
return False
# Always disable progress bars to avoid tqdm issues in some environments
import os
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
from transformers import VisionEncoderDecoderModel, AutoTokenizer, AutoImageProcessor
import torch
# Prefer a local model directory if present to avoid any Hub access
candidates = []
env_local = os.environ.get("MANGA_OCR_LOCAL_DIR")
if env_local:
candidates.append(env_local)
# Project root one level up from this file
root_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
candidates.append(os.path.join(root_dir, 'models', 'manga-ocr-base'))
candidates.append(os.path.join(root_dir, 'models', 'kha-white', 'manga-ocr-base'))
model_source = None
local_only = False
# Find a valid local dir
for cand in candidates:
if self._is_valid_local_model_dir(cand):
model_source = cand
local_only = True
break
# If no valid local dir, use Hub
if not model_source:
model_source = "kha-white/manga-ocr-base"
# Make sure we are not forcing offline mode
if os.environ.get("HF_HUB_OFFLINE") == "1":
try:
del os.environ["HF_HUB_OFFLINE"]
except Exception:
pass
self._log("π₯ Loading manga-ocr model from Hugging Face Hub")
self._log(f" Repo: {model_source}")
else:
# Only set offline when local dir is fully valid
os.environ.setdefault("HF_HUB_OFFLINE", "1")
self._log("π₯ Loading manga-ocr model from local directory")
self._log(f" Local path: {model_source}")
# Decide target device once; we will move after full CPU load to avoid meta tensors
use_cuda = torch.cuda.is_available()
# Try loading components, falling back to Hub if local-only fails
def _load_components(source: str, local_flag: bool):
self._log(" Loading tokenizer...")
tok = AutoTokenizer.from_pretrained(source, local_files_only=local_flag)
self._log(" Loading image processor...")
try:
from transformers import AutoProcessor
except Exception:
AutoProcessor = None
try:
proc = AutoImageProcessor.from_pretrained(source, local_files_only=local_flag)
except Exception as e_proc:
if AutoProcessor is not None:
self._log(f" β οΈ AutoImageProcessor failed: {e_proc}. Trying AutoProcessor...", "warning")
proc = AutoProcessor.from_pretrained(source, local_files_only=local_flag)
else:
raise
self._log(" Loading model...")
# Prevent meta tensors by forcing full materialization on CPU at load time
os.environ.setdefault('TORCHDYNAMO_DISABLE', '1')
mdl = VisionEncoderDecoderModel.from_pretrained(
source,
local_files_only=local_flag,
low_cpu_mem_usage=False,
device_map=None,
torch_dtype=torch.float32 # Use torch_dtype instead of dtype
)
return tok, proc, mdl
try:
self.tokenizer, self.processor, self.model = _load_components(model_source, local_only)
except Exception as e_local:
if local_only:
# Fallback to Hub once if local fails
self._log(f" β οΈ Local model load failed: {e_local}", "warning")
try:
if os.environ.get("HF_HUB_OFFLINE") == "1":
del os.environ["HF_HUB_OFFLINE"]
except Exception:
pass
model_source = "kha-white/manga-ocr-base"
local_only = False
self._log(" Retrying from Hugging Face Hub...")
self.tokenizer, self.processor, self.model = _load_components(model_source, local_only)
else:
raise
# Move to CUDA only after full CPU materialization
target_device = 'cpu'
if use_cuda:
try:
self.model = self.model.to('cuda')
target_device = 'cuda'
except Exception as move_err:
self._log(f" β οΈ Could not move model to CUDA: {move_err}", "warning")
target_device = 'cpu'
# Finalize eval mode
self.model.eval()
# Sanity-check: ensure no parameter remains on 'meta' device
try:
for n, p in self.model.named_parameters():
dev = getattr(p, 'device', None)
if dev is not None and getattr(dev, 'type', '') == 'meta':
raise RuntimeError(f"Parameter {n} is on 'meta' after load")
except Exception as sanity_err:
self._log(f"β Manga-OCR model load sanity check failed: {sanity_err}", "error")
return False
print(f"SUCCESS: Model loaded on {target_device.upper()}")
self._log(f" β
Model loaded on {target_device.upper()}")
self.is_loaded = True
self._log("β
Manga OCR model ready")
print(">>> Returning True from load_model()")
return True
except Exception as e:
print(f"\nEXCEPTION in load_model: {e}")
import traceback
print(traceback.format_exc())
self._log(f"β Failed to load manga-ocr model: {str(e)}", "error")
self._log(traceback.format_exc(), "error")
try:
if 'local_only' in locals() and local_only:
self._log("Hint: Local load failed. Ensure your models/manga-ocr-base contains required files (config.json, preprocessor_config.json, tokenizer.json or tokenizer_config.json, and model weights).", "warning")
except Exception:
pass
return False
def _run_ocr(self, pil_image):
"""Run OCR on a PIL image using the HuggingFace model"""
import torch
# Process image (keyword arg for broader compatibility across transformers versions)
inputs = self.processor(images=pil_image, return_tensors="pt")
pixel_values = inputs["pixel_values"]
# Move to same device as model
try:
model_device = next(self.model.parameters()).device
except StopIteration:
model_device = torch.device('cpu')
pixel_values = pixel_values.to(model_device)
# Generate text
with torch.no_grad():
generated_ids = self.model.generate(pixel_values)
# Decode
generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""
Process the image region passed to it.
This could be a bubble region or the full image.
"""
results = []
# Check for stop at start
if self._check_stop():
self._log("βΉοΈ Manga-OCR processing stopped by user", "warning")
return results
try:
if not self.is_loaded:
if not self.load_model():
return results
import cv2
from PIL import Image
# Get confidence from kwargs
confidence = kwargs.get('confidence', 0.7)
# Convert numpy array to PIL
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image_rgb)
h, w = image.shape[:2]
self._log("π Processing region with manga-ocr...")
# Check for stop before inference
if self._check_stop():
self._log("βΉοΈ Manga-OCR inference stopped by user", "warning")
return results
# Run OCR on the image region
text = self._run_ocr(pil_image)
if text and text.strip():
# Return result for this region with its actual bbox
results.append(OCRResult(
text=text.strip(),
bbox=(0, 0, w, h), # Relative to the region passed in
confidence=confidence,
vertices=[(0, 0), (w, 0), (w, h), (0, h)]
))
self._log(f"β
Detected text: {text[:50]}...")
except Exception as e:
self._log(f"β Error in manga-ocr: {str(e)}", "error")
return results
class Qwen2VL(OCRProvider):
"""OCR using Qwen2-VL - Vision Language Model that can read Korean text"""
def __init__(self, log_callback=None):
super().__init__(log_callback)
self.processor = None
self.model = None
self.tokenizer = None
# Get OCR prompt from environment or use default (UPDATED: Improved prompt)
self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT',
"YOU ARE A TEXT EXTRACTION MACHINE. EXTRACT EXACTLY WHAT YOU SEE.\n\n"
"ABSOLUTE RULES:\n"
"1. OUTPUT ONLY THE VISIBLE TEXT/SYMBOLS - NOTHING ELSE\n"
"2. NEVER TRANSLATE OR MODIFY\n"
"3. NEVER EXPLAIN, DESCRIBE, OR COMMENT\n"
"4. NEVER SAY \"I can't\" or \"I cannot\" or \"no text\" or \"blank image\"\n"
"5. IF YOU SEE DOTS, OUTPUT THE DOTS: .\n"
"6. IF YOU SEE PUNCTUATION, OUTPUT THE PUNCTUATION\n"
"7. IF YOU SEE A SINGLE CHARACTER, OUTPUT THAT CHARACTER\n"
"8. IF YOU SEE NOTHING, OUTPUT NOTHING (empty response)\n\n"
"LANGUAGE PRESERVATION:\n"
"- Korean text β Output in Korean\n"
"- Japanese text β Output in Japanese\n"
"- Chinese text β Output in Chinese\n"
"- English text β Output in English\n"
"- CJK quotation marks (γγγγγγγγγγ) β Preserve exactly as shown\n\n"
"FORMATTING:\n"
"- OUTPUT ALL TEXT ON A SINGLE LINE WITH NO LINE BREAKS\n"
"- NEVER use \\n or line breaks in your output\n\n"
"FORBIDDEN RESPONSES:\n"
"- \"I can see this appears to be...\"\n"
"- \"I cannot make out any clear text...\"\n"
"- \"This appears to be blank...\"\n"
"- \"If there is text present...\"\n"
"- ANY explanatory text\n\n"
"YOUR ONLY OUTPUT: The exact visible text. Nothing more. Nothing less.\n"
"If image has a dot β Output: .\n"
"If image has two dots β Output: . .\n"
"If image has text β Output: [that text]\n"
"If image is truly blank β Output: [empty/no response]"
)
def set_ocr_prompt(self, prompt: str):
"""Allow setting the OCR prompt dynamically"""
self.ocr_prompt = prompt
def check_installation(self) -> bool:
"""Check if required packages are installed"""
try:
import transformers
import torch
self.is_installed = True
return True
except ImportError:
return False
def install(self, progress_callback=None) -> bool:
"""Install requirements for Qwen2-VL"""
pass
def load_model(self, model_size=None, **kwargs) -> bool:
"""Load Qwen2-VL model with size selection"""
self._log(f"DEBUG: load_model called with model_size={model_size}")
try:
if not self.is_installed and not self.check_installation():
self._log("β Not installed", "error")
return False
self._log("π₯ Loading Qwen2-VL for Advanced OCR...")
from transformers import AutoProcessor, AutoTokenizer
import torch
# Model options
model_options = {
"1": "Qwen/Qwen2-VL-2B-Instruct",
"2": "Qwen/Qwen2-VL-7B-Instruct",
"3": "Qwen/Qwen2-VL-72B-Instruct",
"4": "custom"
}
# CHANGE: Default to 7B instead of 2B
# Check for saved preference first
if model_size is None:
# Try to get from environment or config
import os
model_size = os.environ.get('QWEN2VL_MODEL_SIZE', '1')
# Determine which model to load
if model_size and str(model_size).startswith("custom:"):
# Custom model passed with ID
model_id = str(model_size).replace("custom:", "")
self.loaded_model_size = "Custom"
self.model_id = model_id
self._log(f"Loading custom model: {model_id}")
elif model_size == "4":
# Custom option selected but no ID - shouldn't happen
self._log("β Custom model selected but no ID provided", "error")
return False
elif model_size and str(model_size) in model_options:
# Standard model option
option = model_options[str(model_size)]
if option == "custom":
self._log("β Custom model needs an ID", "error")
return False
model_id = option
# Set loaded_model_size for status display
if model_size == "1":
self.loaded_model_size = "2B"
elif model_size == "2":
self.loaded_model_size = "7B"
elif model_size == "3":
self.loaded_model_size = "72B"
else:
# CHANGE: Default to 7B (option "2") instead of 2B
model_id = model_options["1"] # Changed from "1" to "2"
self.loaded_model_size = "2B" # Changed from "2B" to "7B"
self._log("No model size specified, defaulting to 2B") # Changed message
self._log(f"Loading model: {model_id}")
# Load processor and tokenizer
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
self.tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
# Load the model - let it figure out the class dynamically
if torch.cuda.is_available():
self._log(f"GPU: {torch.cuda.get_device_name(0)}")
# Use auto model class
from transformers import AutoModelForVision2Seq
self.model = AutoModelForVision2Seq.from_pretrained(
model_id,
dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
self._log("β
Model loaded on GPU")
else:
self._log("Loading on CPU...")
from transformers import AutoModelForVision2Seq
self.model = AutoModelForVision2Seq.from_pretrained(
model_id,
dtype=torch.float32,
trust_remote_code=True
)
self._log("β
Model loaded on CPU")
self.model.eval()
self.is_loaded = True
self._log("β
Qwen2-VL ready for Advanced OCR!")
return True
except Exception as e:
self._log(f"β Failed to load: {str(e)}", "error")
import traceback
self._log(traceback.format_exc(), "debug")
return False
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Process image with Qwen2-VL for Korean text extraction"""
results = []
if hasattr(self, 'model_id'):
self._log(f"DEBUG: Using model: {self.model_id}", "debug")
# Check if OCR prompt was passed in kwargs (for dynamic updates)
if 'ocr_prompt' in kwargs:
self.ocr_prompt = kwargs['ocr_prompt']
try:
if not self.is_loaded:
if not self.load_model():
return results
import cv2
from PIL import Image
import torch
# Convert to PIL
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image_rgb)
h, w = image.shape[:2]
self._log(f"π Processing with Qwen2-VL ({w}x{h} pixels)...")
# Use the configurable OCR prompt
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": pil_image,
},
{
"type": "text",
"text": self.ocr_prompt # Use the configurable prompt
}
]
}
]
# Alternative simpler prompt if the above still causes issues:
# "text": "OCR: Extract text as-is"
# Process with Qwen2-VL
text = self.processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = self.processor(
text=[text],
images=[pil_image],
padding=True,
return_tensors="pt"
)
# Get the device and dtype the model is currently on
model_device = next(self.model.parameters()).device
model_dtype = next(self.model.parameters()).dtype
# Move inputs to the same device as the model and cast float tensors to model dtype
try:
# Move first
inputs = inputs.to(model_device)
# Then align dtypes only for floating tensors (e.g., pixel_values)
for k, v in inputs.items():
if isinstance(v, torch.Tensor) and torch.is_floating_point(v):
inputs[k] = v.to(model_dtype)
except Exception:
# Fallback: ensure at least pixel_values is correct if present
try:
if isinstance(inputs, dict) and "pixel_values" in inputs:
pv = inputs["pixel_values"].to(model_device)
if torch.is_floating_point(pv):
inputs["pixel_values"] = pv.to(model_dtype)
except Exception:
pass
# Ensure pixel_values explicitly matches model dtype if present
try:
if isinstance(inputs, dict) and "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(device=model_device, dtype=model_dtype)
except Exception:
pass
# Generate text with stricter parameters to avoid creative responses
use_amp = (hasattr(torch, 'cuda') and model_device.type == 'cuda' and model_dtype in (torch.float16, torch.bfloat16))
autocast_dev = 'cuda' if model_device.type == 'cuda' else 'cpu'
autocast_dtype = model_dtype if model_dtype in (torch.float16, torch.bfloat16) else None
with torch.no_grad():
if use_amp and autocast_dtype is not None:
with torch.autocast(autocast_dev, dtype=autocast_dtype):
generated_ids = self.model.generate(
**inputs,
max_new_tokens=128, # Reduced from 512 - manga bubbles are typically short
do_sample=False, # Keep deterministic
temperature=0.01, # Keep your very low temperature
top_p=1.0, # Keep no nucleus sampling
repetition_penalty=1.0, # Keep no repetition penalty
num_beams=1, # Ensure greedy decoding (faster than beam search)
use_cache=True, # Enable KV cache for speed
early_stopping=True, # Stop at EOS token
pad_token_id=self.tokenizer.pad_token_id, # Proper padding
eos_token_id=self.tokenizer.eos_token_id, # Proper stopping
)
else:
generated_ids = self.model.generate(
**inputs,
max_new_tokens=128, # Reduced from 512 - manga bubbles are typically short
do_sample=False, # Keep deterministic
temperature=0.01, # Keep your very low temperature
top_p=1.0, # Keep no nucleus sampling
repetition_penalty=1.0, # Keep no repetition penalty
num_beams=1, # Ensure greedy decoding (faster than beam search)
use_cache=True, # Enable KV cache for speed
early_stopping=True, # Stop at EOS token
pad_token_id=self.tokenizer.pad_token_id, # Proper padding
eos_token_id=self.tokenizer.eos_token_id, # Proper stopping
)
# Decode the output
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = self.processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
if output_text and output_text.strip():
text = output_text.strip()
# ADDED: Filter out any response that looks like an explanation or apology
# Common patterns that indicate the model is being "helpful" instead of just extracting
unwanted_patterns = [
"μ£μ‘ν©λλ€", # "I apologize"
"sorry",
"apologize",
"μ΄λ―Έμ§μλ", # "in this image"
"ν
μ€νΈκ° μμ΅λλ€", # "there is no text"
"I cannot",
"I don't see",
"There is no",
"μ§λ¬Έμ΄ μμΌμλ©΄", # "if you have questions"
]
# Check if response contains unwanted patterns
text_lower = text.lower()
is_explanation = any(pattern.lower() in text_lower for pattern in unwanted_patterns)
# Also check if the response is suspiciously long for a bubble
# Most manga bubbles are short, if we get 50+ chars it might be an explanation
is_too_long = len(text) > 100 and ('.' in text or ',' in text or '!' in text)
if is_explanation or is_too_long:
self._log(f"β οΈ Model returned explanation instead of text, ignoring", "warning")
# Return empty result or just skip this region
return results
# Check language
has_korean = any('\uAC00' <= c <= '\uD7AF' for c in text)
has_japanese = any('\u3040' <= c <= '\u309F' or '\u30A0' <= c <= '\u30FF' for c in text)
has_chinese = any('\u4E00' <= c <= '\u9FFF' for c in text)
if has_korean:
self._log(f"β
Korean detected: {text[:50]}...")
elif has_japanese:
self._log(f"β
Japanese detected: {text[:50]}...")
elif has_chinese:
self._log(f"β
Chinese detected: {text[:50]}...")
else:
self._log(f"β
Text: {text[:50]}...")
results.append(OCRResult(
text=text,
bbox=(0, 0, w, h),
confidence=0.9,
vertices=[(0, 0), (w, 0), (w, h), (0, h)]
))
else:
self._log("β οΈ No text detected", "warning")
except Exception as e:
self._log(f"β Error: {str(e)}", "error")
import traceback
self._log(traceback.format_exc(), "debug")
return results
class EasyOCRProvider(OCRProvider):
"""EasyOCR provider for multiple languages"""
def __init__(self, log_callback=None, languages=None):
super().__init__(log_callback)
# Default to safe language combination
self.languages = languages or ['ja', 'en'] # Safe default
self._validate_language_combination()
def _validate_language_combination(self):
"""Validate and fix EasyOCR language combinations"""
# EasyOCR language compatibility rules
incompatible_pairs = [
(['ja', 'ko'], 'Japanese and Korean cannot be used together'),
(['ja', 'zh'], 'Japanese and Chinese cannot be used together'),
(['ko', 'zh'], 'Korean and Chinese cannot be used together')
]
for incompatible, reason in incompatible_pairs:
if all(lang in self.languages for lang in incompatible):
self._log(f"β οΈ EasyOCR: {reason}", "warning")
# Keep first language + English
self.languages = [self.languages[0], 'en']
self._log(f"π§ Auto-adjusted to: {self.languages}", "info")
break
def check_installation(self) -> bool:
"""Check if easyocr is installed"""
try:
import easyocr
self.is_installed = True
return True
except ImportError:
return False
def install(self, progress_callback=None) -> bool:
"""Install easyocr"""
pass
def load_model(self, **kwargs) -> bool:
"""Load easyocr model"""
try:
if not self.is_installed and not self.check_installation():
self._log("β easyocr not installed", "error")
return False
self._log(f"π₯ Loading easyocr model for languages: {self.languages}...")
import easyocr
# This will download models on first run
self.model = easyocr.Reader(self.languages, gpu=True)
self.is_loaded = True
self._log("β
easyocr model loaded successfully")
return True
except Exception as e:
self._log(f"β Failed to load easyocr: {str(e)}", "error")
# Try CPU mode if GPU fails
try:
import easyocr
self.model = easyocr.Reader(self.languages, gpu=False)
self.is_loaded = True
self._log("β
easyocr loaded in CPU mode")
return True
except:
return False
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Detect text using easyocr"""
results = []
try:
if not self.is_loaded:
if not self.load_model():
return results
# EasyOCR can work directly with numpy arrays
ocr_results = self.model.readtext(image, detail=1)
# Parse results
for (bbox, text, confidence) in ocr_results:
# bbox is a list of 4 points
xs = [point[0] for point in bbox]
ys = [point[1] for point in bbox]
x_min, x_max = min(xs), max(xs)
y_min, y_max = min(ys), max(ys)
results.append(OCRResult(
text=text,
bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)),
confidence=confidence,
vertices=[(int(p[0]), int(p[1])) for p in bbox]
))
self._log(f"β
Detected {len(results)} text regions")
except Exception as e:
self._log(f"β Error in easyocr detection: {str(e)}", "error")
return results
class PaddleOCRProvider(OCRProvider):
"""PaddleOCR provider with memory safety measures"""
def check_installation(self) -> bool:
"""Check if paddleocr is installed"""
try:
from paddleocr import PaddleOCR
self.is_installed = True
return True
except ImportError:
return False
def install(self, progress_callback=None) -> bool:
"""Install paddleocr"""
pass
def load_model(self, **kwargs) -> bool:
"""Load paddleocr model with memory-safe configurations"""
try:
if not self.is_installed and not self.check_installation():
self._log("β paddleocr not installed", "error")
return False
self._log("π₯ Loading PaddleOCR model...")
# Set memory-safe environment variables BEFORE importing
import os
os.environ['OMP_NUM_THREADS'] = '1' # Prevent OpenMP conflicts
os.environ['MKL_NUM_THREADS'] = '1' # Prevent MKL conflicts
os.environ['OPENBLAS_NUM_THREADS'] = '1' # Prevent OpenBLAS conflicts
os.environ['FLAGS_use_mkldnn'] = '0' # Disable MKL-DNN
from paddleocr import PaddleOCR
# Try memory-safe configurations
configs_to_try = [
# Config 1: Most memory-safe configuration
{
'use_angle_cls': False, # Disable angle to save memory
'lang': 'ch',
'rec_batch_num': 1, # Process one at a time
'max_text_length': 100, # Limit text length
'drop_score': 0.5, # Higher threshold to reduce detections
'cpu_threads': 1, # Single thread to avoid conflicts
},
# Config 2: Minimal memory footprint
{
'lang': 'ch',
'rec_batch_num': 1,
'cpu_threads': 1,
},
# Config 3: Absolute minimal
{
'lang': 'ch'
},
# Config 4: Empty config
{}
]
for i, config in enumerate(configs_to_try):
try:
self._log(f" Trying configuration {i+1}/{len(configs_to_try)}: {config}")
# Force garbage collection before loading
import gc
gc.collect()
self.model = PaddleOCR(**config)
self.is_loaded = True
self.current_config = config
self._log(f"β
PaddleOCR loaded successfully with config: {config}")
return True
except Exception as e:
error_str = str(e)
self._log(f" Config {i+1} failed: {error_str}", "debug")
# Clean up on failure
if hasattr(self, 'model'):
del self.model
gc.collect()
continue
self._log(f"β PaddleOCR failed to load with any configuration", "error")
return False
except Exception as e:
self._log(f"β Failed to load paddleocr: {str(e)}", "error")
import traceback
self._log(traceback.format_exc(), "debug")
return False
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Detect text with memory safety measures"""
results = []
try:
if not self.is_loaded:
if not self.load_model():
return results
import cv2
import numpy as np
import gc
# Memory safety: Ensure image isn't too large
h, w = image.shape[:2] if len(image.shape) >= 2 else (0, 0)
# Limit image size to prevent memory issues
MAX_DIMENSION = 1500
if h > MAX_DIMENSION or w > MAX_DIMENSION:
scale = min(MAX_DIMENSION/h, MAX_DIMENSION/w)
new_h, new_w = int(h*scale), int(w*scale)
self._log(f"β οΈ Resizing large image from {w}x{h} to {new_w}x{new_h} for memory safety", "warning")
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA)
scale_factor = 1/scale
else:
scale_factor = 1.0
# Ensure correct format
if len(image.shape) == 2: # Grayscale
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
elif len(image.shape) == 4: # Batch
image = image[0]
# Ensure uint8 type
if image.dtype != np.uint8:
if image.max() <= 1.0:
image = (image * 255).astype(np.uint8)
else:
image = image.astype(np.uint8)
# Make a copy to avoid memory corruption
image_copy = image.copy()
# Force garbage collection before OCR
gc.collect()
# Process with timeout protection
import signal
import threading
ocr_results = None
ocr_error = None
def run_ocr():
nonlocal ocr_results, ocr_error
try:
ocr_results = self.model.ocr(image_copy)
except Exception as e:
ocr_error = e
# Run OCR in a separate thread with timeout
ocr_thread = threading.Thread(target=run_ocr)
ocr_thread.daemon = True
ocr_thread.start()
ocr_thread.join(timeout=30) # 30 second timeout
if ocr_thread.is_alive():
self._log("β PaddleOCR timeout - taking too long", "error")
return results
if ocr_error:
raise ocr_error
# Parse results
results = self._parse_ocr_results(ocr_results)
# Scale coordinates back if image was resized
if scale_factor != 1.0 and results:
for r in results:
x, y, width, height = r.bbox
r.bbox = (int(x*scale_factor), int(y*scale_factor),
int(width*scale_factor), int(height*scale_factor))
r.vertices = [(int(v[0]*scale_factor), int(v[1]*scale_factor))
for v in r.vertices]
if results:
self._log(f"β
Detected {len(results)} text regions", "info")
else:
self._log("No text regions found", "debug")
# Clean up
del image_copy
gc.collect()
except Exception as e:
error_msg = str(e) if str(e) else type(e).__name__
if "memory" in error_msg.lower() or "0x" in error_msg:
self._log("β Memory access violation in PaddleOCR", "error")
self._log(" This is a known Windows issue with PaddleOCR", "info")
self._log(" Please switch to EasyOCR or manga-ocr instead", "warning")
elif "trace_order.size()" in error_msg:
self._log("β PaddleOCR internal error", "error")
self._log(" Please switch to EasyOCR or manga-ocr", "warning")
else:
self._log(f"β Error in paddleocr detection: {error_msg}", "error")
import traceback
self._log(traceback.format_exc(), "debug")
return results
def _parse_ocr_results(self, ocr_results) -> List[OCRResult]:
"""Parse OCR results safely"""
results = []
if isinstance(ocr_results, bool) and ocr_results == False:
return results
if ocr_results is None or not isinstance(ocr_results, list):
return results
if len(ocr_results) == 0:
return results
# Handle batch format
if isinstance(ocr_results[0], list) and len(ocr_results[0]) > 0:
first_item = ocr_results[0][0]
if isinstance(first_item, list) and len(first_item) > 0:
if isinstance(first_item[0], (list, tuple)) and len(first_item[0]) == 2:
ocr_results = ocr_results[0]
# Parse detections
for detection in ocr_results:
if not detection or isinstance(detection, bool):
continue
if not isinstance(detection, (list, tuple)) or len(detection) < 2:
continue
try:
bbox_points = detection[0]
text_data = detection[1]
if not isinstance(bbox_points, (list, tuple)) or len(bbox_points) != 4:
continue
if not isinstance(text_data, (tuple, list)) or len(text_data) < 2:
continue
text = str(text_data[0]).strip()
confidence = float(text_data[1])
if not text or confidence < 0.3:
continue
xs = [float(p[0]) for p in bbox_points]
ys = [float(p[1]) for p in bbox_points]
x_min, x_max = min(xs), max(xs)
y_min, y_max = min(ys), max(ys)
if (x_max - x_min) < 5 or (y_max - y_min) < 5:
continue
results.append(OCRResult(
text=text,
bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)),
confidence=confidence,
vertices=[(int(p[0]), int(p[1])) for p in bbox_points]
))
except Exception:
continue
return results
class DocTROCRProvider(OCRProvider):
"""DocTR OCR provider"""
def check_installation(self) -> bool:
"""Check if doctr is installed"""
try:
from doctr.models import ocr_predictor
self.is_installed = True
return True
except ImportError:
return False
def install(self, progress_callback=None) -> bool:
"""Install doctr"""
pass
def load_model(self, **kwargs) -> bool:
"""Load doctr model"""
try:
if not self.is_installed and not self.check_installation():
self._log("β doctr not installed", "error")
return False
self._log("π₯ Loading DocTR model...")
from doctr.models import ocr_predictor
# Load pretrained model
self.model = ocr_predictor(pretrained=True)
self.is_loaded = True
self._log("β
DocTR model loaded successfully")
return True
except Exception as e:
self._log(f"β Failed to load doctr: {str(e)}", "error")
return False
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Detect text using doctr"""
results = []
try:
if not self.is_loaded:
if not self.load_model():
return results
from doctr.io import DocumentFile
# DocTR expects document format
# Convert numpy array to PIL and save temporarily
import tempfile
import cv2
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
cv2.imwrite(tmp.name, image)
doc = DocumentFile.from_images(tmp.name)
# Run OCR
result = self.model(doc)
# Parse results
h, w = image.shape[:2]
for page in result.pages:
for block in page.blocks:
for line in block.lines:
for word in line.words:
# Handle different geometry formats
geometry = word.geometry
if len(geometry) == 4:
# Standard format: (x1, y1, x2, y2)
x1, y1, x2, y2 = geometry
elif len(geometry) == 2:
# Alternative format: ((x1, y1), (x2, y2))
(x1, y1), (x2, y2) = geometry
else:
self._log(f"Unexpected geometry format: {geometry}", "warning")
continue
# Convert relative coordinates to absolute
x1, x2 = int(x1 * w), int(x2 * w)
y1, y2 = int(y1 * h), int(y2 * h)
results.append(OCRResult(
text=word.value,
bbox=(x1, y1, x2 - x1, y2 - y1),
confidence=word.confidence,
vertices=[(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
))
# Clean up temp file
try:
os.unlink(tmp.name)
except:
pass
self._log(f"DocTR detected {len(results)} text regions")
except Exception as e:
self._log(f"Error in doctr detection: {str(e)}", "error")
import traceback
self._log(traceback.format_exc(), "error")
return results
class RapidOCRProvider(OCRProvider):
"""RapidOCR provider for fast local OCR"""
def check_installation(self) -> bool:
"""Check if rapidocr is installed"""
try:
import rapidocr_onnxruntime
self.is_installed = True
return True
except ImportError:
return False
def install(self, progress_callback=None) -> bool:
"""Install rapidocr (requires manual pip install)"""
# RapidOCR requires manual installation
if progress_callback:
progress_callback("RapidOCR requires manual pip installation")
self._log("Run: pip install rapidocr-onnxruntime", "info")
return False # Always return False since we can't auto-install
def load_model(self, **kwargs) -> bool:
"""Load RapidOCR model"""
try:
if not self.is_installed and not self.check_installation():
self._log("RapidOCR not installed", "error")
return False
self._log("Loading RapidOCR...")
from rapidocr_onnxruntime import RapidOCR
self.model = RapidOCR()
self.is_loaded = True
self._log("RapidOCR model loaded successfully")
return True
except Exception as e:
self._log(f"Failed to load RapidOCR: {str(e)}", "error")
return False
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Detect text using RapidOCR"""
if not self.is_loaded:
self._log("RapidOCR model not loaded", "error")
return []
results = []
try:
# Convert numpy array to PIL Image for RapidOCR
if len(image.shape) == 3:
# BGR to RGB
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
image_rgb = image
# RapidOCR expects PIL Image or numpy array
ocr_results, _ = self.model(image_rgb)
if ocr_results:
for result in ocr_results:
# RapidOCR returns [bbox, text, confidence]
bbox_points = result[0] # 4 corner points
text = result[1]
confidence = float(result[2])
if not text or not text.strip():
continue
# Convert 4-point bbox to x,y,w,h format
xs = [point[0] for point in bbox_points]
ys = [point[1] for point in bbox_points]
x_min, x_max = min(xs), max(xs)
y_min, y_max = min(ys), max(ys)
results.append(OCRResult(
text=text.strip(),
bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)),
confidence=confidence,
vertices=[(int(p[0]), int(p[1])) for p in bbox_points]
))
self._log(f"Detected {len(results)} text regions")
except Exception as e:
self._log(f"Error in RapidOCR detection: {str(e)}", "error")
return results
class OCRManager:
"""Manager for multiple OCR providers"""
def __init__(self, log_callback=None):
self.log_callback = log_callback
self.providers = {
'custom-api': CustomAPIProvider(log_callback) ,
'manga-ocr': MangaOCRProvider(log_callback),
'easyocr': EasyOCRProvider(log_callback),
'paddleocr': PaddleOCRProvider(log_callback),
'doctr': DocTROCRProvider(log_callback),
'rapidocr': RapidOCRProvider(log_callback),
'Qwen2-VL': Qwen2VL(log_callback)
}
self.current_provider = None
self.stop_flag = None
def get_provider(self, name: str) -> Optional[OCRProvider]:
"""Get OCR provider by name"""
return self.providers.get(name)
def set_current_provider(self, name: str):
"""Set current active provider"""
if name in self.providers:
self.current_provider = name
return True
return False
def check_provider_status(self, name: str) -> Dict[str, bool]:
"""Check installation and loading status of provider"""
provider = self.providers.get(name)
if not provider:
return {'installed': False, 'loaded': False}
result = {
'installed': provider.check_installation(),
'loaded': provider.is_loaded
}
if self.log_callback:
self.log_callback(f"DEBUG: check_provider_status({name}) returning loaded={result['loaded']}", "debug")
return result
def install_provider(self, name: str, progress_callback=None) -> bool:
"""Install a provider"""
provider = self.providers.get(name)
if not provider:
return False
return provider.install(progress_callback)
def load_provider(self, name: str, **kwargs) -> bool:
"""Load a provider's model with optional parameters"""
provider = self.providers.get(name)
if not provider:
return False
return provider.load_model(**kwargs) # <-- Passes model_size and any other kwargs
def shutdown(self):
"""Release models/processors/tokenizers for all providers and clear caches."""
try:
import gc
for name, provider in list(self.providers.items()):
try:
if hasattr(provider, 'model'):
provider.model = None
if hasattr(provider, 'processor'):
provider.processor = None
if hasattr(provider, 'tokenizer'):
provider.tokenizer = None
if hasattr(provider, 'reader'):
provider.reader = None
if hasattr(provider, 'is_loaded'):
provider.is_loaded = False
except Exception:
pass
gc.collect()
try:
import torch
torch.cuda.empty_cache()
except Exception:
pass
except Exception:
pass
def detect_text(self, image: np.ndarray, provider_name: str = None, **kwargs) -> List[OCRResult]:
"""Detect text using specified or current provider"""
provider_name = provider_name or self.current_provider
if not provider_name:
return []
provider = self.providers.get(provider_name)
if not provider:
return []
return provider.detect_text(image, **kwargs)
def set_stop_flag(self, stop_flag):
"""Set stop flag for all providers"""
self.stop_flag = stop_flag
for provider in self.providers.values():
if hasattr(provider, 'set_stop_flag'):
provider.set_stop_flag(stop_flag)
def reset_stop_flags(self):
"""Reset stop flags for all providers"""
for provider in self.providers.values():
if hasattr(provider, 'reset_stop_flags'):
provider.reset_stop_flags()
|