Glossarion / scan_html_folder.py
Shirochi's picture
Upload 41 files
457b8fd verified
"""
Enhanced QA Scanner for HTML Translation Files
This module provides comprehensive quality assurance scanning for translated HTML files,
including duplicate detection, foreign character detection, and translation artifact detection.
PERFORMANCE IMPROVEMENTS:
- Added detailed progress indicators for all slow operations
- Shows estimated time remaining for long operations
- Displays current file being scanned
- Provides progress updates every 5-10%
- Added timing information for each phase
- MinHash optimization status messages
- Debug output for stop functionality
OPTIMIZATION TIPS:
- For datasets > 100 files, avoid AI Hunter mode (use aggressive instead)
- Install 'datasketch' package for 2-10x faster duplicate detection: pip install datasketch
- Use 'summary' report format for faster completion
- Disable checks you don't need in QA Scanner Settings
"""
import os
import hashlib
import json
import zipfile
import csv
from bs4 import BeautifulSoup
from langdetect import detect, LangDetectException
from difflib import SequenceMatcher
from collections import Counter, defaultdict
from tqdm import tqdm
import tkinter as tk
from tkinter import filedialog, messagebox
import threading
import re
import unicodedata
import time
import html as html_lib
from typing import Dict, List, Tuple, Set, Optional
import warnings
from functools import lru_cache
import concurrent.futures
import multiprocessing
from threading import Lock
# Add a global lock for thread-safe operations
merge_lock = Lock()
# Global variable for text samples mapping
_global_text_samples = {}
warnings.filterwarnings('ignore')
# Try to import optional dependencies
try:
from datasketch import MinHash, MinHashLSH
MINHASH_AVAILABLE = True
except ImportError:
MINHASH_AVAILABLE = False
#"Note: Install 'datasketch' package for faster duplicate detection on large datasets if running it as a script
# Global flag to allow stopping the scan externally
_stop_flag = False
def stop_scan():
"""Set the stop flag to True
This function should be called by the GUI to stop a running scan.
The GUI code needs to:
1. Import this function: from scan_html_folder import stop_scan
2. Call it in the stop_qa_scan method: stop_scan()
3. Update the QA button to show "Stop Scan" when scan is running
"""
global _stop_flag
_stop_flag = True
print("πŸ›‘ STOP SCAN CALLED - Global flag set to True") # More visible debug
return True # Return True to confirm it was called
# Configuration class for duplicate detection
class DuplicateDetectionConfig:
def __init__(self, mode='quick-scan', custom_settings=None):
self.mode = mode
self.custom_settings = custom_settings
self.thresholds = {
'aggressive': {
'similarity': 0.75,
'semantic': 0.70,
'structural': 0.80,
'consecutive_chapters': 3,
'word_overlap': 0.65,
'minhash_threshold': 0.70
},
'quick-scan': { # Optimized for speed
'similarity': 0.85,
'semantic': 0.80,
'structural': 0.90,
'consecutive_chapters': 1, # Only check adjacent chapters
'word_overlap': 0.75,
'minhash_threshold': 0.80,
'skip_semantic': True, # Skip expensive calculations
'skip_structural': True,
'skip_minhash': True,
'sample_size': 1000, # Smaller sample
'check_all_pairs': False # Never check all pairs
},
'custom': {
'similarity': 0.85,
'semantic': 0.80,
'structural': 0.90,
'consecutive_chapters': 2,
'word_overlap': 0.75,
'minhash_threshold': 0.80,
'check_all_pairs': False,
'sample_size': 3000,
'min_text_length': 500
},
'ai-hunter': {
'similarity': 0.30,
'semantic': 0.85,
'structural': 0.85,
'consecutive_chapters': 5,
'word_overlap': 0.50,
'minhash_threshold': 0.60,
'check_all_pairs': True
}
}
# Override with custom settings if mode is 'custom'
if mode == 'custom' and custom_settings:
self.thresholds['custom'].update(custom_settings.get('thresholds', {}))
for key in ['consecutive_chapters', 'check_all_pairs', 'sample_size', 'min_text_length']:
if key in custom_settings:
self.thresholds['custom'][key] = custom_settings[key]
def get_threshold(self, key):
return self.thresholds[self.mode].get(key, 0.8)
# Constants
DASH_CHARS = {
'-', '–', 'β€”', '―', 'βΈΊ', 'βΈ»', '﹘', 'οΉ£', '-', '⁃', '‐', '‑', 'β€’',
'_', '━', '─', '═', 'β•Œ', '╍', 'β”„', 'β”…', 'β”ˆ', '┉', '⎯', '⏀', 'οΌΏ',
'*', '*', '~', '~', '∼', 'γ€œ', 'γ…‘' # Added Korean dash character
}
COMMON_WORDS = {
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for',
'of', 'with', 'by', 'from', 'up', 'about', 'into', 'through', 'after',
'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had',
'do', 'does', 'did', 'will', 'would', 'should', 'could', 'may', 'might',
'chapter', 'each', 'person', 'persons', 'he', 'she', 'it', 'they', 'them',
'his', 'her', 'their', 'this', 'that', 'these', 'those', 'which', 'who',
'what', 'where', 'when', 'why', 'how', 'all', 'some', 'any', 'no', 'not'
}
# Korean dash patterns to EXCLUDE from detection
KOREAN_DASH_PATTERNS = [
r'[ㅑ―—–\-]+', # Korean dashes and similar
r'[\u2014\u2015\u2500-\u257F]+', # Box drawing characters often used in Korean text
r'[\u3161\u3163\u3164]+', # Korean filler characters
]
# Extended Korean separator characters to exclude from non-English detection
KOREAN_SEPARATOR_CHARS = {
'γ…‘', # Korean dash/separator (U+3161)
'―', # Horizontal bar (U+2015)
'β€”', # Em dash (U+2014)
'–', # En dash (U+2013)
'οΌ»', 'οΌ½', # Full-width brackets
'【', '】', # Black lenticular brackets
'γ€”', '〕', # Tortoise shell brackets
'γ€Š', '》', # Double angle brackets
'γ€Œ', '」', # Corner brackets
'γ€Ž', '』', # White corner brackets
}
# Translation artifacts patterns
TRANSLATION_ARTIFACTS = {
'machine_translation': re.compile(r'(MTL note|TN:|Translator:|T/N:|TL note:|Translator\'s note:)', re.IGNORECASE),
'encoding_issues': re.compile(r'[οΏ½β–‘β—‡]{2,}'),
'repeated_watermarks': re.compile(r'(\[[\w\s]+\.(?:com|net|org)\])\s*\1{2,}', re.IGNORECASE),
'chapter_continuation': re.compile(r'(to be continued|continued from|continuation of|cont\.)', re.IGNORECASE),
'split_indicators': re.compile(r'(part \d+|section \d+|\(\d+/\d+\))', re.IGNORECASE),
'api_response_unavailable': re.compile(r'\[AI RESPONSE UNAVAILABLE\]|\[TRANSLATION FAILED - ORIGINAL TEXT PRESERVED\]|\[IMAGE TRANSLATION FAILED\]', re.IGNORECASE),
'glossary_leakage_csv': re.compile(
r'(?:type|raw_name|translated_name|gender|description)\s*,\s*(?:type|raw_name|translated_name|gender|description)',
re.IGNORECASE
),
'glossary_leakage_json': re.compile(
r'"(?:type|raw_name|translated_name|gender|description)"\s*:\s*"[^"]+"\s*,?\s*"(?:type|raw_name|translated_name|gender|description)"',
re.IGNORECASE
)
}
# Cache configuration - will be updated by configure_qa_cache()
_cache_config = {
"enabled": True,
"sizes": {
"normalize_text": 10000,
"similarity_ratio": 20000,
"content_hashes": 5000,
"semantic_fingerprint": 2000,
"structural_signature": 2000,
"semantic_similarity": 5000,
"structural_similarity": 5000,
"file_extraction": 200
}
}
def configure_qa_cache(config):
"""Update cache configuration"""
global _cache_config
_cache_config.update(config)
# Clear existing caches after configuration
clear_qa_caches()
# Re-apply caches with new sizes
_apply_caches()
def get_cache_size(func_name):
"""Get configured cache size for a function"""
if not _cache_config.get("enabled", True):
return 0 # Disable cache
size = _cache_config.get("sizes", {}).get(func_name, 1000)
return None if size == -1 else size
# Define functions WITHOUT decorators first
def extract_semantic_fingerprint_impl(text):
"""Extract semantic fingerprint and signature from text"""
# For cache efficiency with long texts
cache_text = text[:50000] if len(text) > 50000 else text
# Extract features for semantic analysis
words = cache_text.lower().split()
# Character names (words starting with capital letters, appearing multiple times)
potential_names = re.findall(r'\b[A-Z][a-z]+\b', cache_text)
name_freq = Counter(potential_names)
characters = [name for name, count in name_freq.items()
if count >= 3 and name not in COMMON_WORDS]
# Dialogue analysis
dialogue_matches = re.findall(r'["\"\'""''γ€Žγ€γ€Œγ€]([^"\"\'""''γ€Žγ€γ€Œγ€]+)["\"\'""''γ€Žγ€γ€Œγ€]', cache_text)
dialogue_count = len(dialogue_matches)
dialogue_density = dialogue_count / max(1, len(words)) if words else 0
dialogue_lengths = [len(d) for d in dialogue_matches[:30]] # First 30 dialogue lengths
# Character frequencies (sorted list)
character_frequencies = [count for _, count in name_freq.most_common()]
# Speaker sequence extraction
speaker_patterns = re.findall(r'(\w+)\s+(?:said|asked|replied|shouted|whispered|spoke)', cache_text.lower())
speaker_sequence = speaker_patterns[:50] # First 50 speakers
# Paragraph structure (lengths of each paragraph)
paragraphs = [p for p in cache_text.split('\n\n') if p.strip()]
paragraph_structure = [len(p) for p in paragraphs[:50]] # First 50 paragraph lengths
# Action words density
action_words = len(re.findall(r'\b(\w+ed|spoke|says?|asks?|replies?|shouts?|screams?|whispers?)\b', cache_text))
action_density = action_words / max(1, len(words)) if words else 0
# Numbers in text
numbers = re.findall(r'\b\d+\b', cache_text)
# Create fingerprint string
fingerprint = f"chars:{len(characters)}_dial:{dialogue_density:.2f}_act:{action_density:.2f}_nums:{len(numbers)}_words:{len(words)}"
# Create signature dict
signature = {
'characters': characters[:20], # Top 20 characters
'dialogue_density': dialogue_density,
'dialogue_count': dialogue_count,
'dialogue_lengths': dialogue_lengths,
'character_frequencies': character_frequencies,
'speaker_sequence': speaker_sequence,
'paragraph_structure': paragraph_structure,
'total_words': len(words),
'action_density': action_density,
'numbers': numbers[:50], # First 50 numbers
'text_length': len(cache_text)
}
return fingerprint, signature
def extract_structural_signature_impl(text):
"""Extract structural patterns from text"""
# For cache efficiency with long texts
cache_text = text[:50000] if len(text) > 50000 else text
lines = cache_text.split('\n')
# Count different types of lines
para_count = len([l for l in lines if len(l.strip()) > 50])
short_lines = len([l for l in lines if 0 < len(l.strip()) < 20])
empty_lines = len([l for l in lines if not l.strip()])
# Dialogue patterns
dialogue_lines = len(re.findall(r'["\"\'""''γ€Žγ€γ€Œγ€].*?["\"\'""''γ€Žγ€γ€Œγ€]', cache_text))
# Create pattern string (first letter of each line type)
pattern = ''
for line in lines[:100]: # First 100 lines
if not line.strip():
pattern += 'E' # Empty
elif len(line.strip()) < 20:
pattern += 'S' # Short
elif re.search(r'["\"\'""''γ€Žγ€γ€Œγ€]', line):
pattern += 'D' # Dialogue
else:
pattern += 'P' # Paragraph
# Calculate average paragraph length
paragraphs = [l for l in lines if len(l.strip()) > 50]
avg_para_length = sum(len(p) for p in paragraphs) / max(1, len(paragraphs)) if paragraphs else 0
# Dialogue ratio
dialogue_ratio = dialogue_lines / max(1, len(lines))
signature = {
'pattern': pattern,
'paragraph_count': para_count,
'avg_paragraph_length': avg_para_length,
'dialogue_ratio': dialogue_ratio,
'short_lines': short_lines,
'empty_lines': empty_lines
}
return signature
def extract_content_fingerprint_impl(text):
"""Extract key sentences that can identify duplicate content"""
lines = [line.strip() for line in text.split('\n')
if len(line.strip()) > 50 and not is_dash_separator_line(line)]
if len(lines) < 5:
return ""
# Take first, middle, and last substantial sentences
fingerprint_lines = []
if len(lines) >= 3:
fingerprint_lines = [lines[0], lines[len(lines)//2], lines[-1]]
else:
fingerprint_lines = lines[:3]
return ' '.join(fingerprint_lines).lower()
# Initialize cached versions
extract_semantic_fingerprint = None
extract_structural_signature = None
extract_content_fingerprint = None
def _apply_caches():
"""Apply LRU cache to functions with current configuration"""
global extract_semantic_fingerprint, extract_structural_signature, extract_content_fingerprint
# Apply caching with current sizes
extract_semantic_fingerprint = lru_cache(maxsize=get_cache_size("semantic_fingerprint") or 2000)(extract_semantic_fingerprint_impl)
extract_structural_signature = lru_cache(maxsize=get_cache_size("structural_signature") or 2000)(extract_structural_signature_impl)
extract_content_fingerprint = lru_cache(maxsize=get_cache_size("content_fingerprint") or 2000)(extract_content_fingerprint_impl)
# Apply initial caches
_apply_caches()
def clear_qa_caches():
"""Clear all QA scanner caches"""
# Clear directly cached functions
if hasattr(normalize_text, 'cache_clear'):
normalize_text.cache_clear()
if hasattr(generate_content_hashes, 'cache_clear'):
generate_content_hashes.cache_clear()
if hasattr(calculate_similarity_ratio, 'cache_clear'):
calculate_similarity_ratio.cache_clear()
# Clear the actual cached implementations
if hasattr(_calculate_semantic_similarity_cached, 'cache_clear'):
_calculate_semantic_similarity_cached.cache_clear()
if hasattr(_calculate_structural_similarity_cached, 'cache_clear'):
_calculate_structural_similarity_cached.cache_clear()
if hasattr(calculate_semantic_fingerprint_similarity, 'cache_clear'):
calculate_semantic_fingerprint_similarity.cache_clear()
if hasattr(extract_semantic_fingerprint, 'cache_clear'):
extract_semantic_fingerprint.cache_clear()
if hasattr(extract_structural_signature, 'cache_clear'):
extract_structural_signature.cache_clear()
if hasattr(extract_content_fingerprint, 'cache_clear'):
extract_content_fingerprint.cache_clear()
if hasattr(_extract_text_from_html_cached, 'cache_clear'):
_extract_text_from_html_cached.cache_clear()
def get_cache_info():
"""Get cache statistics for all cached functions"""
cache_info = {}
# For functions that are directly cached
if hasattr(normalize_text, 'cache_info'):
cache_info['normalize_text'] = normalize_text.cache_info()
if hasattr(generate_content_hashes, 'cache_info'):
cache_info['content_hashes'] = generate_content_hashes.cache_info()
if hasattr(calculate_similarity_ratio, 'cache_info'):
cache_info['similarity_ratio'] = calculate_similarity_ratio.cache_info()
# For wrapper functions, use the actual cached implementation
if hasattr(_calculate_semantic_similarity_cached, 'cache_info'):
cache_info['semantic_similarity'] = _calculate_semantic_similarity_cached.cache_info()
if hasattr(_calculate_structural_similarity_cached, 'cache_info'):
cache_info['structural_similarity'] = _calculate_structural_similarity_cached.cache_info()
if hasattr(calculate_semantic_fingerprint_similarity, 'cache_info'):
cache_info['semantic_fingerprint_similarity'] = calculate_semantic_fingerprint_similarity.cache_info()
if hasattr(extract_semantic_fingerprint, 'cache_info'):
cache_info['semantic_fingerprint'] = extract_semantic_fingerprint.cache_info()
if hasattr(extract_structural_signature, 'cache_info'):
cache_info['structural_signature'] = extract_structural_signature.cache_info()
if hasattr(extract_content_fingerprint, 'cache_info'):
cache_info['content_fingerprint'] = extract_content_fingerprint.cache_info()
if hasattr(_extract_text_from_html_cached, 'cache_info'):
cache_info['file_extraction'] = _extract_text_from_html_cached.cache_info()
return cache_info
# For very long texts, we'll use a hash as cache key
def _get_cache_key(text, max_length=10000):
"""Generate a cache key for text, using hash for long texts"""
if len(text) > max_length:
return hashlib.md5(text.encode('utf-8')).hexdigest()
return text
def extract_text_from_html(file_path):
"""Extract text from HTML or TXT file
Returns:
str OR tuple:
- For backwards compatibility: just the text (if not checking HTML structure)
- For new functionality: (text_content, has_html_tag) tuple
"""
# Get file modification time as part of cache key
try:
mtime = os.path.getmtime(file_path)
cache_key = f"{file_path}:{mtime}"
except OSError:
cache_key = file_path
return _extract_text_from_html_cached(cache_key, file_path)
def _extract_text_from_html_cached(cache_key, file_path):
"""Cached implementation of extract_text_from_html"""
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
content = f.read()
# Check if it's a .txt file
if file_path.lower().endswith('.txt'):
# For .txt files, just return the content directly
return content
# For HTML files, parse with BeautifulSoup
soup = BeautifulSoup(content, "html.parser")
text = soup.get_text(separator='\n', strip=True)
# For backwards compatibility, we'll handle the HTML tag check separately
# in the scan function rather than always returning a tuple
return text
# Configure cache size dynamically
_extract_text_from_html_cached = lru_cache(maxsize=get_cache_size("file_extraction") or 200)(_extract_text_from_html_cached)
import re
def check_html_structure(file_path):
"""Check if an HTML file has proper HTML tags"""
if not file_path.lower().endswith(('.html', '.xhtml', '.htm')):
return True
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
content = f.read()
html_tags = [
'<html', '<head', '<title', '<body', '<h1', '<h2', '<h3', '<h4', '<h5', '<h6',
'<p>', '<p ', '<br', '<div', '<span', '<a ', '<img', '<ul', '<ol', '<li',
'<table', '<tr', '<td', '<th', '<form', '<input', '<button', '<meta',
'<link', '<script', '<style', '<nav', '<header', '<footer', '<main',
'<article', '<section', '<aside'
]
content_lower = content.lower()
has_html_tags = any(tag in content_lower for tag in html_tags)
# DEBUG: Print what we found
print(f"\nChecking file: {file_path}")
print(f"First 100 chars: {content[:100]}")
print(f"Has HTML tags: {has_html_tags}")
return has_html_tags
def is_dash_separator_line(line):
"""Check if a line consists only of dash-like punctuation characters"""
stripped = line.strip()
if not stripped:
return False
# Check if it's a Korean dash pattern (should NOT be flagged)
for pattern in KOREAN_DASH_PATTERNS:
if re.match(f'^{pattern}$', stripped):
return False
# Check if all non-space characters are in our dash set
non_space_chars = [c for c in stripped if not c.isspace()]
if not non_space_chars:
return False
# Check various dash patterns
if all(c in DASH_CHARS for c in non_space_chars):
return True
# Check for repeated patterns
if re.match(r'^[\s\-–—―_*~γ…‘]+$', stripped):
return True
# Check for patterns like "---", "***", "___", "~~~" (3 or more)
if re.match(r'^(\-{3,}|_{3,}|\*{3,}|~{3,}|–{2,}|β€”{2,}|―{2,}|γ…‘{2,})$', stripped):
return True
# Check for spaced patterns like "- - -", "* * *"
if re.match(r'^([\-–—―_*~γ…‘]\s*){3,}$', stripped):
return True
return False
def filter_dash_lines(text):
"""Filter out dash separator lines from text"""
lines = text.split('\n')
return '\n'.join(line for line in lines if not is_dash_separator_line(line))
def has_no_spacing_or_linebreaks(text, space_threshold=0.01):
filtered_text = filter_dash_lines(text)
space_ratio = filtered_text.count(" ") / max(1, len(filtered_text))
newline_count = filtered_text.count("\n")
return space_ratio < space_threshold or newline_count == 0
def has_repeating_sentences(text, min_repeats=10):
filtered_text = filter_dash_lines(text)
sentences = [s.strip() for s in re.split(r'[.!?]+', filtered_text)
if s.strip() and len(s.strip()) > 20]
if len(sentences) < min_repeats:
return False
counter = Counter(sentences)
for sent, count in counter.items():
if count >= min_repeats and len(sent) > 50:
if not any(pattern in sent.lower() for pattern in ['said', 'asked', 'replied', 'thought']):
return True
return False
def is_korean_separator_pattern(text, excluded_chars=None):
"""Check if text is a Korean separator pattern like [γ…‘γ…‘γ…‘γ…‘γ…‘]"""
if excluded_chars is None:
excluded_chars = KOREAN_SEPARATOR_CHARS
# Remove brackets and spaces
cleaned = text.strip().strip('[]').strip()
if not cleaned:
return False
# Check if all characters are separators or excluded characters
return all(c in excluded_chars or c.isspace() for c in cleaned)
def detect_non_english_content(text, qa_settings=None):
"""Detect ONLY non-Latin script characters (not romanized text), excluding Korean separators"""
if qa_settings is None:
qa_settings = {'foreign_char_threshold': 10, 'excluded_characters': ''}
# Get threshold and excluded characters
threshold = qa_settings.get('foreign_char_threshold', 10)
excluded_chars = set()
if qa_settings.get('excluded_characters'):
excluded_chars = set(qa_settings['excluded_characters'].split())
# Combine with existing separator chars
all_excluded_chars = KOREAN_SEPARATOR_CHARS.copy()
all_excluded_chars.update(excluded_chars)
issues = []
filtered_text = filter_dash_lines(text)
# Define non-Latin script ranges
non_latin_ranges = [
(0xAC00, 0xD7AF, 'Korean'), (0x1100, 0x11FF, 'Korean'),
(0x3130, 0x318F, 'Korean'), (0xA960, 0xA97F, 'Korean'),
(0xD7B0, 0xD7FF, 'Korean'), (0x3040, 0x309F, 'Japanese'),
(0x30A0, 0x30FF, 'Japanese'), (0x31F0, 0x31FF, 'Japanese'),
(0xFF65, 0xFF9F, 'Japanese'), (0x4E00, 0x9FFF, 'Chinese'),
(0x3400, 0x4DBF, 'Chinese'), (0x20000, 0x2A6DF, 'Chinese'),
(0x2A700, 0x2B73F, 'Chinese'), (0x0590, 0x05FF, 'Hebrew'),
(0x0600, 0x06FF, 'Arabic'), (0x0700, 0x074F, 'Syriac'),
(0x0750, 0x077F, 'Arabic'), (0x0E00, 0x0E7F, 'Thai'),
(0x0400, 0x04FF, 'Cyrillic'), (0x0500, 0x052F, 'Cyrillic'),
]
script_chars = {}
total_non_latin = 0
# Split text into potential separator patterns and other content
separator_pattern = r'\[[γ…‘\s―—–\-οΌ»οΌ½γ€γ€‘γ€”γ€•γ€Šγ€‹γ€Œγ€γ€Žγ€]+\]'
parts = re.split(f'({separator_pattern})', filtered_text)
for part in parts:
# Skip if this part is a Korean separator pattern
if is_korean_separator_pattern(part, all_excluded_chars):
continue
# Check characters in this part
for char in part:
# Skip characters in excluded set
if char in all_excluded_chars:
continue
# Skip whitespace and common punctuation
if char.isspace() or char in '[](){}.,;:!?\'"-':
continue
code_point = ord(char)
for start, end, script_name in non_latin_ranges:
if start <= code_point <= end:
total_non_latin += 1
if script_name not in script_chars:
script_chars[script_name] = {'count': 0, 'examples': []}
script_chars[script_name]['count'] += 1
if len(script_chars[script_name]['examples']) < 10:
script_chars[script_name]['examples'].append(char)
break
# Check against threshold
if total_non_latin > threshold:
for script, data in script_chars.items():
examples = ''.join(data['examples'][:5])
count = data['count']
issues.append(f"{script}_text_found_{count}_chars_[{examples}]")
return len(issues) > 0, issues
def detect_translation_artifacts(text):
"""Detect common translation/OCR artifacts"""
artifacts_found = []
for artifact_type, pattern in TRANSLATION_ARTIFACTS.items():
matches = pattern.findall(text)
if matches:
artifacts_found.append({
'type': artifact_type,
'count': len(matches),
'examples': list(set(matches))[:3]
})
return artifacts_found
def detect_glossary_leakage(text, threshold=2):
"""
Detect if translated text contains raw glossary entries.
Args:
text: The translated text to check
threshold: Minimum number of glossary-like patterns to flag as leakage
Returns:
tuple: (has_leakage, details)
"""
import re
issues_found = []
# Check for CSV-style glossary headers
csv_header_pattern = re.compile(
r'type\s*,\s*raw_name\s*,\s*translated_name\s*,\s*gender\s*,\s*description',
re.IGNORECASE
)
if csv_header_pattern.search(text):
issues_found.append({
'type': 'csv_header',
'severity': 'critical',
'description': 'Found CSV glossary header in translation'
})
# Check for multiple structured entries
entry_patterns = [
# JSON-like entries
(r'\{\s*"type"\s*:\s*"[^"]+"\s*,\s*"raw_name"\s*:\s*"[^"]+"\s*,', 'json_entry'),
# CSV-like entries with Korean/Chinese characters
(r'(?:character|term)\s*,\s*[κ°€-힣\u4e00-\u9fff]+\s*,\s*[A-Za-z\s]+\s*,', 'csv_entry'),
# Tab-separated entries
(r'(?:character|term)\t[κ°€-힣\u4e00-\u9fff]+\t[A-Za-z\s]+\t', 'tsv_entry'),
]
for pattern_str, pattern_type in entry_patterns:
pattern = re.compile(pattern_str, re.IGNORECASE)
matches = pattern.findall(text)
if len(matches) >= threshold:
issues_found.append({
'type': pattern_type,
'severity': 'high',
'count': len(matches),
'examples': matches[:3],
'description': f'Found {len(matches)} {pattern_type} glossary entries'
})
# Check for repeated glossary field names
field_names = ['type', 'raw_name', 'translated_name', 'gender', 'description']
field_count = sum(1 for field in field_names if text.lower().count(field) >= 3)
if field_count >= 3:
issues_found.append({
'type': 'repeated_field_names',
'severity': 'medium',
'description': f'Found {field_count} repeated glossary field names'
})
# Check for specific character/term patterns
char_term_pattern = re.compile(
r'(?:^|\n)\s*(?:character|term)\s*[,:\t]\s*[^\n]+(?:Male|Female|A\s+historical|Former\s+mayor|Character\s+from)',
re.IGNORECASE | re.MULTILINE
)
char_matches = char_term_pattern.findall(text)
if len(char_matches) >= 2:
issues_found.append({
'type': 'character_definitions',
'severity': 'high',
'count': len(char_matches),
'examples': char_matches[:2],
'description': f'Found {len(char_matches)} character/term definitions'
})
has_leakage = len(issues_found) > 0
return has_leakage, issues_found
def extract_semantic_fingerprint(text):
"""Extract semantic fingerprint and signature from text - CACHED VERSION"""
# For cache efficiency with long texts
cache_text = text[:50000] if len(text) > 50000 else text
# Extract features for semantic analysis
words = cache_text.lower().split()
# Character names (words starting with capital letters, appearing multiple times)
potential_names = re.findall(r'\b[A-Z][a-z]+\b', cache_text)
name_freq = Counter(potential_names)
characters = [name for name, count in name_freq.items()
if count >= 3 and name not in COMMON_WORDS]
# Dialogue analysis
dialogue_matches = re.findall(r'["\"\'""''γ€Žγ€γ€Œγ€]([^"\"\'""''γ€Žγ€γ€Œγ€]+)["\"\'""''γ€Žγ€γ€Œγ€]', cache_text)
dialogue_count = len(dialogue_matches)
dialogue_density = dialogue_count / max(1, len(words)) if words else 0
dialogue_lengths = [len(d) for d in dialogue_matches[:30]] # First 30 dialogue lengths
# Character frequencies (sorted list)
character_frequencies = [count for _, count in name_freq.most_common()]
# Speaker sequence extraction
speaker_patterns = re.findall(r'(\w+)\s+(?:said|asked|replied|shouted|whispered|spoke)', cache_text.lower())
speaker_sequence = speaker_patterns[:50] # First 50 speakers
# Paragraph structure (lengths of each paragraph)
paragraphs = [p for p in cache_text.split('\n\n') if p.strip()]
paragraph_structure = [len(p) for p in paragraphs[:50]] # First 50 paragraph lengths
# Action words density
action_words = len(re.findall(r'\b(\w+ed|spoke|says?|asks?|replies?|shouts?|screams?|whispers?)\b', cache_text))
action_density = action_words / max(1, len(words)) if words else 0
# Numbers in text
numbers = re.findall(r'\b\d+\b', cache_text)
# Create fingerprint string
fingerprint = f"chars:{len(characters)}_dial:{dialogue_density:.2f}_act:{action_density:.2f}_nums:{len(numbers)}_words:{len(words)}"
# Create signature dict
signature = {
'characters': characters[:20], # Top 20 characters
'dialogue_density': dialogue_density,
'dialogue_count': dialogue_count,
'dialogue_lengths': dialogue_lengths,
'character_frequencies': character_frequencies,
'speaker_sequence': speaker_sequence,
'paragraph_structure': paragraph_structure,
'total_words': len(words),
'action_density': action_density,
'numbers': numbers[:50], # First 50 numbers
'text_length': len(cache_text)
}
return fingerprint, signature
# Apply dynamic caching
extract_semantic_fingerprint = lru_cache(maxsize=get_cache_size("semantic_fingerprint") or 2000)(extract_semantic_fingerprint)
def extract_structural_signature(text):
"""Extract structural patterns from text - CACHED VERSION"""
# For cache efficiency with long texts
cache_text = text[:50000] if len(text) > 50000 else text
lines = cache_text.split('\n')
# Count different types of lines
para_count = len([l for l in lines if len(l.strip()) > 50])
short_lines = len([l for l in lines if 0 < len(l.strip()) < 20])
empty_lines = len([l for l in lines if not l.strip()])
# Dialogue patterns
dialogue_lines = len(re.findall(r'["\"\'""''γ€Žγ€γ€Œγ€].*?["\"\'""''γ€Žγ€γ€Œγ€]', cache_text))
# Create pattern string (first letter of each line type)
pattern = ''
for line in lines[:100]: # First 100 lines
if not line.strip():
pattern += 'E' # Empty
elif len(line.strip()) < 20:
pattern += 'S' # Short
elif re.search(r'["\"\'""''γ€Žγ€γ€Œγ€]', line):
pattern += 'D' # Dialogue
else:
pattern += 'P' # Paragraph
# Calculate average paragraph length
paragraphs = [l for l in lines if len(l.strip()) > 50]
avg_para_length = sum(len(p) for p in paragraphs) / max(1, len(paragraphs)) if paragraphs else 0
# Dialogue ratio
dialogue_ratio = dialogue_lines / max(1, len(lines))
signature = {
'pattern': pattern,
'paragraph_count': para_count,
'avg_paragraph_length': avg_para_length,
'dialogue_ratio': dialogue_ratio,
'short_lines': short_lines,
'empty_lines': empty_lines
}
return signature
def extract_content_fingerprint(text):
"""Extract key sentences that can identify duplicate content - CACHED VERSION"""
# For cache efficiency with very long texts, limit to first 100KB
cache_text = text[:100000] if len(text) > 100000 else text
lines = [line.strip() for line in cache_text.split('\n')
if len(line.strip()) > 50 and not is_dash_separator_line(line)]
if len(lines) < 5:
return ""
# Take first, middle, and last substantial sentences
fingerprint_lines = []
if len(lines) >= 3:
fingerprint_lines = [lines[0], lines[len(lines)//2], lines[-1]]
else:
fingerprint_lines = lines[:3]
return ' '.join(fingerprint_lines).lower()
# Configure cache size dynamically
extract_content_fingerprint = lru_cache(maxsize=get_cache_size("content_fingerprint"))(extract_content_fingerprint)
def roman_to_int(s):
"""Convert Roman numerals to integer"""
try:
values = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
result = 0
for i in range(len(s)):
if i + 1 < len(s) and values[s[i]] < values[s[i + 1]]:
result -= values[s[i]]
else:
result += values[s[i]]
return result
except:
return None
def extract_chapter_info(filename, text):
"""Extract chapter number and title from filename and content - ENHANCED VERSION"""
chapter_num = None
chapter_title = ""
# Enhanced filename patterns - try multiple approaches
filename_patterns = [
# Original patterns
(r"response_(\d+)_(.+?)\.html", 1, 2),
(r"response_chapter(\d+)\.html", 1, None),
(r"chapter[\s_-]*(\d+)", 1, None),
# New patterns to catch more cases
(r"response_(\d{3,4})_", 1, None), # Catches response_003_
(r"response_chapter(\d{4})\.html", 1, None), # Catches response_chapter0002
(r"(\d{3,4})[_\.]", 1, None), # General 3-4 digit pattern
(r"No(\d+)Chapter", 1, None),
(r"ch[\s_-]*(\d+)", 1, None),
(r"_(\d+)_", 1, None),
(r"第(\d+)[η« θ―ε›ž]", 1, None), # Chinese chapter markers
(r"제(\d+)[μž₯ν™”νšŒ]", 1, None), # Korean chapter markers
]
# Try each pattern
for pattern, num_group, title_group in filename_patterns:
m = re.search(pattern, filename, re.IGNORECASE)
if m:
try:
# Extract chapter number, removing leading zeros
chapter_num = int(m.group(num_group).lstrip('0') or '0')
if title_group and len(m.groups()) >= title_group:
chapter_title = m.group(title_group)
break
except (ValueError, IndexError):
continue
# If still no chapter number, try content-based extraction
if chapter_num is None and text:
content_patterns = [
r'Chapter\s+(\d+)',
r'第\s*(\d+)\s*章',
r'제\s*(\d+)\s*μž₯',
r'Chapter\s+([IVXLCDM]+)', # Roman numerals
r'\bCh\.?\s*(\d+)',
r'Episode\s+(\d+)',
r'Part\s+(\d+)',
]
for pattern in content_patterns:
m = re.search(pattern, text[:1000], re.IGNORECASE)
if m:
if m.group(1).isdigit():
chapter_num = int(m.group(1))
else:
# Try to convert Roman numerals
num = roman_to_int(m.group(1))
if num is not None:
chapter_num = num
if chapter_num is not None:
break
return chapter_num, chapter_title
def normalize_chapter_numbers(results):
"""Normalize chapter numbers to handle different formats"""
for result in results:
# If we have a chapter number, ensure it's normalized
if result.get('chapter_num') is not None:
# This helps match chapter 2 with 002, etc.
result['normalized_chapter_num'] = int(result['chapter_num'])
def fuzzy_match_chapter_numbers(text1, text2, num1, num2):
"""Check if chapter numbers might be the same despite OCR errors"""
if num1 == num2:
return True
# Check if numbers are close (OCR might misread)
if abs(num1 - num2) <= 1:
# Look for chapter declarations in text
pattern = r'Chapter\s*(\d+|[IVXLCDM]+)'
matches1 = re.findall(pattern, text1[:500], re.IGNORECASE)
matches2 = re.findall(pattern, text2[:500], re.IGNORECASE)
if matches1 and matches2:
# Try to normalize roman numerals
def roman_to_int(s):
try:
values = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
result = 0
for i in range(len(s)):
if i + 1 < len(s) and values[s[i]] < values[s[i + 1]]:
result -= values[s[i]]
else:
result += values[s[i]]
return result
except:
return None
for m1 in matches1:
for m2 in matches2:
if m1.isdigit() and m2.isdigit():
if abs(int(m1) - int(m2)) <= 1:
return True
elif not m1.isdigit() and not m2.isdigit():
r1 = roman_to_int(m1.upper())
r2 = roman_to_int(m2.upper())
if r1 and r2 and abs(r1 - r2) <= 1:
return True
return False
def detect_split_chapters(results):
"""Detect chapters that might have been split into multiple files
Now with better detection to avoid false positives from intentional author formatting
"""
split_candidates = []
# Common scene break patterns that authors use intentionally
scene_break_patterns = [
r'[\*\s]{3,}', # *** or * * *
r'[─━-—\-]{3,}', # Various dashes/lines
r'[_]{3,}', # ___
r'[~~]{3,}', # ~~~
r'[=]{3,}', # ===
r'[\#]{3,}', # ###
r'[\.]{3,}', # ...
r'(?:Chapter|Scene|Part)\s+Break', # Explicit break text
r'(?:Meanwhile|Later|Earlier)', # Time transition words
r'\d+\s*(?:hours?|days?|weeks?|months?|years?)\s+(?:later|earlier|ago)', # Time skips
]
for i, result in enumerate(results):
text = result.get('raw_text', '')
filename = result.get('filename', '')
# Skip if empty
if not text.strip():
continue
# Check for continuation indicators from AI
artifacts = detect_translation_artifacts(text)
has_continuation = any(a['type'] in ['chapter_continuation', 'split_indicators']
for a in artifacts)
# Check file naming patterns that suggest systematic splits
is_systematic_split = False
split_patterns = [
r'chunk[\-_]?\d+', # chunk1, chunk_2
r'part[\-_]?\d+[\-_]?\d+', # part1_2 (part 1 of chapter 2)
r'response_\d+_\d+', # response_42_3
r'_\d+of\d+', # _1of3
r'_split\d+', # _split1
r'_continuation', # _continuation
]
for pattern in split_patterns:
if re.search(pattern, filename, re.IGNORECASE):
is_systematic_split = True
break
# Check if file is unusually short
is_short = len(text) < 2000
# Check for scene break indicators at start or end
text_start = text[:500].strip()
text_end = text[-500:].strip()
has_scene_break_start = False
has_scene_break_end = False
for pattern in scene_break_patterns:
if re.search(pattern, text_start[:100], re.IGNORECASE):
has_scene_break_start = True
if re.search(pattern, text_end[-100:], re.IGNORECASE):
has_scene_break_end = True
# Check if starts mid-sentence (but not after scene break)
starts_mid = False
if text.strip() and not has_scene_break_start:
first_line = text.strip().split('\n')[0].strip()
# Skip if line starts with dialogue quotes or chapter markers
if first_line and not re.match(r'^["γ€Œγ€Ž\(\[]', first_line):
# Check if starts with lowercase (excluding certain words that commonly start sections)
first_word = first_line.split()[0] if first_line.split() else ''
transition_words = ['meanwhile', 'however', 'suddenly', 'later', 'earlier',
'elsewhere', 'afterward', 'afterwards', 'then']
if first_word.lower() not in transition_words:
starts_mid = first_line[0].islower()
# Check if ends mid-sentence (but not with scene break)
ends_mid = False
if text.strip() and not has_scene_break_end:
last_line = text.strip().split('\n')[-1].strip()
if last_line:
# Check last character, ignoring quotes
last_char = last_line.rstrip('」』"\'').rstrip()
if last_char:
ends_mid = last_char[-1] not in '.!?γ€‚οΌοΌŸβ€¦'
# Determine if this is likely a real split vs intentional formatting
is_likely_real_split = False
if is_systematic_split:
# File naming strongly suggests a split
is_likely_real_split = True
elif has_continuation:
# AI detected continuation markers
is_likely_real_split = True
elif is_short and starts_mid and ends_mid and not (has_scene_break_start or has_scene_break_end):
# Short, starts and ends mid-sentence, no scene breaks
is_likely_real_split = True
elif is_short and ends_mid and not has_scene_break_end:
# Might be a split if it's short and ends abruptly
# Check if it ends with incomplete dialogue or mid-word
if text.strip():
# Check for incomplete quotes or mid-word breaks
if (text.count('"') % 2 != 0 or text.count('γ€Œ') != text.count('」') or
re.search(r'[a-zA-Z]-$', text.strip())): # Ends with hyphen (mid-word)
is_likely_real_split = True
if is_likely_real_split:
split_candidates.append({
'index': i,
'filename': filename,
'indicators': {
'has_continuation': has_continuation,
'is_systematic_split': is_systematic_split,
'is_short': is_short,
'starts_mid': starts_mid,
'ends_mid': ends_mid,
'has_scene_break_start': has_scene_break_start,
'has_scene_break_end': has_scene_break_end
}
})
return split_candidates
def create_minhash_index(results, config):
"""Create LSH index for fast similarity lookups"""
if not MINHASH_AVAILABLE:
return None, None
threshold = config.get_threshold('minhash_threshold')
lsh = MinHashLSH(threshold=threshold, num_perm=128)
minhashes = {}
total = len(results)
for idx, result in enumerate(results):
if idx % 50 == 0 and idx > 0:
print(f" Building MinHash index: {idx}/{total} files processed...")
text = result.get('normalized_text', '')
if not text:
continue
# Create MinHash
m = MinHash(num_perm=128)
for word in text.split():
m.update(word.encode('utf8'))
minhashes[result['filename']] = m
lsh.insert(result['filename'], m)
return lsh, minhashes
def _normalize_text_cached(cache_key):
"""Cached implementation of normalize_text"""
# This will be called with the actual text
return cache_key
def normalize_text(text):
"""Normalize text for comparison - CACHED VERSION"""
normalized = text.lower().strip()
# Remove chapter indicators
patterns = [
r'chapter\s*\d+\s*:?\s*', r'第\s*\d+\s*η« ', r'제\s*\d+\s*μž₯',
r'chapter\s+[ivxlcdm]+\s*:?\s*', r'\bch\.?\s*\d+\s*:?\s*',
r'^\s*\d+\s*\.?\s*', r'response_\d+_.*?\.html',
r'\d{4}-\d{2}-\d{2}', r'\d{2}:\d{2}:\d{2}', r'<[^>]+>'
]
for pattern in patterns:
normalized = re.sub(pattern, '', normalized, flags=re.IGNORECASE | re.MULTILINE)
# Normalize whitespace and punctuation
normalized = re.sub(r'\s+', ' ', normalized)
normalized = re.sub(r'[^\w\s]', '', normalized)
return normalized
# Configure cache size dynamically
normalize_text = lru_cache(maxsize=get_cache_size("normalize_text"))(normalize_text)
@lru_cache(maxsize=5000)
def _generate_content_hashes_cached(text_hash):
"""Cached helper for generate_content_hashes"""
# This is just a placeholder - actual implementation is in the main function
return text_hash
@lru_cache(maxsize=5000)
def generate_content_hashes(text):
"""Generate multiple hashes for better duplicate detection - CACHED VERSION"""
# For very long texts, use first 50KB for cache key
cache_key = _get_cache_key(text, 50000)
normalized = normalize_text(text)
# 1. Raw hash
raw_hash = hashlib.md5(text.encode('utf-8')).hexdigest()
# 2. Normalized hash
normalized_hash = hashlib.md5(normalized.encode('utf-8')).hexdigest()
# 3. Content fingerprint
fingerprint = extract_content_fingerprint(text)
fingerprint_hash = hashlib.md5(fingerprint.encode('utf-8')).hexdigest() if fingerprint else None
# 4. Word frequency hash
words = re.findall(r'\w+', normalized.lower())
word_freq = Counter(words)
significant_words = [(w, c) for w, c in word_freq.most_common(100)
if w not in COMMON_WORDS][:50]
word_sig = ' '.join([f"{w}:{c}" for w, c in significant_words])
word_hash = hashlib.md5(word_sig.encode('utf-8')).hexdigest() if word_sig else None
# 5. First chunk hash
first_chunk = normalized[:1000] if len(normalized) > 1000 else normalized
first_chunk_hash = hashlib.md5(first_chunk.encode('utf-8')).hexdigest()
# 6. Semantic fingerprint hash - FIXED
semantic_result = extract_semantic_fingerprint(text)
if semantic_result and isinstance(semantic_result, tuple) and len(semantic_result) >= 2:
semantic_str = semantic_result[0]
semantic_hash = hashlib.md5(semantic_str.encode('utf-8')).hexdigest()
else:
# Fallback if function returns unexpected value
semantic_hash = hashlib.md5(text[:1000].encode('utf-8')).hexdigest()
# 7. Structural signature hash
structural_sig = extract_structural_signature(text)
if structural_sig:
structural_str = json.dumps(structural_sig, sort_keys=True)
structural_hash = hashlib.md5(structural_str.encode('utf-8')).hexdigest()
else:
# Fallback
structural_hash = hashlib.md5(text[:500].encode('utf-8')).hexdigest()
return {
'raw': raw_hash,
'normalized': normalized_hash,
'fingerprint': fingerprint_hash,
'word_freq': word_hash,
'first_chunk': first_chunk_hash,
'semantic': semantic_hash,
'structural': structural_hash
}
@lru_cache(maxsize=20000)
def _calculate_similarity_ratio_cached(text1_hash, text2_hash):
"""Cached helper for similarity ratio"""
return (text1_hash, text2_hash)
@lru_cache(maxsize=20000)
def calculate_similarity_ratio(text1, text2):
"""Calculate similarity with optimizations for large texts - CACHED VERSION"""
# Ensure consistent ordering for cache
if text1 > text2:
text1, text2 = text2, text1
len_ratio = len(text1) / max(1, len(text2))
if len_ratio < 0.7 or len_ratio > 1.3:
return 0.0
if len(text1) > 10000:
sample_size = 3000
samples1 = [
text1[:sample_size],
text1[len(text1)//2 - sample_size//2:len(text1)//2 + sample_size//2],
text1[-sample_size:]
]
samples2 = [
text2[:sample_size],
text2[len(text2)//2 - sample_size//2:len(text2)//2 + sample_size//2],
text2[-sample_size:]
]
similarities = [SequenceMatcher(None, s1, s2).ratio() for s1, s2 in zip(samples1, samples2)]
return sum(similarities) / len(similarities)
else:
return SequenceMatcher(None, text1, text2).ratio()
# Configure cache size dynamically
calculate_similarity_ratio = lru_cache(maxsize=get_cache_size("similarity_ratio"))(calculate_similarity_ratio)
# This function should NOT be cached directly
def calculate_semantic_similarity(sig1, sig2):
"""Calculate similarity between two semantic signatures
This wrapper handles dict inputs and calls the cached implementation
"""
# Convert dicts to JSON strings
if isinstance(sig1, dict):
sig1_json = json.dumps(sig1, sort_keys=True)
else:
sig1_json = sig1
if isinstance(sig2, dict):
sig2_json = json.dumps(sig2, sort_keys=True)
else:
sig2_json = sig2
# Call the cached implementation with JSON strings
return _calculate_semantic_similarity_cached(sig1_json, sig2_json)
# This function IS cached because it only receives JSON strings
def _calculate_semantic_similarity_cached(sig1_json, sig2_json):
"""Cached implementation that works with JSON strings"""
sig1 = json.loads(sig1_json)
sig2 = json.loads(sig2_json)
# Character overlap
chars1 = set(sig1.get('characters', []))
chars2 = set(sig2.get('characters', []))
char_overlap = len(chars1 & chars2) / max(1, len(chars1 | chars2))
# Dialogue density similarity
dial_sim = 1 - abs(sig1.get('dialogue_density', 0) - sig2.get('dialogue_density', 0))
# Action density similarity
act_sim = 1 - abs(sig1.get('action_density', 0) - sig2.get('action_density', 0))
# Number overlap
nums1 = set(sig1.get('numbers', []))
nums2 = set(sig2.get('numbers', []))
num_overlap = len(nums1 & nums2) / max(1, len(nums1 | nums2)) if nums1 or nums2 else 1
# Length similarity
len_ratio = min(sig1.get('text_length', 1), sig2.get('text_length', 1)) / max(1, max(sig1.get('text_length', 1), sig2.get('text_length', 1)))
# Weighted average
return (char_overlap * 0.4 + dial_sim * 0.2 + act_sim * 0.2 + num_overlap * 0.1 + len_ratio * 0.1)
# Apply caching ONLY to the implementation function, NOT the wrapper
_calculate_semantic_similarity_cached = lru_cache(maxsize=get_cache_size("semantic_similarity") or 5000)(_calculate_semantic_similarity_cached)
# Make sure calculate_semantic_similarity is NOT cached
# If there's any line like this, REMOVE IT:
# calculate_semantic_similarity = lru_cache(...)(calculate_semantic_similarity)
def calculate_semantic_fingerprint_similarity(text1, text2):
"""Calculate similarity based on semantic structure rather than exact wording - CACHED VERSION"""
# For very long texts, truncate for cache efficiency
cache_text1 = text1[:100000] if len(text1) > 100000 else text1
cache_text2 = text2[:100000] if len(text2) > 100000 else text2
fingerprint1, sig1 = extract_semantic_fingerprint(cache_text1)
fingerprint2, sig2 = extract_semantic_fingerprint(cache_text2)
similarities = []
# Compare dialogue structure (very reliable indicator)
if sig1['dialogue_count'] > 0 and sig2['dialogue_count'] > 0:
dialogue_ratio = min(sig1['dialogue_count'], sig2['dialogue_count']) / max(sig1['dialogue_count'], sig2['dialogue_count'])
similarities.append(dialogue_ratio)
# Compare dialogue length patterns
if sig1['dialogue_lengths'] and sig2['dialogue_lengths']:
len_similarity = SequenceMatcher(None, sig1['dialogue_lengths'][:30], sig2['dialogue_lengths'][:30]).ratio()
similarities.append(len_similarity)
# Compare character lists (names should mostly match)
if sig1['characters'] and sig2['characters']:
char_set1 = set(sig1['characters'])
char_set2 = set(sig2['characters'])
char_overlap = len(char_set1 & char_set2) / max(len(char_set1), len(char_set2))
similarities.append(char_overlap)
# Compare character frequency patterns
freq_similarity = SequenceMatcher(None, sig1['character_frequencies'], sig2['character_frequencies']).ratio()
similarities.append(freq_similarity * 0.8) # Slightly less weight
# Compare numbers (very reliable - numbers rarely change)
if sig1['numbers'] and sig2['numbers']:
num_set1 = set(sig1['numbers'])
num_set2 = set(sig2['numbers'])
num_overlap = len(num_set1 & num_set2) / max(len(num_set1), len(num_set2))
similarities.append(num_overlap)
# Compare speaker sequences
if len(sig1['speaker_sequence']) >= 5 and len(sig2['speaker_sequence']) >= 5:
seq_similarity = SequenceMatcher(None, sig1['speaker_sequence'], sig2['speaker_sequence']).ratio()
similarities.append(seq_similarity)
# Compare paragraph structure
if len(sig1['paragraph_structure']) >= 10 and len(sig2['paragraph_structure']) >= 10:
# Allow for some variation in lengths (Β±20%)
para_similarities = []
for i in range(min(len(sig1['paragraph_structure']), len(sig2['paragraph_structure']))):
len1 = sig1['paragraph_structure'][i]
len2 = sig2['paragraph_structure'][i]
if len1 > 0 and len2 > 0:
ratio = min(len1, len2) / max(len1, len2)
para_similarities.append(1.0 if ratio > 0.8 else ratio)
if para_similarities:
similarities.append(sum(para_similarities) / len(para_similarities))
# Word count ratio (should be similar)
word_ratio = min(sig1['total_words'], sig2['total_words']) / max(sig1['total_words'], sig2['total_words'])
similarities.append(word_ratio * 0.5) # Less weight
# Calculate weighted average
if similarities:
return sum(similarities) / len(similarities)
else:
return 0.0
# Configure cache size dynamically
calculate_semantic_fingerprint_similarity = lru_cache(maxsize=get_cache_size("semantic_fingerprint"))(calculate_semantic_fingerprint_similarity)
# This function should NOT be cached directly - it's the wrapper
def calculate_structural_similarity(struct1, struct2):
"""Calculate similarity between two structural signatures
This wrapper handles dict inputs and calls the cached implementation
"""
# Convert dicts to JSON strings
if isinstance(struct1, dict):
struct1_json = json.dumps(struct1, sort_keys=True)
else:
struct1_json = struct1
if isinstance(struct2, dict):
struct2_json = json.dumps(struct2, sort_keys=True)
else:
struct2_json = struct2
# Call the cached implementation with JSON strings
return _calculate_structural_similarity_cached(struct1_json, struct2_json)
# This function IS cached because it only receives JSON strings
def _calculate_structural_similarity_cached(struct1_json, struct2_json):
"""Cached implementation that works with JSON strings"""
# Convert JSON strings back to dictionaries
struct1 = json.loads(struct1_json)
struct2 = json.loads(struct2_json)
# Pattern similarity
pattern_sim = SequenceMatcher(None, struct1.get('pattern', ''), struct2.get('pattern', '')).ratio()
# Paragraph count similarity
para_ratio = min(struct1.get('paragraph_count', 1), struct2.get('paragraph_count', 1)) / \
max(1, max(struct1.get('paragraph_count', 1), struct2.get('paragraph_count', 1)))
# Average paragraph length similarity
len_ratio = min(struct1.get('avg_paragraph_length', 1), struct2.get('avg_paragraph_length', 1)) / \
max(1, max(struct1.get('avg_paragraph_length', 1), struct2.get('avg_paragraph_length', 1)))
# Dialogue ratio similarity
dial_sim = 1 - abs(struct1.get('dialogue_ratio', 0) - struct2.get('dialogue_ratio', 0))
# Weighted average
return (pattern_sim * 0.5 + para_ratio * 0.2 + len_ratio * 0.15 + dial_sim * 0.15)
# Apply caching ONLY to the implementation function, NOT the wrapper
_calculate_structural_similarity_cached = lru_cache(maxsize=get_cache_size("structural_similarity") or 5000)(_calculate_structural_similarity_cached)
# Note: cache configurations are already applied earlier in the file
def extract_chapter_title(text):
"""Extract chapter title from text"""
patterns = [
r'Chapter\s+\d+\s*:\s*([^\n\r]+)',
r'Chapter\s+\d+\s+([^\n\r]+)',
r'第\s*\d+\s*章\s*[::]?\s*([^\n\r]+)',
r'제\s*\d+\s*μž₯\s*[::]?\s*([^\n\r]+)',
]
for pattern in patterns:
match = re.search(pattern, text[:500], re.IGNORECASE)
if match:
title = match.group(1).strip()
title = re.sub(r'\s+', ' ', title)
title = title.split('.')[0].split('The')[0].strip()
return title[:100] if len(title) > 100 else title
return None
def merge_duplicate_groups(duplicate_groups, filename1, filename2):
"""Intelligently merge duplicate groups when new connections are found
Note: When called from parallel processing, should be wrapped with a lock
"""
group1 = duplicate_groups.get(filename1)
group2 = duplicate_groups.get(filename2)
if group1 is None and group2 is None:
# Create new group
new_group = max(duplicate_groups.values(), default=-1) + 1
duplicate_groups[filename1] = new_group
duplicate_groups[filename2] = new_group
elif group1 is not None and group2 is None:
# Add to existing group
duplicate_groups[filename2] = group1
elif group1 is None and group2 is not None:
# Add to existing group
duplicate_groups[filename1] = group2
elif group1 != group2:
# Merge two groups
min_group = min(group1, group2)
max_group = max(group1, group2)
for filename, group in duplicate_groups.items():
if group == max_group:
duplicate_groups[filename] = min_group
def process_enhance_duplicate_batch(args):
"""Process a batch of enhanced duplicate detection - MUST BE AT MODULE LEVEL"""
batch_type, batch_data, worker_data = args
batch_results = []
# Import what we need
from difflib import SequenceMatcher
import hashlib
# Local caches for this worker
similarity_cache = {}
preview_cache = {}
if batch_type == 'chapter_comparison':
# Process chapter number group comparisons
comparisons = batch_data
text_data = worker_data['text_data']
threshold = worker_data['similarity_threshold']
for idx1, idx2, file1, file2, chapter_num in comparisons:
# Get text data
data1 = text_data[idx1]
data2 = text_data[idx2]
# Create cache key (handle None hashes)
if data1['hash'] is None or data2['hash'] is None:
continue # Skip if either file is empty
cache_key = (min(data1['hash'], data2['hash']), max(data1['hash'], data2['hash']))
if cache_key in similarity_cache:
similarity = similarity_cache[cache_key]
else:
# Check if hashes are identical
if data1['hash'] == data2['hash']:
similarity = 1.0
else:
# Calculate similarity
similarity = calculate_similarity_ratio(data1['text'], data2['text'])
similarity_cache[cache_key] = similarity
if similarity >= threshold:
batch_results.append({
'type': 'chapter_duplicate',
'file1': file1,
'file2': file2,
'chapter': chapter_num,
'similarity': similarity,
'preview1': data1['text'][:100],
'preview2': data2['text'][:100]
})
elif batch_type == 'preview_comparison':
# Process preview-based comparisons
comparisons = batch_data
text_data = worker_data['text_data']
preview_data = worker_data['preview_data']
threshold = worker_data['similarity_threshold']
preview_threshold = worker_data['preview_threshold']
for idx1, idx2, file1, file2 in comparisons:
# First check preview similarity
preview1 = preview_data[idx1]
preview2 = preview_data[idx2]
# Normalize previews (first 50 words)
norm_preview1 = ' '.join(preview1['text'].split()[:50])
norm_preview2 = ' '.join(preview2['text'].split()[:50])
# Check preview similarity (handle None hashes)
if preview1['hash'] is None or preview2['hash'] is None:
continue # Skip if either preview is empty
preview_cache_key = (min(preview1['hash'], preview2['hash']),
max(preview1['hash'], preview2['hash']))
if preview_cache_key in preview_cache:
preview_sim = preview_cache[preview_cache_key]
else:
preview_sim = calculate_similarity_ratio(norm_preview1[:500], norm_preview2[:500])
preview_cache[preview_cache_key] = preview_sim
# If previews are similar enough, check full text
if preview_sim >= preview_threshold:
# Get full text data
data1 = text_data[idx1]
data2 = text_data[idx2]
# Check full text similarity (handle None hashes)
if data1['hash'] is None or data2['hash'] is None:
continue # Skip if either file is empty
cache_key = (min(data1['hash'], data2['hash']), max(data1['hash'], data2['hash']))
if cache_key in similarity_cache:
similarity = similarity_cache[cache_key]
else:
if data1['hash'] == data2['hash']:
similarity = 1.0
else:
similarity = calculate_similarity_ratio(data1['text'], data2['text'])
similarity_cache[cache_key] = similarity
if similarity >= threshold:
batch_results.append({
'type': 'misnamed_duplicate',
'file1': file1,
'file2': file2,
'chapter': f"misnamed_{data1.get('chapter_num', '?')}_vs_{data2.get('chapter_num', '?')}",
'similarity': similarity,
'preview_similarity': preview_sim
})
return batch_results
def enhance_duplicate_detection(results, duplicate_groups, duplicate_confidence, config, log, should_stop=None):
"""Additional duplicate detection - PROCESSPOOLEXECUTOR VERSION"""
log("πŸ” Enhanced duplicate detection (different naming formats)...")
log("⚑ PROCESSPOOLEXECUTOR ENABLED - MAXIMUM PERFORMANCE!")
# Determine number of workers
cpu_count = multiprocessing.cpu_count()
max_workers_config = 0
try:
config_path = os.path.join(os.path.dirname(__file__), 'config.json')
if os.path.exists(config_path):
with open(config_path, 'r', encoding='utf-8') as f:
full_config = json.load(f)
# Check multiple possible config locations
qa_config = full_config.get('qa_scanner_config', {})
ai_hunter_config = full_config.get('ai_hunter_config', {})
# Priority: qa_scanner_config > ai_hunter_config
max_workers_config = qa_config.get('max_workers',
ai_hunter_config.get('ai_hunter_max_workers', 1))
except:
max_workers_config = 0
if max_workers_config > 0:
max_workers = min(max_workers_config, cpu_count)
log(f" πŸ–₯️ Using {max_workers} parallel processes (configured limit)")
else:
max_workers = cpu_count
log(f" πŸš€ Using ALL {max_workers} CPU cores for enhanced detection")
if cpu_count > 8:
log(f" πŸ’‘ Tip: You can limit CPU cores in QA scanner settings")
# Pre-compute all data
log(" πŸ“Š Pre-computing text and preview data...")
text_data = {}
preview_data = {}
for i, result in enumerate(results):
# Text data (first 5000 chars)
text = result.get('raw_text', '')[:5000]
text_data[i] = {
'text': text,
'hash': hashlib.md5(text.encode()).hexdigest() if text else None,
'length': len(text),
'chapter_num': result.get('chapter_num')
}
# Preview data (first 1000 chars)
preview = result.get('raw_text', '')[:1000].strip()
preview_data[i] = {
'text': preview,
'hash': hashlib.md5(preview.encode()).hexdigest() if preview else None
}
# First, normalize all chapter numbers
normalize_chapter_numbers(results)
# PART 1: Group by normalized chapter number
log(" πŸ“š Checking files with same chapter numbers...")
chapter_groups = {}
for i, result in enumerate(results):
if result.get('normalized_chapter_num') is not None:
num = result['normalized_chapter_num']
if num not in chapter_groups:
chapter_groups[num] = []
chapter_groups[num].append((i, result))
# Create comparison tasks for chapter groups
chapter_comparisons = []
for chapter_num, group in chapter_groups.items():
if len(group) > 1:
log(f" └─ Found {len(group)} files for chapter {chapter_num}")
# Create all pair comparisons for this group
for i in range(len(group)):
for j in range(i + 1, len(group)):
idx1, result1 = group[i]
idx2, result2 = group[j]
chapter_comparisons.append((
idx1, idx2,
result1['filename'], result2['filename'],
chapter_num
))
# Process chapter comparisons in batches
duplicates_found = []
if chapter_comparisons:
log(f" πŸ“‹ Processing {len(chapter_comparisons)} chapter comparisons...")
# Prepare worker data
worker_data = {
'text_data': text_data,
'similarity_threshold': config.get_threshold('similarity')
}
# Create batches
batch_size = max(100, len(chapter_comparisons) // max_workers)
batches = []
for i in range(0, len(chapter_comparisons), batch_size):
batch = chapter_comparisons[i:i + batch_size]
batches.append(('chapter_comparison', batch, worker_data))
# Process with ProcessPoolExecutor
with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor:
futures = []
for batch_args in batches:
if should_stop and should_stop():
log("β›” Enhanced detection interrupted by user.")
executor.shutdown(wait=True)
return duplicates_found
future = executor.submit(process_enhance_duplicate_batch, batch_args)
futures.append(future)
# Collect results
for future in concurrent.futures.as_completed(futures):
batch_results = future.result()
# Process results
for result in batch_results:
if result['type'] == 'chapter_duplicate':
# Update duplicate groups
with merge_lock:
merge_duplicate_groups(duplicate_groups,
result['file1'],
result['file2'])
pair = tuple(sorted([result['file1'], result['file2']]))
duplicate_confidence[pair] = max(
duplicate_confidence.get(pair, 0),
result['similarity']
)
duplicates_found.append(result)
log(f" βœ“ DUPLICATE: {result['file1']} β‰ˆ {result['file2']} "
f"({int(result['similarity']*100)}%)")
log(f" Preview 1: {result['preview1']}...")
log(f" Preview 2: {result['preview2']}...")
# PART 2: Check for misnamed files
log("πŸ” Checking for misnamed chapters (content vs filename mismatch)...")
# Create preview-based comparison tasks
preview_comparisons = []
total_files = len(results)
# We need to check all pairs, but we can filter some obvious non-matches
for i in range(total_files):
if i % 100 == 0 and i > 0:
log(f" πŸ“Š Creating preview comparisons: {i}/{total_files} files...")
for j in range(i + 1, total_files):
# Skip if:
# 1. Already in same duplicate group
if (results[i]['filename'] in duplicate_groups and
results[j]['filename'] in duplicate_groups and
duplicate_groups[results[i]['filename']] == duplicate_groups[results[j]['filename']]):
continue
# 2. Both have same chapter number (already checked above)
if (results[i].get('normalized_chapter_num') is not None and
results[j].get('normalized_chapter_num') is not None and
results[i]['normalized_chapter_num'] == results[j]['normalized_chapter_num']):
continue
# 3. Text lengths are very different (handle None/empty texts)
len1 = text_data[i]['length']
len2 = text_data[j]['length']
if len1 == 0 or len2 == 0:
continue # Skip empty files
len_ratio = min(len1, len2) / max(len1, len2)
if len_ratio < 0.7: # Skip if lengths differ by more than 30%
continue
preview_comparisons.append((i, j, results[i]['filename'], results[j]['filename']))
if preview_comparisons:
log(f" πŸ“‹ Processing {len(preview_comparisons)} preview comparisons...")
# Prepare worker data
worker_data = {
'text_data': text_data,
'preview_data': preview_data,
'similarity_threshold': config.get_threshold('similarity'),
'preview_threshold': 0.9 # High threshold for preview matching
}
# Create batches
batch_size = max(500, len(preview_comparisons) // (max_workers * 10))
batches = []
for i in range(0, len(preview_comparisons), batch_size):
batch = preview_comparisons[i:i + batch_size]
batches.append(('preview_comparison', batch, worker_data))
# Process with ProcessPoolExecutor
with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor:
futures = []
for batch_args in batches:
if should_stop and should_stop():
log("β›” Enhanced detection interrupted by user.")
executor.shutdown(wait=True)
return duplicates_found
future = executor.submit(process_enhance_duplicate_batch, batch_args)
futures.append(future)
# Collect results with progress
completed = 0
for future in concurrent.futures.as_completed(futures):
completed += 1
if completed % 10 == 0:
log(f" πŸ“Š Preview comparison progress: {completed}/{len(futures)} batches")
batch_results = future.result()
# Process results
for result in batch_results:
if result['type'] == 'misnamed_duplicate':
# Update duplicate groups
with merge_lock:
merge_duplicate_groups(duplicate_groups,
result['file1'],
result['file2'])
pair = tuple(sorted([result['file1'], result['file2']]))
duplicate_confidence[pair] = max(
duplicate_confidence.get(pair, 0),
result['similarity']
)
duplicates_found.append(result)
log(f" βœ“ Found misnamed duplicate: {result['file1']} β‰ˆ {result['file2']} "
f"({int(result['similarity']*100)}%)")
log(f"βœ… Enhanced detection complete! Found {len(duplicates_found)} duplicates")
return duplicates_found
def detect_duplicates(results, log, should_stop, config):
"""Detect duplicates using multiple strategies with enhanced methods - PERFORMANCE OPTIMIZED"""
duplicate_groups = {}
near_duplicate_groups = {}
duplicate_confidence = defaultdict(float)
total_files = len(results)
dup_start_time = time.time() # Track timing for progress estimates
# Initialize comparisons_done at the function level
comparisons_done = 0
# Create local cached functions for this detection run
@lru_cache(maxsize=10000)
def compare_texts_cached(text1_hash, text2_hash, max_length=2000):
"""Cached text comparison"""
# Find texts by hash
text1, text2 = None, None
for result in results:
text = result.get('raw_text', '')[:max_length]
text_hash = hashlib.md5(text.encode()).hexdigest()
if text_hash == text1_hash:
text1 = text
if text_hash == text2_hash:
text2 = text
if text1 and text2:
return calculate_similarity_ratio(text1, text2)
return 0.0
# Pre-compute text hashes for caching
text_hashes = {}
for idx, result in enumerate(results):
text = result.get('raw_text', '')
text_hashes[idx] = {
'hash_2k': hashlib.md5(text[:2000].encode()).hexdigest() if len(text) >= 2000 else None,
'hash_5k': hashlib.md5(text[:5000].encode()).hexdigest() if len(text) >= 5000 else None,
'full_text': text
}
# Extract additional signatures for all results
log("πŸ” Extracting semantic and structural signatures...")
for idx, result in enumerate(results):
if should_stop():
log("β›” Signature extraction interrupted by user.")
return duplicate_groups, near_duplicate_groups, duplicate_confidence
if idx % 10 == 0:
progress = int((idx / total_files) * 100)
log(f" πŸ“Š Progress: {idx}/{total_files} files ({progress}%)")
text = result.get('raw_text', '')
_, semantic_sig = extract_semantic_fingerprint(text)
structural_sig = extract_structural_signature(text)
result['semantic_sig'] = semantic_sig
result['structural_sig'] = structural_sig
result['normalized_text'] = normalize_text(text)
# Create MinHash index if available
lsh, minhashes = None, None
if MINHASH_AVAILABLE and len(results) > 50: # Use MinHash for larger datasets
log("πŸ” Building MinHash index for fast similarity detection...")
lsh, minhashes = create_minhash_index(results, config)
# 1. Hash-based detection (exact and near-exact matches)
content_hashes = defaultdict(lambda: defaultdict(list))
for idx, result in enumerate(results):
hashes = result['hashes']
file_info = {
'filename': result['filename'],
'idx': idx,
'chapter_num': result['chapter_num'],
'result': result
}
for hash_type, hash_value in hashes.items():
if hash_value:
content_hashes[hash_type][hash_value].append(file_info)
# Multiple levels of duplicate detection
duplicate_detection_levels = [
("exact content", 'raw', 1.0),
("normalized content", 'normalized', 0.95),
("semantic fingerprint", 'semantic', 0.85),
("structural pattern", 'structural', 0.80),
("first 1000 characters", 'first_chunk', 0.90),
("content fingerprints", 'fingerprint', 0.85),
("word frequency patterns", 'word_freq', 0.75)
]
for level_name, hash_type, confidence in duplicate_detection_levels:
log(f"πŸ” Checking {level_name}...")
for hash_value, files in content_hashes[hash_type].items():
if len(files) > 1:
for i in range(len(files)):
for j in range(i + 1, len(files)):
merge_duplicate_groups(duplicate_groups,
files[i]['filename'],
files[j]['filename'])
duplicate_confidence[(files[i]['filename'], files[j]['filename'])] = max(
duplicate_confidence[(files[i]['filename'], files[j]['filename'])],
confidence
)
log(f" └─ Found {len(files)} files with identical {level_name}")
# 2. Enhanced duplicate detection for different naming formats
log("πŸ” Checking for same chapters with different naming...")
enhance_duplicate_detection(results, duplicate_groups, duplicate_confidence, config, log, should_stop)
# 3. MinHash-based detection (if available)
if lsh:
log("πŸ” Performing MinHash similarity detection...")
for result in results:
if result['filename'] in minhashes:
candidates = lsh.query(minhashes[result['filename']])
for candidate in candidates:
if candidate != result['filename']:
# Calculate exact Jaccard similarity
jaccard = minhashes[result['filename']].jaccard(minhashes[candidate])
if jaccard >= config.get_threshold('minhash_threshold'):
merge_duplicate_groups(duplicate_groups, result['filename'], candidate)
duplicate_confidence[(result['filename'], candidate)] = jaccard
# 4. Semantic similarity check - OPTIMIZED
log("πŸ” Checking semantic similarity...")
semantic_threshold = config.get_threshold('semantic')
# Use MinHash candidates for semantic checking if available
if lsh and config.mode != 'ai-hunter':
log("πŸš€ Using MinHash optimization for faster semantic checking...")
checked_count = 0
# For non-AI Hunter modes, use MinHash to limit comparisons
for result in results:
if should_stop():
log("β›” Semantic check interrupted by user.")
break
checked_count += 1
if checked_count % 10 == 0:
log(f" πŸ“Š MinHash semantic check: {checked_count}/{len(results)} files processed...")
if result['filename'] in minhashes:
candidates = lsh.query(minhashes[result['filename']])
for candidate_filename in candidates:
if candidate_filename == result['filename']:
continue
# Find the candidate result
candidate_result = next((r for r in results if r['filename'] == candidate_filename), None)
if not candidate_result:
continue
# Skip if already in same group
if (result['filename'] in duplicate_groups and
candidate_filename in duplicate_groups and
duplicate_groups[result['filename']] == duplicate_groups[candidate_filename]):
continue
sem_sim = calculate_semantic_similarity(result['semantic_sig'],
candidate_result['semantic_sig'])
if sem_sim >= semantic_threshold:
struct_sim = calculate_structural_similarity(result['structural_sig'],
candidate_result['structural_sig'])
if struct_sim >= config.get_threshold('structural'):
merge_duplicate_groups(duplicate_groups,
result['filename'],
candidate_filename)
confidence = (sem_sim + struct_sim) / 2
duplicate_confidence[(result['filename'], candidate_filename)] = confidence
log(f" └─ Semantic match: {result['filename']} β‰ˆ {candidate_filename} "
f"(sem: {int(sem_sim*100)}%, struct: {int(struct_sim*100)}%)")
# AI Hunter mode or fallback: check all pairs
# Skip AI Hunter in quick scan mode
if config.mode == 'quick-scan':
log(" ⚑ Skipping AI Hunter checks for quick scan mode")
else:
# AI Hunter mode or fallback: check all pairs
if config.mode == 'ai-hunter' or not lsh:
if config.mode == 'ai-hunter':
log("πŸ€– AI Hunter mode: Enhanced semantic and structural checking active")
log(" ⚠️ This will check ALL file pairs - may take several minutes for large datasets")
total_comparisons = (len(results) * (len(results) - 1)) // 2
log(f" [DEBUG] Total comparisons to perform: {total_comparisons:,}")
ai_start_time = time.time() # Use local timer for AI Hunter
# Initialize last_progress HERE for AI Hunter mode
last_progress = 0 # ADD THIS LINE
# Use parallel processing for AI Hunter
comparisons_done = parallel_ai_hunter_check(results, duplicate_groups, duplicate_confidence,
config, log, should_stop)
# Log AI Hunter completion stats
ai_time = time.time() - ai_start_time
log(f" [DEBUG] AI Hunter took {ai_time:.2f} seconds")
if comparisons_done and comparisons_done > 0:
log(f" [DEBUG] Comparisons/second: {int(comparisons_done/max(ai_time, 1)):,}")
# AI HUNTER IS DONE - DO NOT CONTINUE TO SEQUENTIAL CODE
else:
# Keep the original sequential code for when there's no LSH and not in AI Hunter mode
log("⚠️ No MinHash index available - checking all pairs (slower)")
total_comparisons = (len(results) * (len(results) - 1)) // 2
comparisons_done = 0
last_progress = 0 # This is already here for sequential mode
ai_start_time = time.time() # Use local timer
# MOVE ALL THE SEQUENTIAL CODE HERE - INDENTED UNDER THIS ELSE BLOCK
# Create cached AI Hunter comparison
@lru_cache(maxsize=10000)
def ai_hunter_check_cached(idx1, idx2):
"""Cached AI Hunter check"""
sem_sim = calculate_semantic_similarity(results[idx1]['semantic_sig'],
results[idx2]['semantic_sig'])
struct_sim = calculate_structural_similarity(results[idx1]['structural_sig'],
results[idx2]['structural_sig'])
# Quick text check
hash1 = text_hashes[idx1]['hash_2k']
hash2 = text_hashes[idx2]['hash_2k']
if hash1 and hash2:
if hash1 > hash2:
hash1, hash2 = hash2, hash1
text_sim = compare_texts_cached(hash1, hash2, 2000)
else:
text_sim = 0.0
return sem_sim, struct_sim, text_sim
# Check EVERY pair of files
for i in range(len(results)):
if should_stop():
log("β›” Semantic check interrupted by user.")
break
for j in range(i + 1, len(results)):
comparisons_done += 1
# Show progress every 5%
progress = int((comparisons_done / total_comparisons) * 100)
if progress >= last_progress + 5:
elapsed = time.time() - ai_start_time
if elapsed > 0 and comparisons_done > 0:
rate = comparisons_done / elapsed
remaining = (total_comparisons - comparisons_done) / rate
log(f" πŸ“Š AI Hunter progress: {comparisons_done}/{total_comparisons} ({progress}%) - ~{int(remaining)}s remaining")
else:
log(f" πŸ“Š AI Hunter progress: {comparisons_done}/{total_comparisons} ({progress}%)")
last_progress = progress
# Skip if already in same group
if (results[i]['filename'] in duplicate_groups and
results[j]['filename'] in duplicate_groups and
duplicate_groups[results[i]['filename']] == duplicate_groups[results[j]['filename']]):
continue
# Get cached comparison results
sem_sim, struct_sim, text_sim = ai_hunter_check_cached(i, j)
# For AI Hunter, use a combination approach
if config.mode == 'ai-hunter':
# High semantic + high structural = likely same content
if sem_sim >= semantic_threshold and struct_sim >= config.get_threshold('structural'):
# If text similarity is low but semantic/structural is high, it's likely a retranslation
if text_sim < 0.6: # Different enough text
log(f" 🎯 AI Hunter: Found potential retranslation")
log(f" Files: {results[i]['filename']} β‰ˆ {results[j]['filename']}")
log(f" Text similarity: {int(text_sim*100)}% (low)")
log(f" Semantic similarity: {int(sem_sim*100)}% (high)")
log(f" Structural similarity: {int(struct_sim*100)}% (high)")
merge_duplicate_groups(duplicate_groups,
results[i]['filename'],
results[j]['filename'])
confidence = (sem_sim + struct_sim) / 2
duplicate_confidence[(results[i]['filename'], results[j]['filename'])] = confidence
log(f" └─ πŸ€– Flagged as AI retranslation variant (confidence: {int(confidence*100)}%)")
else:
# Normal semantic checking
if sem_sim >= semantic_threshold and struct_sim >= config.get_threshold('structural'):
merge_duplicate_groups(duplicate_groups,
results[i]['filename'],
results[j]['filename'])
confidence = (sem_sim + struct_sim) / 2
duplicate_confidence[(results[i]['filename'], results[j]['filename'])] = confidence
log(f" └─ Semantic match: {results[i]['filename']} β‰ˆ {results[j]['filename']} "
f"(sem: {int(sem_sim*100)}%, struct: {int(struct_sim*100)}%)")
# Clear local cache
ai_hunter_check_cached.cache_clear()
# THIS CODE SHOULD BE OUTSIDE ALL THE IF/ELSE BLOCKS - IT RUNS AFTER DUPLICATE DETECTION
# 5. Deep similarity check (content-based) - Now uses cached function
if config.mode != 'quick-scan':
perform_deep_similarity_check(results, duplicate_groups, duplicate_confidence,
config.get_threshold('similarity'), log, should_stop)
else:
log(" ⚑ Skipping deep similarity check for quick scan mode")
# 6. Consecutive chapter check with fuzzy matching - SKIP IN QUICK SCAN
if config.mode != 'quick-scan':
check_consecutive_chapters(results, duplicate_groups, duplicate_confidence, config, log, should_stop)
# 7. Split chapter detection
split_candidates = detect_split_chapters(results)
if split_candidates:
log(f"πŸ” Found {len(split_candidates)} potential split chapters")
check_split_chapters(split_candidates, results, duplicate_groups, duplicate_confidence, log, should_stop)
# 8. Specific pattern detection
check_specific_patterns(results, duplicate_groups, duplicate_confidence, log, should_stop)
# Clear local caches
compare_texts_cached.cache_clear()
# Summary of findings
unique_groups = len(set(duplicate_groups.values())) if duplicate_groups else 0
files_with_duplicates = len(duplicate_groups)
if files_with_duplicates > 0:
log(f"\nπŸ“Š Duplicate Detection Summary:")
log(f" Found {files_with_duplicates} files with duplicates")
log(f" Grouped into {unique_groups} duplicate groups")
else:
log(f"\nβœ… No duplicates found among {len(results)} files")
return duplicate_groups, near_duplicate_groups, duplicate_confidence
def process_deep_similarity_batch(args):
"""Process a batch of deep similarity comparisons with enhanced error handling"""
try:
batch, data = args
batch_results = []
text_samples = data['text_samples']
threshold = data['threshold']
# Import what we need inside the worker with error handling
try:
from difflib import SequenceMatcher
except ImportError as e:
return [{'error': f'Import error in worker: {e}'}]
# Local cache for this worker process
similarity_cache = {}
semantic_cache = {}
for i, j, filename_i, filename_j in batch:
try:
# Get text samples
sample_i = text_samples.get(i)
sample_j = text_samples.get(j)
if not sample_i or not sample_j:
continue
# Use hashes for similarity check with caching
hash1 = sample_i['hash_5k']
hash2 = sample_j['hash_5k']
# Create cache key (ensure consistent ordering)
cache_key = (min(hash1, hash2), max(hash1, hash2))
# Check cache first
if cache_key in similarity_cache:
similarity = similarity_cache[cache_key]
else:
# Check if hashes are identical
if hash1 == hash2:
similarity = 1.0
else:
# Calculate text similarity
text1 = sample_i['sample_5k']
text2 = sample_j['sample_5k']
similarity = calculate_similarity_ratio(text1, text2)
# Cache the result
similarity_cache[cache_key] = similarity
if similarity >= threshold:
batch_results.append({
'filename1': filename_i,
'filename2': filename_j,
'similarity': similarity,
'is_variant': False,
'semantic_sim': None
})
# Check for translation variants if similarity is moderate
elif 0.5 <= similarity < threshold:
# Check semantic similarity with caching
hash1_10k = sample_i['hash_10k']
hash2_10k = sample_j['hash_10k']
# Create semantic cache key
sem_cache_key = (min(hash1_10k, hash2_10k), max(hash1_10k, hash2_10k))
if sem_cache_key in semantic_cache:
semantic_sim = semantic_cache[sem_cache_key]
else:
if hash1_10k == hash2_10k:
semantic_sim = 1.0
else:
text1_10k = sample_i['sample_10k']
text2_10k = sample_j['sample_10k']
semantic_sim = calculate_semantic_fingerprint_similarity(text1_10k, text2_10k)
# Cache the result
semantic_cache[sem_cache_key] = semantic_sim
if semantic_sim >= 0.75: # High semantic similarity threshold
combined_score = (similarity * 0.4 + semantic_sim * 0.6)
if combined_score >= threshold:
batch_results.append({
'filename1': filename_i,
'filename2': filename_j,
'similarity': combined_score,
'is_variant': True,
'semantic_sim': semantic_sim,
'base_sim': similarity
})
except Exception as e:
# Log individual comparison error but continue processing
import traceback
batch_results.append({
'error': f'Error comparing {filename_i} vs {filename_j}: {str(e)}\n{traceback.format_exc()[:500]}'
})
continue
return batch_results
except Exception as e:
# Return error information for debugging
import traceback
return [{'error': f'{type(e).__name__}: {str(e)}\nTraceback:\n{traceback.format_exc()}'}]
def perform_deep_similarity_check(results, duplicate_groups, duplicate_confidence,
threshold, log, should_stop):
"""Perform deep similarity analysis - PROCESSPOOLEXECUTOR VERSION with fallback"""
log(f"πŸ” Deep content similarity analysis (threshold: {int(threshold*100)}%)...")
# Pre-cache text samples for all results
text_samples = {}
for idx, result in enumerate(results):
text = result.get('raw_text', '')
if len(text) >= 500:
text_samples[idx] = {
'sample_5k': text[:5000],
'sample_10k': text[:10000],
'hash_5k': hashlib.md5(text[:5000].encode()).hexdigest(),
'hash_10k': hashlib.md5(text[:10000].encode()).hexdigest()
}
# Determine number of workers
cpu_count = multiprocessing.cpu_count()
max_workers_config = 0
try:
config_path = os.path.join(os.path.dirname(__file__), 'config.json')
if os.path.exists(config_path):
with open(config_path, 'r', encoding='utf-8') as f:
full_config = json.load(f)
# Check multiple possible config locations
qa_config = full_config.get('qa_scanner_config', {})
deep_check_config = full_config.get('deep_check_config', {})
ai_hunter_config = full_config.get('ai_hunter_config', {})
# Priority: deep_check_config > qa_scanner_config > ai_hunter_config
max_workers_config = deep_check_config.get('max_workers',
qa_config.get('max_workers',
ai_hunter_config.get('ai_hunter_max_workers', 1)))
except:
max_workers_config = 0
# Determine if we should use parallel processing
use_parallel = True
parallel_error = None
if max_workers_config == 1:
use_parallel = False
log(" πŸ“ Using sequential processing (configured for 1 worker)")
elif max_workers_config > 0:
max_workers = min(max_workers_config, cpu_count)
else:
max_workers = cpu_count
# Create comparison tasks with smart filtering
comparison_tasks = []
checked_pairs = set()
for i in range(len(results)):
for j in range(i + 1, len(results)):
# Skip if not in text_samples (too short)
if i not in text_samples or j not in text_samples:
continue
pair = tuple(sorted([results[i]['filename'], results[j]['filename']]))
if pair in checked_pairs:
continue
checked_pairs.add(pair)
# Skip if already in same group
if (results[i]['filename'] in duplicate_groups and
results[j]['filename'] in duplicate_groups and
duplicate_groups[results[i]['filename']] == duplicate_groups[results[j]['filename']]):
continue
comparison_tasks.append((i, j, results[i]['filename'], results[j]['filename']))
total_comparisons = len(comparison_tasks)
log(f" πŸ“‹ Created {total_comparisons:,} comparison tasks")
if total_comparisons == 0:
log(" βœ… No comparisons needed!")
return
# Try parallel processing first
if use_parallel:
log("⚑ PROCESSPOOLEXECUTOR ENABLED - MAXIMUM PERFORMANCE!")
if max_workers_config > 0:
log(f" πŸ–₯️ Using {max_workers} parallel processes (configured limit)")
else:
log(f" πŸš€ Using ALL {max_workers} CPU cores - MAXIMUM PERFORMANCE!")
if cpu_count > 8:
log(f" πŸ’‘ Tip: You can limit CPU cores in QA scanner settings")
# Progress tracking
comparisons_done = 0
last_progress = 0
start_time = time.time()
found_duplicates = []
# Prepare data for workers
worker_data = {
'text_samples': text_samples,
'threshold': threshold
}
# Optimal batch size for ProcessPoolExecutor
optimal_batch_size = max(1000, total_comparisons // (max_workers * 5))
optimal_batch_size = min(optimal_batch_size, 10000)
batches = []
for i in range(0, len(comparison_tasks), optimal_batch_size):
batch = comparison_tasks[i:i + optimal_batch_size]
batches.append(batch)
log(f" πŸ“¦ Split into {len(batches)} batches of ~{optimal_batch_size} comparisons each")
# Prepare batch arguments
batch_args = [(batch, worker_data) for batch in batches]
try:
# Process with ProcessPoolExecutor
with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor:
# Submit all batches
futures = []
for args in batch_args:
if should_stop():
log("β›” Deep similarity check interrupted by user.")
executor.shutdown(wait=True)
return
future = executor.submit(process_deep_similarity_batch, args)
futures.append(future)
# Process results as they complete
for completed_future in concurrent.futures.as_completed(futures):
if should_stop():
log("β›” Deep similarity check interrupted by user.")
executor.shutdown(wait=True)
return
try:
# NO TIMEOUT - let it run as long as needed
batch_results = completed_future.result()
# Check for worker errors in results
if batch_results and isinstance(batch_results, list):
# Check if first result contains an error
if batch_results and isinstance(batch_results[0], dict) and 'error' in batch_results[0]:
error_msg = batch_results[0]['error']
log(f" ⚠️ Worker error detected: {error_msg}")
raise Exception(f"Worker error: {error_msg}")
# Batch all updates
updates = []
for result in batch_results:
if 'error' not in result: # Skip error entries
updates.append((
result['filename1'],
result['filename2'],
result
))
# Apply all updates in one lock
if updates:
with merge_lock:
for file1, file2, result in updates:
pair = tuple(sorted([file1, file2]))
merge_duplicate_groups(duplicate_groups, file1, file2)
duplicate_confidence[pair] = max(
duplicate_confidence.get(pair, 0),
result['similarity']
)
# Store messages for logging
if result.get('is_variant', False):
msg = (f" └─ Translation variant detected: {file1} β‰ˆ {file2} "
f"(base: {int(result.get('base_sim', 0)*100)}%, "
f"semantic: {int(result['semantic_sim']*100)}%, "
f"combined: {int(result['similarity']*100)}%)")
else:
msg = (f" └─ Content similarity: {file1} β‰ˆ {file2} "
f"({int(result['similarity']*100)}%)")
found_duplicates.append(msg)
# Update progress
comparisons_done += optimal_batch_size
if comparisons_done > total_comparisons:
comparisons_done = total_comparisons
progress = int((comparisons_done / total_comparisons) * 100)
# Update every 10% for less overhead
if progress >= last_progress + 10 or progress == 100:
elapsed = time.time() - start_time
rate = comparisons_done / elapsed if elapsed > 0 else 0
remaining = (total_comparisons - comparisons_done) / rate if rate > 0 else 0
log(f" πŸ“Š Deep check progress: {comparisons_done:,}/{total_comparisons:,} "
f"({progress}%) - ~{int(remaining)}s remaining - "
f"Speed: {int(rate):,} comparisons/sec")
# Log some found duplicates
for dup_msg in found_duplicates[:5]:
log(dup_msg)
found_duplicates = found_duplicates[5:]
last_progress = progress
except Exception as e:
log(f" ⚠️ Error processing batch: {type(e).__name__}: {str(e)[:200]}")
import traceback
log(f" Debug trace: {traceback.format_exc()[:500]}")
parallel_error = f"{type(e).__name__}: {str(e)[:100]}"
use_parallel = False
executor.shutdown(wait=False)
break
# If we completed successfully
if use_parallel:
# Final summary
elapsed = time.time() - start_time
log(f"βœ… Deep similarity check complete! Processed {total_comparisons:,} comparisons in {elapsed:.1f}s")
log(f" ⚑ Speed: {int(total_comparisons/elapsed):,} comparisons/sec")
log(f" πŸš€ ProcessPoolExecutor: ENABLED")
# Log remaining duplicates
for dup_msg in found_duplicates[-10:]:
log(dup_msg)
return # Success - exit function
except Exception as e:
log(f" ⚠️ Parallel processing failed: {type(e).__name__}: {str(e)[:200]}")
parallel_error = f"{type(e).__name__}: {str(e)[:100]}"
use_parallel = False
# Fallback to sequential processing
if not use_parallel:
log(f"\n πŸ“ FALLBACK: Using sequential processing")
if parallel_error:
log(f" Reason: {parallel_error}")
log(f" This will be slower but more reliable")
# Reset progress tracking for sequential mode
comparisons_done = 0
last_progress = 0
start_time = time.time()
found_duplicates = []
# Import what we need for sequential processing
from difflib import SequenceMatcher
for idx, task in enumerate(comparison_tasks):
if should_stop():
log("β›” Deep similarity check interrupted by user.")
return
i, j, filename_i, filename_j = task
comparisons_done += 1
# Show progress every 5% or every 100 comparisons (whichever is less frequent)
progress = int((comparisons_done / total_comparisons) * 100)
if (comparisons_done % max(100, total_comparisons // 20) == 0 or
comparisons_done == total_comparisons):
if progress >= last_progress + 5 or progress == 100:
elapsed = time.time() - start_time
rate = comparisons_done / elapsed if elapsed > 0 else 0
remaining = (total_comparisons - comparisons_done) / rate if rate > 0 else 0
log(f" πŸ“Š Sequential progress: {comparisons_done:,}/{total_comparisons:,} "
f"({progress}%) - ~{int(remaining)}s remaining - "
f"Speed: {int(rate):,} comparisons/sec")
# Log found duplicates
for dup_msg in found_duplicates[:3]:
log(dup_msg)
found_duplicates = found_duplicates[3:]
last_progress = progress
# Get text samples
sample_i = text_samples.get(i)
sample_j = text_samples.get(j)
if not sample_i or not sample_j:
continue
# Calculate similarity
if sample_i['hash_5k'] == sample_j['hash_5k']:
similarity = 1.0
else:
text1 = sample_i['sample_5k']
text2 = sample_j['sample_5k']
similarity = calculate_similarity_ratio(text1, text2)
if similarity >= threshold:
merge_duplicate_groups(duplicate_groups, filename_i, filename_j)
pair = tuple(sorted([filename_i, filename_j]))
duplicate_confidence[pair] = max(
duplicate_confidence.get(pair, 0),
similarity
)
msg = f" └─ Content similarity: {filename_i} β‰ˆ {filename_j} ({int(similarity*100)}%)"
found_duplicates.append(msg)
elif 0.5 <= similarity < threshold:
# Check semantic similarity for translation variants
text1_10k = sample_i['sample_10k']
text2_10k = sample_j['sample_10k']
if sample_i['hash_10k'] == sample_j['hash_10k']:
semantic_sim = 1.0
else:
semantic_sim = calculate_semantic_fingerprint_similarity(text1_10k, text2_10k)
if semantic_sim >= 0.75:
combined_score = (similarity * 0.4 + semantic_sim * 0.6)
if combined_score >= threshold:
merge_duplicate_groups(duplicate_groups, filename_i, filename_j)
pair = tuple(sorted([filename_i, filename_j]))
duplicate_confidence[pair] = max(
duplicate_confidence.get(pair, 0),
combined_score
)
msg = (f" └─ Translation variant detected: {filename_i} β‰ˆ {filename_j} "
f"(base: {int(similarity*100)}%, semantic: {int(semantic_sim*100)}%, "
f"combined: {int(combined_score*100)}%)")
found_duplicates.append(msg)
# Final summary for sequential mode
elapsed = time.time() - start_time
log(f"βœ… Deep similarity check complete! Processed {total_comparisons:,} comparisons in {elapsed:.1f}s")
if elapsed > 0:
log(f" Speed: {int(total_comparisons/elapsed):,} comparisons/sec")
log(f" Mode: Sequential (fallback)")
# Log remaining duplicates
for dup_msg in found_duplicates[-10:]:
log(dup_msg)
def check_consecutive_chapters(results, duplicate_groups, duplicate_confidence, config, log, should_stop=None):
"""Check for consecutive chapters with same title using fuzzy matching"""
log("πŸ” Checking consecutive same-titled chapters...")
# Check for stop early
if should_stop and should_stop():
log("β›” Consecutive chapter check interrupted by user.")
return
# Extract chapter titles
for result in results:
result['chapter_title'] = extract_chapter_title(result['raw_text'])
# Sort by chapter number
chapter_sorted = [r for r in results if r['chapter_num'] is not None]
chapter_sorted.sort(key=lambda x: x['chapter_num'])
consecutive_threshold = config.get_threshold('consecutive_chapters')
for i in range(len(chapter_sorted) - 1):
if should_stop and should_stop():
log("β›” Consecutive chapter check interrupted by user.")
return
current = chapter_sorted[i]
for j in range(i + 1, min(i + consecutive_threshold + 1, len(chapter_sorted))):
next_chapter = chapter_sorted[j]
# Check if chapter numbers might be the same (fuzzy match)
if fuzzy_match_chapter_numbers(current['raw_text'], next_chapter['raw_text'],
current['chapter_num'], next_chapter['chapter_num']):
# Compare content
similarity = calculate_similarity_ratio(current['raw_text'], next_chapter['raw_text'])
if similarity >= config.get_threshold('similarity'):
merge_duplicate_groups(duplicate_groups, current['filename'], next_chapter['filename'])
pair = tuple(sorted([current['filename'], next_chapter['filename']]))
duplicate_confidence[pair] = similarity
log(f" └─ Fuzzy chapter match: {current['filename']} β‰ˆ {next_chapter['filename']} ({int(similarity*100)}%)")
continue
# Check same title
if (current.get('chapter_title') and current['chapter_title'] == next_chapter.get('chapter_title') and
abs(current['chapter_num'] - next_chapter['chapter_num']) <= consecutive_threshold):
# Compare content without chapter headers
text1 = re.sub(r'Chapter\s+\d+\s*:?\s*', '', current['raw_text'][:2000], flags=re.IGNORECASE)
text2 = re.sub(r'Chapter\s+\d+\s*:?\s*', '', next_chapter['raw_text'][:2000], flags=re.IGNORECASE)
similarity = calculate_similarity_ratio(text1, text2)
if similarity >= config.get_threshold('similarity') * 0.9: # Slightly lower threshold for same title
merge_duplicate_groups(duplicate_groups, current['filename'], next_chapter['filename'])
pair = tuple(sorted([current['filename'], next_chapter['filename']]))
duplicate_confidence[pair] = similarity
log(f" └─ Same-titled chapters {current['chapter_num']} & {next_chapter['chapter_num']} "
f"({int(similarity*100)}% similar)")
def check_split_chapters(split_candidates, results, duplicate_groups, duplicate_confidence, log, should_stop=None):
"""Check if split chapters are parts of the same content
Enhanced to reduce false positives from intentional author formatting
"""
for i, candidate in enumerate(split_candidates):
if should_stop and should_stop():
log("β›” Split chapter check interrupted by user.")
return
idx = candidate['index']
indicators = candidate['indicators']
# Check next few files
for j in range(1, 4): # Check up to 3 files ahead
if idx + j < len(results):
next_result = results[idx + j]
next_text = next_result.get('raw_text', '')
# Skip if next file is empty
if not next_text.strip():
continue
# Extract chapter numbers if present
current_chapter_num = results[idx].get('chapter_num')
next_chapter_num = next_result.get('chapter_num')
# Strong indicator: same chapter number
same_chapter_number = (current_chapter_num is not None and
next_chapter_num is not None and
current_chapter_num == next_chapter_num)
# Check file naming pattern similarity
current_filename = results[idx]['filename']
next_filename = next_result['filename']
# Look for systematic naming (e.g., file_1.html, file_2.html)
naming_pattern_match = False
if re.sub(r'\d+', 'X', current_filename) == re.sub(r'\d+', 'X', next_filename):
# Files have same pattern with different numbers
naming_pattern_match = True
# Check if content flows naturally
should_check_flow = False
confidence_score = 0.0
if indicators['is_systematic_split'] or naming_pattern_match:
# Strong file naming evidence
should_check_flow = True
confidence_score = 0.85
elif same_chapter_number:
# Same chapter number is strong evidence
should_check_flow = True
confidence_score = 0.9
elif indicators['ends_mid']:
# Only check flow if current ends mid-sentence
next_text_stripped = next_text.strip()
if next_text_stripped:
# Check if next starts without capital (excluding common transition words)
first_line = next_text_stripped.split('\n')[0].strip()
if first_line and not re.match(r'^["γ€Œγ€Ž\(\[]', first_line):
first_word = first_line.split()[0] if first_line.split() else ''
transition_words = ['meanwhile', 'however', 'suddenly', 'later',
'earlier', 'elsewhere', 'afterward', 'afterwards', 'then']
if (first_word.lower() not in transition_words and
first_line[0].islower()):
should_check_flow = True
confidence_score = 0.75
if should_check_flow:
# Get text samples for flow checking
text1_end = results[idx].get('raw_text', '')[-500:]
text2_start = next_text[:500]
# Remove any scene break markers for flow check
scene_breaks = [r'[\*\s]{3,}', r'[─━-—\-]{3,}', r'[_]{3,}',
r'[~~]{3,}', r'[=]{3,}', r'[\#]{3,}']
for pattern in scene_breaks:
text1_end = re.sub(pattern, '', text1_end)
text2_start = re.sub(pattern, '', text2_start)
# Check if content flows
combined = text1_end.strip() + " " + text2_start.strip()
# Count sentence endings in combined text
sentence_endings = len(re.findall(r'[.!?γ€‚οΌοΌŸ]', combined))
# Check for incomplete dialogue
incomplete_dialogue = (text1_end.count('"') + text2_start.count('"')) % 2 != 0
incomplete_dialogue_jp = (text1_end.count('γ€Œ') + text2_start.count('γ€Œ') !=
text1_end.count('」') + text2_start.count('」'))
# Determine if this is a real split
is_real_split = False
if sentence_endings < 2: # Very few sentence endings suggests continuous text
is_real_split = True
confidence_score = max(confidence_score, 0.85)
elif incomplete_dialogue or incomplete_dialogue_jp:
is_real_split = True
confidence_score = max(confidence_score, 0.8)
elif same_chapter_number or indicators['is_systematic_split']:
# With strong other evidence, be more lenient
is_real_split = True
if is_real_split:
merge_duplicate_groups(duplicate_groups, current_filename, next_filename)
pair = tuple(sorted([current_filename, next_filename]))
duplicate_confidence[pair] = confidence_score
reason = []
if same_chapter_number:
reason.append(f"same chapter #{current_chapter_num}")
if indicators['is_systematic_split']:
reason.append("systematic file naming")
if naming_pattern_match:
reason.append("matching name pattern")
if sentence_endings < 2:
reason.append("continuous text flow")
if incomplete_dialogue or incomplete_dialogue_jp:
reason.append("incomplete dialogue")
reason_str = ", ".join(reason) if reason else "content flow analysis"
log(f" └─ Split chapter detected ({reason_str}): {current_filename} β†’ {next_filename} "
f"(confidence: {int(confidence_score*100)}%)")
def check_specific_patterns(results, duplicate_groups, duplicate_confidence, log, should_stop=None):
"""Check for specific known duplicate patterns"""
log("πŸ” Checking for known duplicate patterns...")
if should_stop and should_stop():
log("β›” Pattern check interrupted by user.")
return
# Known patterns that indicate duplicates
patterns = {
'chapel_scene': r"under the pretense of offering a prayer.*?visited the chapel.*?hiding while holding.*?breath.*?watching the scene",
'battle_scene': r"sword.*?clash.*?sparks.*?flew.*?metal.*?rang",
'magic_spell': r"mana.*?gathered.*?spell.*?formation.*?glowed",
}
pattern_matches = defaultdict(list)
for i, result in enumerate(results):
text_sample = result.get('preview', '') + result.get('raw_text', '')[:2000]
for pattern_name, pattern in patterns.items():
if re.search(pattern, text_sample, re.IGNORECASE | re.DOTALL):
pattern_matches[pattern_name].append(i)
# Group files with same patterns
for pattern_name, indices in pattern_matches.items():
if should_stop and should_stop():
log("β›” Pattern check interrupted by user.")
return
if len(indices) > 1:
log(f" └─ Found {len(indices)} files with '{pattern_name}' pattern")
for i in range(len(indices)):
for j in range(i + 1, len(indices)):
idx1, idx2 = indices[i], indices[j]
# Verify with content similarity
similarity = calculate_similarity_ratio(
results[idx1].get('raw_text', '')[:3000],
results[idx2].get('raw_text', '')[:3000]
)
if similarity > 0.7: # Lower threshold for known patterns
merge_duplicate_groups(duplicate_groups,
results[idx1]['filename'],
results[idx2]['filename'])
pair = tuple(sorted([results[idx1]['filename'], results[idx2]['filename']]))
duplicate_confidence[pair] = similarity
log(f" Pattern match confirmed: {results[idx1]['filename']} β‰ˆ {results[idx2]['filename']}")
def generate_reports(results, folder_path, duplicate_confidence, log=print, qa_settings=None):
"""Generate output reports with enhanced duplicate information based on settings"""
if qa_settings is None:
qa_settings = {'report_format': 'detailed', 'auto_save_report': True}
report_format = qa_settings.get('report_format', 'detailed')
auto_save = qa_settings.get('auto_save_report', True)
# Create output directory
output_dir = os.path.basename(folder_path.rstrip('/\\')) + "_Scan Report"
output_path = os.path.join(folder_path, output_dir)
os.makedirs(output_path, exist_ok=True)
# Prepare confidence scores for report
for result in results:
result['duplicate_confidence'] = 0
for pair, confidence in duplicate_confidence.items():
if result['filename'] in pair:
result['duplicate_confidence'] = max(result['duplicate_confidence'], confidence)
# Common function to save all reports
def save_all_reports():
# Save JSON report
with open(os.path.join(output_path, "validation_results.json"), "w", encoding="utf-8") as jf:
json.dump(results, jf, indent=2, ensure_ascii=False)
# Save CSV report
with open(os.path.join(output_path, "validation_results.csv"), "w", encoding="utf-8", newline="") as cf:
writer = csv.DictWriter(cf, fieldnames=["file_index", "filename", "score", "issues", "duplicate_confidence"])
writer.writeheader()
for row in results:
writer.writerow({
"file_index": row["file_index"],
"filename": row["filename"],
"score": row["score"],
"issues": "; ".join(row["issues"]),
"duplicate_confidence": f"{row.get('duplicate_confidence', 0):.2f}"
})
# Generate HTML report
generate_html_report(results, output_path, duplicate_confidence)
# Generate duplicate groups summary
generate_duplicate_summary(results, output_path, duplicate_confidence)
# Generate reports based on format setting
if report_format == 'summary':
# Summary format - only key statistics
log(f"\nπŸ“Š QA Scan Summary:")
log(f" Total files scanned: {len(results)}")
issue_count = sum(1 for r in results if r['issues'])
log(f" Files with issues: {issue_count}")
# Count by issue type
issue_types = {}
for result in results:
for issue in result['issues']:
issue_type = issue.split('_')[0]
issue_types[issue_type] = issue_types.get(issue_type, 0) + 1
log(f"\n Issues by type:")
for issue_type, count in sorted(issue_types.items(), key=lambda x: x[1], reverse=True):
log(f" - {issue_type}: {count}")
# Save minimal summary file if auto-save enabled
if auto_save:
summary_file = os.path.join(output_path, "scan_summary.txt")
with open(summary_file, 'w', encoding='utf-8') as f:
f.write(f"QA Scan Summary\n")
f.write(f"===============\n\n")
f.write(f"Total files scanned: {len(results)}\n")
f.write(f"Files with issues: {issue_count}\n\n")
f.write(f"Issues by type:\n")
for issue_type, count in sorted(issue_types.items(), key=lambda x: x[1], reverse=True):
f.write(f" - {issue_type}: {count}\n")
log(f"\nπŸ“ Summary saved to: {output_path}")
elif report_format == 'verbose':
# Verbose format - include everything including raw text samples
if auto_save:
# Save detailed JSON with all data
verbose_results = []
for result in results.copy():
verbose_result = result.copy()
# Include first 1000 chars of raw text in verbose mode
if 'raw_text' in result:
verbose_result['text_sample'] = result['raw_text'][:1000]
verbose_results.append(verbose_result)
with open(os.path.join(output_path, "validation_results_verbose.json"), "w", encoding="utf-8") as jf:
json.dump(verbose_results, jf, indent=2, ensure_ascii=False)
# Generate detailed text report
with open(os.path.join(output_path, "detailed_report.txt"), "w", encoding="utf-8") as tf:
tf.write("DETAILED QA SCAN REPORT\n")
tf.write("=" * 80 + "\n\n")
for result in results:
tf.write(f"File: {result['filename']}\n")
tf.write(f"Chapter: {result.get('chapter_num', 'Unknown')}\n")
tf.write(f"Issues: {len(result['issues'])}\n")
if result['issues']:
for issue in result['issues']:
tf.write(f" - {issue}\n")
tf.write(f"Duplicate Confidence: {result.get('duplicate_confidence', 0):.2f}\n")
tf.write(f"Preview: {result.get('preview', '')[:200]}...\n")
tf.write("-" * 80 + "\n\n")
# All existing reports (JSON, CSV, HTML)
save_all_reports()
else: # detailed (default)
# Current behavior - standard reports
if auto_save:
save_all_reports()
else:
log(f"\nβœ… Scan complete! Reports not saved (auto-save disabled)")
log(f"\nβœ… Scan complete!")
if auto_save:
log(f"πŸ“ Reports saved to: {output_path}")
def generate_duplicate_summary(results, output_path, duplicate_confidence):
"""Generate a summary of duplicate groups"""
# Collect duplicate groups
groups = defaultdict(list)
for result in results:
for issue in result.get('issues', []):
if issue.startswith('DUPLICATE:'):
# Extract group info
if 'part_of_' in issue:
group_id = issue.split('part_of_')[1].split('_')[0]
groups[f"group_{group_id}"].append(result['filename'])
elif 'exact_or_near_copy_of_' in issue:
other = issue.split('exact_or_near_copy_of_')[1]
groups[f"pair_{result['filename']}_{other}"].append(result['filename'])
groups[f"pair_{result['filename']}_{other}"].append(other)
# Create summary
summary = {
'total_files': len(results),
'files_with_duplicates': sum(1 for r in results if any('DUPLICATE' in i for i in r.get('issues', []))),
'duplicate_groups': len(groups),
'groups': {}
}
for group_name, files in groups.items():
unique_files = list(set(files))
confidences = []
for i in range(len(unique_files)):
for j in range(i + 1, len(unique_files)):
pair = tuple(sorted([unique_files[i], unique_files[j]]))
if pair in duplicate_confidence:
confidences.append(duplicate_confidence[pair])
summary['groups'][group_name] = {
'files': unique_files,
'count': len(unique_files),
'avg_confidence': sum(confidences) / len(confidences) if confidences else 0
}
with open(os.path.join(output_path, "duplicate_summary.json"), "w", encoding="utf-8") as f:
json.dump(summary, f, indent=2, ensure_ascii=False)
def generate_html_report(results, output_path, duplicate_confidence):
"""Generate enhanced HTML report with duplicate confidence scores"""
issue_counts = {}
for r in results:
for issue in r['issues']:
issue_type = issue.split(':')[0] if ':' in issue else issue.split('_')[0]
issue_counts[issue_type] = issue_counts.get(issue_type, 0) + 1
html = f"""<html>
<head>
<meta charset='utf-8'>
<title>Translation QA Report</title>
<style>
body {{ font-family: Arial, sans-serif; margin: 20px; }}
table {{ border-collapse: collapse; width: 100%; margin-top: 20px; }}
th, td {{ border: 1px solid #ddd; padding: 8px; text-align: left; }}
th {{ background-color: #4CAF50; color: white; }}
tr:nth-child(even) {{ background-color: #f2f2f2; }}
.error {{ background-color: #ffcccc; }}
.warning {{ background-color: #fff3cd; }}
.preview {{ font-size: 0.9em; color: #666; max-width: 400px; }}
.issues {{ font-size: 0.9em; }}
.non-english {{ color: red; font-weight: bold; }}
.duplicate-group {{ background-color: #ffe6e6; }}
.confidence {{ font-size: 0.8em; color: #666; }}
.high-confidence {{ color: red; font-weight: bold; }}
.medium-confidence {{ color: orange; }}
.low-confidence {{ color: #666; }}
</style>
</head>
<body>
<h1>Translation QA Report</h1>
<p><strong>Total Files Scanned:</strong> {len(results)}</p>
<p><strong>Files with Issues:</strong> {sum(1 for r in results if r['issues'])}</p>
<p><strong>Clean Files:</strong> {sum(1 for r in results if not r['issues'])}</p>
"""
if issue_counts:
html += "<h2>Issues Summary</h2><ul>"
for issue_type, count in sorted(issue_counts.items()):
style = ' class="non-english"' if any(x in issue_type.lower() for x in ['korean', 'chinese', 'japanese']) else ''
html += f"<li{style}><strong>{issue_type}</strong>: {count} files</li>"
# Count duplicate groups
duplicate_groups = set()
for result in results:
for issue in result.get('issues', []):
if issue.startswith('DUPLICATE:'):
if 'part_of_' in issue:
group_id = issue.split('part_of_')[1].split('_')[0]
duplicate_groups.add(f"group_{group_id}")
elif 'exact_or_near_copy_of_' in issue:
other = issue.split('exact_or_near_copy_of_')[1]
duplicate_groups.add(f"pair_{min(result['filename'], other)}_{max(result['filename'], other)}")
if duplicate_groups:
html += f"<li><strong>Duplicate Groups Found</strong>: {len(duplicate_groups)}</li>"
html += "</ul>"
html += "<h2>Detailed Results</h2>"
html += "<table><tr><th>Index</th><th>Filename</th><th>Issues</th><th>Confidence</th><th>Preview</th></tr>"
for row in results:
link = f"<a href='../{row['filename']}' target='_blank'>{row['filename']}</a>"
formatted_issues = []
for issue in row["issues"]:
if issue.startswith("DUPLICATE:"):
formatted_issues.append(f'<span style="color: red; font-weight: bold;">{issue}</span>')
elif issue.startswith("NEAR_DUPLICATE:"):
formatted_issues.append(f'<span style="color: darkorange; font-weight: bold;">{issue}</span>')
elif '_text_found_' in issue:
formatted_issues.append(f'<span class="non-english">{issue}</span>')
else:
formatted_issues.append(issue)
issues_str = "<br>".join(formatted_issues) if formatted_issues else "None"
# Add confidence score
confidence = row.get('duplicate_confidence', 0)
if confidence > 0:
conf_class = 'high-confidence' if confidence >= 0.9 else 'medium-confidence' if confidence >= 0.8 else 'low-confidence'
confidence_str = f'<span class="confidence {conf_class}">{int(confidence * 100)}%</span>'
else:
confidence_str = '-'
row_class = 'duplicate-group' if any('DUPLICATE:' in issue for issue in row['issues']) else ''
if not row_class and any('NEAR_DUPLICATE:' in issue for issue in row['issues']):
row_class = 'warning'
if not row_class:
row_class = 'error' if row["score"] > 1 else 'warning' if row["score"] == 1 else ''
preview_escaped = html_lib.escape(row['preview'][:300])
html += f"""<tr class='{row_class}'>
<td>{row['file_index']}</td>
<td>{link}</td>
<td class='issues'>{issues_str}</td>
<td>{confidence_str}</td>
<td class='preview'>{preview_escaped}</td>
</tr>"""
html += "</table></body></html>"
with open(os.path.join(output_path, "validation_results.html"), "w", encoding="utf-8") as html_file:
html_file.write(html)
def update_progress_file(folder_path, results, log):
"""Update translation progress file"""
prog_path = os.path.join(folder_path, "translation_progress.json")
try:
with open(prog_path, "r", encoding="utf-8") as pf:
prog = json.load(pf)
except FileNotFoundError:
log("[INFO] No progress file found - nothing to update")
return
faulty_chapters = [row for row in results if row["issues"]]
if not faulty_chapters:
log("βœ… No faulty chapters found - progress unchanged")
return
# Detect progress format version
is_new_format = "chapters" in prog and isinstance(prog.get("chapters"), dict)
if is_new_format:
update_new_format_progress(prog, faulty_chapters, log, folder_path)
else:
update_legacy_format_progress(prog, faulty_chapters, log)
# Write back updated progress
with open(prog_path, "w", encoding="utf-8") as pf:
json.dump(prog, pf, indent=2, ensure_ascii=False)
# Log affected chapters - use the already extracted chapter numbers
affected_chapters_for_log = []
for faulty_row in faulty_chapters:
# Use the chapter_num that was already extracted during scan
chapter_num = faulty_row.get("chapter_num")
if chapter_num is not None:
affected_chapters_for_log.append(chapter_num)
else:
# Fallback if somehow chapter_num wasn't extracted
fallback_num = faulty_row.get("file_index", 0) + 1
if faulty_row.get("filename"):
match = re.search(r'response_(\d+)', faulty_row["filename"])
if match:
fallback_num = int(match.group(1))
affected_chapters_for_log.append(fallback_num)
if affected_chapters_for_log:
log(f"πŸ“ Chapters marked for re-translation: {', '.join(str(c) for c in sorted(affected_chapters_for_log))}")
def update_new_format_progress(prog, faulty_chapters, log, folder_path):
"""Update new format progress file with content hash support"""
log("[INFO] Detected new progress format")
# Build multiple mappings to find chapters
output_file_to_chapter_key = {}
actual_num_to_chapter_key = {}
basename_to_chapter_key = {}
for chapter_key, chapter_info in prog["chapters"].items():
output_file = chapter_info.get("output_file")
if output_file:
output_file_to_chapter_key[output_file] = chapter_key
# Also map without response_ prefix for matching
if output_file.startswith("response_"):
alt_name = output_file[9:] # Remove "response_" prefix
output_file_to_chapter_key[alt_name] = chapter_key
# Map by actual chapter number
actual_num = chapter_info.get("actual_num")
if actual_num is not None:
if actual_num not in actual_num_to_chapter_key:
actual_num_to_chapter_key[actual_num] = []
actual_num_to_chapter_key[actual_num].append(chapter_key)
# Map by original basename
original_basename = chapter_info.get("original_basename")
if original_basename:
basename_to_chapter_key[original_basename] = chapter_key
# Also map response_ version
basename_to_chapter_key[f"response_{original_basename}"] = chapter_key
updated_count = 0
for faulty_row in faulty_chapters:
faulty_filename = faulty_row["filename"]
chapter_key = None
# Method 1: Direct output file match
chapter_key = output_file_to_chapter_key.get(faulty_filename)
# Method 2: Try without response_ prefix
if not chapter_key and faulty_filename.startswith("response_"):
base_name = faulty_filename[9:]
chapter_key = basename_to_chapter_key.get(base_name)
# Method 3: Extract chapter number and match
if not chapter_key:
# Extract chapter number from filename
import re
matches = re.findall(r'(\d+)', faulty_filename)
if matches:
chapter_num = int(matches[-1]) # Use last number found
# Look for matching chapter by number
if chapter_num in actual_num_to_chapter_key:
# If multiple entries, find the one with matching output file
candidates = actual_num_to_chapter_key[chapter_num]
for candidate_key in candidates:
candidate_info = prog["chapters"][candidate_key]
candidate_output = candidate_info.get("output_file", "")
if candidate_output and (candidate_output == faulty_filename or candidate_output.endswith(faulty_filename)):
chapter_key = candidate_key
break
# If still not found, use first candidate
if not chapter_key and candidates:
chapter_key = candidates[0]
# Method 4: If still not found, try to calculate content hash from file
if not chapter_key and os.path.exists(os.path.join(folder_path, faulty_filename)):
try:
# Read the file and calculate its content hash
# This is a fallback for when the mapping isn't found
with open(os.path.join(folder_path, faulty_filename), 'r', encoding='utf-8') as f:
content = f.read()
# Try to find by scanning all chapters for matching output file
for ch_key, ch_info in prog["chapters"].items():
if ch_info.get("output_file") == faulty_filename:
chapter_key = ch_key
break
except:
pass
if chapter_key and chapter_key in prog["chapters"]:
chapter_info = prog["chapters"][chapter_key]
old_status = chapter_info.get("status", "unknown")
# Update status to qa_failed
chapter_info["status"] = "qa_failed"
chapter_info["qa_issues"] = True
chapter_info["qa_timestamp"] = time.time()
chapter_info["qa_issues_found"] = faulty_row.get("issues", [])
chapter_info["duplicate_confidence"] = faulty_row.get("duplicate_confidence", 0)
updated_count += 1
# Use chapter_num from faulty_row if available, otherwise fall back to actual_num
chapter_num = faulty_row.get("chapter_num")
if chapter_num is None:
chapter_num = chapter_info.get('actual_num', faulty_row.get("file_index", 0) + 1)
log(f" └─ Marked chapter {chapter_num} as qa_failed (was: {old_status})")
# IMPORTANT: Don't remove from content_hashes or chapter_chunks
# Just mark as qa_failed so it will be retranslated
# The translation process will handle cleanup when retranslating
# Optional: Log what we're NOT removing for clarity
content_hash = chapter_info.get("content_hash")
if content_hash:
log(f" └─ Keeping content hash {content_hash[:8]}... for retranslation")
else:
# Log failure to find chapter
log(f" ⚠️ Could not find chapter entry for {faulty_filename}")
# Try to create a new entry if we can determine the chapter number
import re
matches = re.findall(r'(\d+)', faulty_filename)
# When creating a new qa_failed entry (around line 116-132)
# When creating a new qa_failed entry (around line 116-132)
if matches:
chapter_num = int(matches[-1])
# Use actual_num as key
chapter_key = str(chapter_num)
# Calculate content hash from the file if possible
content_hash = None
if os.path.exists(os.path.join(folder_path, faulty_filename)):
try:
with open(os.path.join(folder_path, faulty_filename), 'r', encoding='utf-8') as f:
content = f.read()
import hashlib
content_hash = hashlib.md5(content.encode('utf-8')).hexdigest()
except:
pass
# Create entry with proper field order matching regular entries
prog["chapters"][chapter_key] = {
"actual_num": chapter_num,
"content_hash": content_hash, # Include if we could calculate it
"output_file": faulty_filename,
"status": "qa_failed",
"last_updated": time.time(), # Use same field name as regular entries
"zero_adjusted": False, # Default to False since we don't know
# QA-specific fields come after the standard fields
"qa_issues": True,
"qa_timestamp": time.time(),
"qa_issues_found": faulty_row.get("issues", []),
"duplicate_confidence": faulty_row.get("duplicate_confidence", 0)
}
log(f" └─ Created qa_failed entry for chapter {chapter_num}")
updated_count += 1
log(f"πŸ”§ Updated {updated_count} chapters in new format")
def update_legacy_format_progress(prog, faulty_chapters, log):
"""Update legacy format progress file"""
log("[INFO] Detected legacy progress format")
existing = prog.get("completed", [])
faulty_indices = [row["file_index"] for row in faulty_chapters]
updated = [idx for idx in existing if idx not in faulty_indices]
removed_count = len(existing) - len(updated)
prog["completed"] = updated
# Remove chunk data
if "chapter_chunks" in prog:
for faulty_idx in faulty_indices:
chapter_key = str(faulty_idx)
if chapter_key in prog["chapter_chunks"]:
del prog["chapter_chunks"][chapter_key]
log(f" └─ Removed chunk data for chapter {faulty_idx + 1}")
# Remove from content_hashes
if "content_hashes" in prog:
hashes_to_remove = []
for hash_val, hash_info in prog["content_hashes"].items():
if hash_info.get("completed_idx") in faulty_indices:
hashes_to_remove.append(hash_val)
for hash_val in hashes_to_remove:
del prog["content_hashes"][hash_val]
log(f" └─ Removed content hash entry")
log(f"πŸ”§ Removed {removed_count} chapters from legacy completed list")
def extract_epub_word_counts(epub_path, log=print):
"""Extract word counts for each chapter from the original EPUB"""
def count_cjk_words(text):
"""Count actual words in CJK text with better segmentation"""
word_count = 0
# Chinese word counting (considering multi-character words)
# Most Chinese words are 2-4 characters
chinese_chars = re.findall(r'[\u4e00-\u9fff]+', text)
for segment in chinese_chars:
# Estimate words based on character count
# Average Chinese word length is ~1.7 characters
word_count += max(1, len(segment) / 1.7)
# Japanese word counting
# Hiragana particles/endings (usually 1-3 chars each)
hiragana_segments = re.findall(r'[\u3040-\u309f]+', text)
word_count += len(hiragana_segments)
# Katakana words (foreign words, usually one word per segment)
katakana_segments = re.findall(r'[\u30a0-\u30ff]+', text)
word_count += len(katakana_segments)
# Korean word counting (words are typically space-separated)
korean_words = re.findall(r'[\uac00-\ud7af]+', text)
word_count += len(korean_words)
# Also count non-CJK words (English mixed in)
non_cjk = re.sub(r'[\u4e00-\u9fff\u3040-\u309f\u30a0-\u30ff\uac00-\ud7af]+', ' ', text)
word_count += len(non_cjk.split())
return int(word_count)
try:
word_counts = {}
with zipfile.ZipFile(epub_path, 'r') as zf:
# Get all HTML/XHTML files from inside the EPUB (no .txt files in EPUBs)
html_files = [f for f in zf.namelist()
if f.lower().endswith(('.html', '.xhtml', '.htm'))]
log(f"πŸ“š Found {len(html_files)} HTML files in EPUB.")
for file_path in html_files:
try:
# Extract chapter number from filename
basename = os.path.basename(file_path)
chapter_num = None
# Try various patterns to extract chapter number
patterns = [
r'(\d{3,4})', # 3-4 digit numbers
r'chapter[\s_-]*(\d+)',
r'ch[\s_-]*(\d+)',
r'c(\d+)',
r'第(\d+)[η« θ―ε›ž]',
r'제(\d+)[μž₯ν™”νšŒ]'
]
for pattern in patterns:
match = re.search(pattern, basename, re.IGNORECASE)
if match:
chapter_num = int(match.group(1))
break
# Read and parse the file
content = zf.read(file_path).decode('utf-8', errors='ignore')
soup = BeautifulSoup(content, 'html.parser')
# Get text and count words
text = soup.get_text(strip=True)
# Check if text contains CJK characters
has_cjk = any('\u4e00' <= char <= '\u9fff' or # Chinese
'\u3040' <= char <= '\u309f' or # Hiragana
'\u30a0' <= char <= '\u30ff' or # Katakana
'\uac00' <= char <= '\ud7af' # Korean
for char in text)
if has_cjk:
# Use proper CJK word counting
word_count = count_cjk_words(text)
else:
# For other languages, count space-separated words
word_count = len(text.split())
if chapter_num is not None:
word_counts[chapter_num] = {
'word_count': word_count,
'filename': basename,
'full_path': file_path,
'is_cjk': has_cjk # Track if source was CJK
}
except Exception as e:
log(f"⚠️ Error processing {file_path}: {e}")
continue
return word_counts
except Exception as e:
log(f"❌ Error reading EPUB file: {e}")
return {}
def detect_multiple_headers(html_content):
"""Detect if HTML content has 2 or more header tags"""
soup = BeautifulSoup(html_content, 'html.parser')
# Find all header tags (h1 through h6)
headers = soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6'])
if len(headers) >= 2:
header_info = []
for header in headers[:5]: # Show first 5 headers
header_info.append({
'tag': header.name,
'text': header.get_text(strip=True)[:50] # First 50 chars
})
return True, len(headers), header_info
return False, len(headers), []
def cross_reference_word_counts(original_counts, translated_file, translated_text, log=print):
"""Cross-reference word counts between original and translated files"""
# Extract chapter number from translated filename
basename = os.path.basename(translated_file)
chapter_num = None
# Try to extract chapter number
patterns = [
r'response_(\d+)',
r'response_chapter(\d+)',
r'chapter[\s_-]*(\d+)',
r'(\d{3,4})',
r'ch[\s_-]*(\d+)'
]
for pattern in patterns:
match = re.search(pattern, basename, re.IGNORECASE)
if match:
chapter_num = int(match.group(1))
break
if chapter_num is None:
# Try content-based matching as fallback
content_patterns = [
r'Chapter\s+(\d+)',
r'第\s*(\d+)\s*章',
r'제\s*(\d+)\s*μž₯'
]
for pattern in content_patterns:
match = re.search(pattern, translated_text[:500], re.IGNORECASE)
if match:
chapter_num = int(match.group(1))
break
if chapter_num is not None and chapter_num in original_counts:
original_wc = original_counts[chapter_num]['word_count']
is_cjk = original_counts[chapter_num].get('is_cjk', True) # Get CJK flag if available
# Count words in translated text
translated_wc = len(translated_text.split())
# Calculate ratio (translated words / original words)
ratio = translated_wc / max(1, original_wc)
# Define VERY PERMISSIVE ratio ranges for novel translation
# These are much looser to accommodate extreme translation cases
if is_cjk:
# CJK to English novel translation - reasonable bounds
min_ratio = 0.6 # 60% - catches significant omissions
max_ratio = 2.5 # 250% - catches excessive padding
# Typical healthy range
typical_min = 0.8 # 80%
typical_max = 1.8 # 180%
else:
# Non-CJK source
min_ratio = 0.7
max_ratio = 1.5
typical_min = 0.8
typical_max = 1.2
is_reasonable = min_ratio <= ratio <= max_ratio
is_typical = typical_min <= ratio <= typical_max
# Calculate percentage difference for logging
percentage = (ratio * 100)
result = {
'found_match': True,
'chapter_num': chapter_num,
'original_wc': original_wc,
'translated_wc': translated_wc,
'ratio': ratio,
'percentage': percentage, # e.g., 150 = 150% of original
'is_reasonable': is_reasonable,
'is_typical': is_typical,
'original_file': original_counts[chapter_num]['filename']
}
# Add descriptive warnings for extreme but acceptable ratios
if ratio < 0.5:
result['warning'] = 'very_concise_translation'
result['warning_desc'] = 'Translation is less than 50% of original - possible summary style'
elif ratio < typical_min:
result['warning'] = 'concise_translation'
result['warning_desc'] = f'Translation is {percentage:.0f}% of original - somewhat concise'
elif ratio > 4.0:
result['warning'] = 'very_expansive_translation'
result['warning_desc'] = 'Translation is over 400% of original - extensive additions'
elif ratio > typical_max:
result['warning'] = 'expansive_translation'
result['warning_desc'] = f'Translation is {percentage:.0f}% of original - somewhat expansive'
# Only flag as unreasonable if REALLY extreme
if not is_reasonable:
if ratio < min_ratio:
result['error'] = 'possibly_missing_content'
result['error_desc'] = f'Translation is only {percentage:.0f}% of original'
else:
result['error'] = 'possibly_excessive_content'
result['error_desc'] = f'Translation is {percentage:.0f}% of original'
return result
return {
'found_match': False,
'chapter_num': chapter_num,
'reason': 'No matching chapter found in original'
}
def process_html_file_batch(args):
"""Process a batch of HTML files - MUST BE AT MODULE LEVEL"""
file_batch, folder_path, qa_settings, mode, original_word_counts = args
batch_results = []
# Import what we need inside the worker
import os
import hashlib
is_quick_scan = (mode == 'quick-scan')
for idx, filename in file_batch:
full_path = os.path.join(folder_path, filename)
try:
raw_text = extract_text_from_html(full_path)
except Exception as e:
# Skip files that can't be read
continue
# Check minimum file length
min_length = qa_settings.get('min_file_length', 0)
if len(raw_text.strip()) < min_length:
continue
chapter_num, chapter_title = extract_chapter_info(filename, raw_text)
# Quick scan optimizations
if is_quick_scan:
hashes = {} # Empty dict for quick scan
preview_size = min(300, len(raw_text))
else:
hashes = generate_content_hashes(raw_text)
preview_size = 500
preview = raw_text[:preview_size].replace('\n', ' ')
if len(preview) > preview_size:
preview = preview[:preview_size-3] + '...'
# Normalize preview
preview_normalized = normalize_text(preview)[:300]
# Detect translation artifacts
artifacts = []
if not is_quick_scan and qa_settings.get('check_translation_artifacts', False):
artifacts = detect_translation_artifacts(raw_text)
# Filter out encoding_issues if disabled
if not qa_settings.get('check_encoding_issues', True):
artifacts = [a for a in artifacts if a['type'] != 'encoding_issues']
# Initialize issues list
issues = []
# Check for glossary leakage
check_glossary = qa_settings.get('check_glossary_leakage', True)
if check_glossary and not is_quick_scan:
has_glossary_leak, glossary_issues = detect_glossary_leakage(raw_text)
if has_glossary_leak:
# Add to translation artifacts
for glossary_issue in glossary_issues:
artifacts.append({
'type': f"glossary_{glossary_issue['type']}",
'count': glossary_issue.get('count', 1),
'examples': glossary_issue.get('examples', []),
'severity': glossary_issue.get('severity', 'medium')
})
# Add to issues list for reporting
critical_glossary = any(g['severity'] == 'critical' for g in glossary_issues)
if critical_glossary:
issues.append(f"CRITICAL_glossary_leakage_detected")
else:
total_glossary_items = sum(g.get('count', 1) for g in glossary_issues)
issues.append(f"glossary_leakage_{total_glossary_items}_entries_found")
# HTML tag check
check_missing_html_tag = qa_settings.get('check_missing_html_tag', True)
if check_missing_html_tag and filename.lower().endswith(('.html', '.xhtml', '.htm')):
# Create a dummy log function for the worker
def dummy_log(msg):
pass
has_issues, html_issues = check_html_structure_issues(full_path, dummy_log)
if has_issues:
for issue in html_issues:
if issue == 'missing_html_structure':
issues.append("missing_html_tag")
elif issue == 'insufficient_paragraph_tags':
issues.append("insufficient_paragraph_tags")
elif issue == 'unwrapped_text_content':
issues.append("unwrapped_text_content")
elif issue == 'unclosed_html_tags':
issues.append("unclosed_html_tags")
elif issue == 'incomplete_html_structure':
issues.append("incomplete_html_structure")
elif issue == 'invalid_nesting':
if qa_settings.get('check_invalid_nesting', False):
issues.append("invalid_nesting")
elif issue == 'malformed_html':
issues.append("malformed_html")
else:
issues.append(issue)
# Check for multiple headers
check_multiple_headers = qa_settings.get('check_multiple_headers', True)
has_multiple = False
header_count = 0
header_info = None
if check_multiple_headers:
has_multiple, header_count, header_info = detect_multiple_headers(raw_text)
if has_multiple:
issues.append(f"multiple_headers_{header_count}_found")
# Check word count ratio
word_count_check = None
check_word_count = qa_settings.get('check_word_count_ratio', False)
if check_word_count and original_word_counts:
# Create dummy log for worker
def dummy_log(msg):
pass
wc_result = cross_reference_word_counts(
original_word_counts,
filename,
raw_text,
dummy_log
)
if wc_result['found_match']:
word_count_check = wc_result
if not wc_result['is_reasonable']:
issues.append(f"word_count_mismatch_ratio_{wc_result['ratio']:.2f}")
else:
word_count_check = wc_result
issues.append("word_count_no_match_found")
# Create result dictionary
result = {
"file_index": idx,
"filename": filename,
"filepath": full_path,
"issues": issues,
"preview": preview,
"preview_normalized": preview_normalized,
"score": 0,
"chapter_num": chapter_num,
"hashes": hashes,
"raw_text": raw_text,
"translation_artifacts": artifacts
}
# Add optional fields
if check_multiple_headers and has_multiple:
result['header_count'] = header_count
result['header_info'] = header_info
if word_count_check:
result['word_count_check'] = word_count_check
batch_results.append(result)
return batch_results
def scan_html_folder(folder_path, log=print, stop_flag=None, mode='quick-scan', qa_settings=None, epub_path=None, selected_files=None):
"""
Scan HTML folder for QA issues - PROCESSPOOLEXECUTOR VERSION
"""
global _stop_flag
_stop_flag = False
# Create a combined stop check function
def should_stop():
if stop_flag and stop_flag():
log("β›” Stop requested via GUI stop button")
return True
if _stop_flag:
log("β›” Stop requested via global stop_scan() function")
return True
return False
start_time = time.time()
# Debug info
log(f"πŸ” Starting scan with ProcessPoolExecutor")
log(f"⚑ MAXIMUM PERFORMANCE MODE ENABLED")
# Load default settings if not provided
if qa_settings is None:
qa_settings = {
'foreign_char_threshold': 10,
'excluded_characters': '',
'check_encoding_issues': False,
'check_repetition': True,
'check_translation_artifacts': False,
'check_glossary_leakage': True,
'min_file_length': 0,
'report_format': 'detailed',
'auto_save_report': True,
'check_missing_html_tag': True,
'check_paragraph_structure': True,
'check_invalid_nesting': False,
'paragraph_threshold': 0.3,
'check_word_count_ratio': False,
'check_multiple_headers': True,
'warn_name_mismatch': True
}
check_word_count = qa_settings.get('check_word_count_ratio', False)
check_multiple_headers = qa_settings.get('check_multiple_headers', True)
# Extract word counts from original EPUB if needed
original_word_counts = {}
if check_word_count:
if epub_path and os.path.exists(epub_path):
log(f"πŸ“š Extracting word counts from original EPUB: {os.path.basename(epub_path)}")
original_word_counts = extract_epub_word_counts(epub_path, log)
log(f" Found word counts for {len(original_word_counts)} chapters")
else:
log("⚠️ Word count cross-reference enabled but no valid EPUB provided - skipping this check")
check_word_count = False
# Log settings
log(f"\nπŸ“‹ QA Settings Status:")
log(f" βœ“ Encoding issues check: {'ENABLED' if qa_settings.get('check_encoding_issues', True) else 'DISABLED'}")
log(f" βœ“ Repetition check: {'ENABLED' if qa_settings.get('check_repetition', True) else 'DISABLED'}")
log(f" βœ“ Translation artifacts check: {'ENABLED' if qa_settings.get('check_translation_artifacts', False) else 'DISABLED'}")
log(f" βœ“ Foreign char threshold: {qa_settings.get('foreign_char_threshold', 10)}")
log(f" βœ“ Missing HTML tag check: {'ENABLED' if qa_settings.get('check_missing_html_tag', False) else 'DISABLED'}")
log(f" βœ“ Paragraph structure check: {'ENABLED' if qa_settings.get('check_paragraph_structure', True) else 'DISABLED'}")
log(f" βœ“ Invalid nesting check: {'ENABLED' if qa_settings.get('check_invalid_nesting', False) else 'DISABLED'}")
log(f" βœ“ Word count ratio check: {'ENABLED' if qa_settings.get('check_word_count_ratio', False) else 'DISABLED'}")
log(f" βœ“ Multiple headers check: {'ENABLED' if qa_settings.get('check_multiple_headers', False) else 'DISABLED'}")
# Initialize configuration
custom_settings = None
if mode == 'custom' and qa_settings and 'custom_mode_settings' in qa_settings:
custom_settings = qa_settings['custom_mode_settings']
config = DuplicateDetectionConfig(mode, custom_settings)
# Log mode info
mode_messages = {
'aggressive': '🚨 AGGRESSIVE',
'quick-scan': '⚑ Quick Scan',
'custom': 'βš™οΈ Custom',
'ai-hunter': 'πŸ€– AI HUNTER'
}
log(f"{mode_messages.get(mode, 'πŸ“‹ Standard')} duplicate detection mode")
log(f" Thresholds: {config.thresholds[mode]}")
if mode == 'ai-hunter':
log(" ⚠️ WARNING: This mode will flag almost everything as potential duplicates!")
log(" 🎯 Designed specifically for catching AI retranslations of the same content")
log(" ⏱️ NOTE: AI Hunter mode checks EVERY file pair - but now with PARALLEL PROCESSING!")
# Get HTML files (including .xhtml)
html_files = sorted([f for f in os.listdir(folder_path) if f.lower().endswith((".html", ".xhtml", ".htm"))])
# If specific files were selected, filter to those (by basename)
if selected_files:
try:
selected_basenames = {os.path.basename(p) for p in selected_files}
html_files = [f for f in html_files if f in selected_basenames]
log(f"πŸ“„ Limited scan to {len(html_files)} selected file(s)")
except Exception:
pass
log(f"πŸ” Found {len(html_files)} HTML files. Starting parallel scan...")
# Determine number of workers
cpu_count = multiprocessing.cpu_count()
max_workers_config = 0
try:
config_path = os.path.join(os.path.dirname(__file__), 'config.json')
if os.path.exists(config_path):
with open(config_path, 'r', encoding='utf-8') as f:
full_config = json.load(f)
# Check multiple possible config locations
qa_config = full_config.get('qa_scanner_config', {})
ai_hunter_config = full_config.get('ai_hunter_config', {})
# Priority: qa_scanner_config > ai_hunter_config
max_workers_config = qa_config.get('max_workers',
ai_hunter_config.get('ai_hunter_max_workers', 1))
except:
max_workers_config = 0
if max_workers_config > 0:
max_workers = min(max_workers_config, cpu_count)
log(f" πŸ–₯️ Using {max_workers} CPU cores for file processing (configured limit)")
else:
max_workers = cpu_count
log(f" πŸš€ Using ALL {max_workers} CPU cores for file processing")
if cpu_count > 8:
log(f" πŸ’‘ Tip: You can limit CPU cores in QA scanner settings")
# Create file batches with indices
file_list = [(idx, filename) for idx, filename in enumerate(html_files)]
batch_size = max(10, len(html_files) // (max_workers * 5))
batches = []
for i in range(0, len(file_list), batch_size):
batch = file_list[i:i + batch_size]
batches.append(batch)
log(f" πŸ“¦ Split into {len(batches)} batches of ~{batch_size} files each")
# Prepare worker data
worker_args = []
for batch in batches:
args = (batch, folder_path, qa_settings, mode, original_word_counts)
worker_args.append(args)
# Process files in parallel
results = []
processed_count = 0
with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor:
# Submit all batches
futures = []
for args in worker_args:
if should_stop():
log("β›” QA scan interrupted before processing.")
executor.shutdown(wait=True)
return
future = executor.submit(process_html_file_batch, args)
futures.append(future)
# Collect results as they complete
for completed_idx, future in enumerate(concurrent.futures.as_completed(futures)):
if should_stop():
log("β›” QA scan interrupted during processing.")
executor.shutdown(wait=True)
return
try:
batch_results = future.result()
# Log individual file progress like original
for result in batch_results:
processed_count += 1
idx = result['file_index']
filename = result['filename']
# Progress update every 10 files (like original)
if processed_count % 10 == 0:
progress = int((processed_count / len(html_files)) * 100)
log(f"πŸ“„ [{processed_count}/{len(html_files)}] Scanning {filename}... ({progress}% complete)")
# Debug: Check stop flag states periodically (like original)
if processed_count % 50 == 0 and processed_count > 0:
log(f" [DEBUG] Global stop flag: {_stop_flag}, Stop function: {stop_flag() if stop_flag else 'N/A'}")
else:
# Less verbose for other files - show every file but compact
print(f"\rπŸ“„ Scanning: {filename} [{processed_count}/{len(html_files)}]", end='', flush=True)
# Log issues found (like original)
if result.get('issues'):
# Check if HTML structure issues were found
html_issues = [i for i in result['issues'] if 'html' in i.lower() or 'paragraph' in i.lower()]
if html_issues:
log(f" β†’ Found HTML structure issues in {filename}: {', '.join(html_issues)}")
# Log word count issues
wc_issues = [i for i in result['issues'] if 'word_count' in i]
if wc_issues and result.get('word_count_check'):
wc = result['word_count_check']
if wc.get('ratio'):
log(f" {filename}: Word count ratio {wc['ratio']:.2f} " +
f"(Original: {wc.get('original_wc', '?')}, Translated: {wc.get('translated_wc', '?')})")
# Log encoding artifacts (if enabled)
if qa_settings.get('check_encoding_issues', True):
encoding_issues = [i for i in result['issues'] if 'encoding' in i]
if encoding_issues and processed_count <= 5: # Only log first 5
count = next((int(i.split('_')[2]) for i in encoding_issues if '_found' in i), 0)
if count > 0:
log(f" β†’ Found encoding artifacts in {filename}: {count} instances")
# Log spacing issues
if 'no_spacing_or_linebreaks' in result['issues'] and processed_count <= 5:
log(f" β†’ Found spacing/linebreak issue in {filename}")
# Log API response unavailable markers
api_issues = [i for i in result['issues'] if 'api_response_unavailable' in i]
if api_issues and processed_count <= 5:
count = next((int(i.split('_')[3]) for i in api_issues if '_found' in i), 0)
if count > 0:
log(f" β†’ Found AI response unavailable markers in {filename}: {count} instances")
results.extend(batch_results)
except Exception as e:
log(f" ❌ Error processing batch: {e}")
import traceback
log(f" Traceback: {traceback.format_exc()}")
# Clear the progress line (like original)
print() # New line after progress indicator
# Sort results by file index to maintain order
results.sort(key=lambda x: x['file_index'])
log("\nβœ… Initial scan complete.")
# Time the duplicate detection phase
dup_start_time = time.time()
# Detect duplicates (already optimized)
duplicate_groups, near_duplicate_groups, duplicate_confidence = detect_duplicates(
results, log, should_stop, config
)
dup_time = time.time() - dup_start_time
log(f"βœ… Duplicate detection completed in {dup_time:.1f} seconds")
# Process results and check for additional issues
log("\nπŸ“Š Checking for other issues...")
# Group files by duplicate group
groups = {}
for filename, group_id in duplicate_groups.items():
if group_id not in groups:
groups[group_id] = []
groups[group_id].append(filename)
# Check each file for all issues (this part is fast, no need to parallelize)
for idx, result in enumerate(results):
issues = result.get('issues', [])
# Check duplicates
if result['filename'] in duplicate_groups:
group_id = duplicate_groups[result['filename']]
group_files = groups[group_id]
if len(group_files) > 1:
others = [f for f in group_files if f != result['filename']]
# Get confidence score
confidence = 0
for other in others:
pair = tuple(sorted([result['filename'], other]))
if pair in duplicate_confidence:
confidence = max(confidence, duplicate_confidence[pair])
result['duplicate_confidence'] = confidence
if len(others) == 1:
issues.append(f"DUPLICATE: exact_or_near_copy_of_{others[0]}")
else:
issues.append(f"DUPLICATE: part_of_{len(group_files)}_file_group")
# Check near-duplicates
elif result['filename'] in near_duplicate_groups:
near_group_id = near_duplicate_groups[result['filename']]
near_group_files = [f for f, gid in near_duplicate_groups.items() if gid == near_group_id]
if len(near_group_files) > 1:
others = [f for f in near_group_files if f != result['filename']]
if len(others) == 1:
issues.append(f"NEAR_DUPLICATE: highly_similar_to_{others[0]}")
else:
issues.append(f"NEAR_DUPLICATE: similar_to_{len(near_group_files)-1}_other_files")
# Check other issues
raw_text = result['raw_text']
# Non-English content
has_non_english, lang_issues = detect_non_english_content(raw_text, qa_settings)
if has_non_english:
issues.extend(lang_issues)
# Spacing/formatting issues
if qa_settings.get('check_encoding_issues', True):
if has_no_spacing_or_linebreaks(raw_text):
issues.append("no_spacing_or_linebreaks")
# Repetitive content
if qa_settings.get('check_repetition', True):
if has_repeating_sentences(raw_text):
issues.append("excessive_repetition")
# Translation artifacts
if result.get('translation_artifacts'):
for artifact in result['translation_artifacts']:
if artifact['type'] == 'machine_translation':
issues.append(f"machine_translation_markers_{artifact['count']}_found")
elif artifact['type'] == 'encoding_issues':
if qa_settings.get('check_encoding_issues', True):
issues.append(f"encoding_issues_{artifact['count']}_found")
elif artifact['type'] == 'repeated_watermarks':
issues.append(f"repeated_watermarks_{artifact['count']}_found")
elif artifact['type'] == 'api_response_unavailable':
issues.append(f"api_response_unavailable_{artifact['count']}_found")
elif artifact['type'] == 'chapter_continuation':
issues.append(f"chapter_continuation_{artifact['count']}_found")
elif artifact['type'] == 'split_indicators':
issues.append(f"split_indicators_{artifact['count']}_found")
elif 'glossary_' in artifact['type']:
severity = artifact.get('severity', 'medium')
if severity == 'critical':
issues.append(f"CRITICAL_{artifact['type']}_{artifact['count']}_found")
else:
issues.append(f"{artifact['type']}_{artifact['count']}_found")
result['issues'] = issues
result['score'] = len(issues)
if issues:
log(f" {result['filename']}: {', '.join(issues[:2])}" + (" ..." if len(issues) > 2 else ""))
# Clean up to save memory
for result in results:
result.pop('raw_text', None)
result.pop('hashes', None)
result.pop('semantic_sig', None)
result.pop('structural_sig', None)
result.pop('normalized_text', None)
# Generate reports
generate_reports(results, folder_path, duplicate_confidence, log, qa_settings)
# Update progress file
update_progress_file(folder_path, results, log)
# Final timing
total_time = time.time() - start_time
log(f"\n⏱️ Total scan time: {total_time:.1f} seconds")
if total_time > 60:
log(f" ({int(total_time // 60)} minutes {int(total_time % 60)} seconds)")
log("⚑ ProcessPoolExecutor: ENABLED - Maximum performance achieved!")
def check_html_structure_issues(file_path, log=print):
"""
Check for HTML structure problems including unwrapped text and unclosed tags.
Returns:
tuple: (has_issues, issue_types) where issue_types is a list of specific issues found
"""
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
issues = []
# Check 1: Empty file
if not content.strip():
issues.append('missing_html_structure')
return True, issues
# Check 2: No HTML tags at all
if '<' not in content or '>' not in content:
issues.append('missing_html_structure')
return True, issues
# Check 3: Large blocks of unwrapped text
from bs4 import BeautifulSoup, NavigableString
try:
soup = BeautifulSoup(content, 'html.parser')
# Look for text that's sitting directly in body (not in any tag)
body = soup.find('body')
if body:
unwrapped_text_total = 0
# Check all direct children of body
for element in body.children:
if isinstance(element, NavigableString):
text = str(element).strip()
# Count any non-whitespace text
if text and not text.isspace():
unwrapped_text_total += len(text)
# If we found significant unwrapped text, that's a problem
if unwrapped_text_total > 100: # More than 100 chars of unwrapped text
issues.append('unwrapped_text_content')
log(f" Found {unwrapped_text_total} characters of unwrapped text")
except Exception as e:
log(f" Warning: Could not parse HTML structure: {e}")
# Check 4: Unclosed HTML tags
import re
# Track key structural tags for later validation
content_lower = content.lower()
html_open_exists = bool(re.search(r'<html[^>]*>', content_lower))
html_close_exists = bool(re.search(r'</html>', content_lower))
body_open_exists = bool(re.search(r'<body[^>]*>', content_lower))
body_close_exists = bool(re.search(r'</body>', content_lower))
# Tags that require closing tags (not self-closing)
# Include html and body explicitly in this check
paired_tags = [
'html', 'body', 'head', 'title', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6',
'p', 'div', 'span', 'a', 'ul', 'ol', 'li', 'table', 'tr', 'td', 'th',
'form', 'button', 'script', 'style', 'nav', 'header', 'footer', 'main',
'article', 'section', 'aside', 'strong', 'em', 'b', 'i', 'u', 'small',
'blockquote', 'pre', 'code', 'kbd', 'var', 'samp', 'cite', 'q', 'mark',
'time', 'address', 'figcaption', 'figure', 'label', 'select', 'option',
'textarea', 'fieldset', 'legend', 'details', 'summary', 'dialog'
]
unclosed_tags = []
for tag in paired_tags:
# Count opening tags (including those with attributes)
open_pattern = rf'<{tag}(?:\s+[^>]*)?>'
close_pattern = rf'</{tag}>'
# Also check for self-closing tags like <tag />
self_closing_pattern = rf'<{tag}(?:\s+[^>]*)?/>'
open_count = len(re.findall(open_pattern, content_lower, re.IGNORECASE))
close_count = len(re.findall(close_pattern, content_lower, re.IGNORECASE))
self_closing_count = len(re.findall(self_closing_pattern, content_lower, re.IGNORECASE))
# Adjust open count by removing self-closing tags
effective_open_count = open_count - self_closing_count
if effective_open_count > close_count:
unclosed_tags.append(f"{tag} ({effective_open_count - close_count} unclosed)")
elif close_count > effective_open_count:
unclosed_tags.append(f"{tag} ({close_count - effective_open_count} extra closing tags)")
if unclosed_tags:
issues.append('unclosed_html_tags')
log(f" Found unclosed/mismatched tags: {', '.join(unclosed_tags[:5])}" +
(" ..." if len(unclosed_tags) > 5 else ""))
# Check 5: Basic HTML structure validation - only check for consistency, not completeness
# Note: Variables like html_open_exists are already defined in Check 4
head_open_exists = bool(re.search(r'<head[^>]*>', content_lower))
head_close_exists = bool(re.search(r'</head>', content_lower))
missing_structure = []
# Only flag if tags are opened but not closed (or vice versa)
if html_open_exists and not html_close_exists:
missing_structure.append('closing </html>')
elif html_close_exists and not html_open_exists:
missing_structure.append('opening <html>')
if head_open_exists and not head_close_exists:
missing_structure.append('closing </head>')
elif head_close_exists and not head_open_exists:
missing_structure.append('opening <head>')
if body_open_exists and not body_close_exists:
missing_structure.append('closing </body>')
elif body_close_exists and not body_open_exists:
missing_structure.append('opening <body>')
# Only flag as incomplete if there are actual mismatches
if missing_structure:
issues.append('incomplete_html_structure')
log(f" Mismatched HTML structure tags: {', '.join(missing_structure)}")
# Check 6: Nested tag validation using BeautifulSoup's parser errors
try:
# Parse with html.parser which is more strict
soup_strict = BeautifulSoup(content, 'html.parser')
# Check for common nesting issues
# For example, p tags shouldn't contain div tags
invalid_nesting = []
# Check for p tags containing block elements
for p_tag in soup_strict.find_all('p'):
block_elements = p_tag.find_all(['div', 'p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6',
'ul', 'ol', 'li', 'blockquote', 'pre', 'table'])
if block_elements:
invalid_nesting.append(f"<p> contains block elements: {[el.name for el in block_elements[:3]]}")
# Check for list items outside of lists
all_li = soup_strict.find_all('li')
for li in all_li:
parent = li.parent
if parent and parent.name not in ['ul', 'ol']:
invalid_nesting.append(f"<li> not inside <ul> or <ol>")
break # Only report once
if invalid_nesting:
issues.append('invalid_nesting')
log(f" Found invalid tag nesting: {'; '.join(invalid_nesting[:3])}" +
(" ..." if len(invalid_nesting) > 3 else ""))
except Exception as e:
# BeautifulSoup might throw exceptions for severely malformed HTML
log(f" Warning: HTML parsing error (possible malformed structure): {str(e)[:100]}")
issues.append('malformed_html')
# Check 7: Final validation for critical mismatched tags
# Only flag if we have opening tags without closing tags (not missing both)
if html_open_exists and not html_close_exists:
if 'incomplete_html_structure' not in issues:
issues.append('incomplete_html_structure')
if 'unclosed_html_tags' not in issues:
issues.append('unclosed_html_tags')
log(f" Critical: Found opening <html> tag but missing closing </html> tag")
if body_open_exists and not body_close_exists:
if 'unclosed_html_tags' not in issues:
issues.append('unclosed_html_tags')
log(f" Critical: Found opening <body> tag but missing closing </body> tag")
return len(issues) > 0, issues
except Exception as e:
log(f"Error checking HTML structure for {file_path}: {e}")
return False, []
def check_insufficient_paragraph_tags(html_content, threshold=0.3):
"""
Check if HTML content has insufficient paragraph tags.
Args:
html_content: The raw HTML content from the file
threshold: Minimum ratio of text that should be in paragraph tags (default 0.3 = 30%)
Returns:
bool: True if file has insufficient paragraph tags
"""
from bs4 import BeautifulSoup, NavigableString
try:
soup = BeautifulSoup(html_content, 'html.parser')
# Get total text length
total_text = soup.get_text(strip=True)
total_length = len(total_text)
# Skip short files
if total_length < 200:
return False
# Count text in paragraph tags
p_text_length = 0
for p in soup.find_all('p'):
p_text_length += len(p.get_text(strip=True))
# Also check for unwrapped text in body
body = soup.find('body')
if body:
for element in body.children:
if isinstance(element, NavigableString):
text = str(element).strip()
if len(text) > 50: # Significant unwrapped text block
# If we find big chunks of unwrapped text, flag it
return True
# Calculate ratio
if total_length == 0:
return False
ratio = p_text_length / total_length
# Flag if not enough text is in paragraphs
return ratio < threshold
except Exception as e:
print(f"Error checking paragraph tags: {e}")
return False
def launch_gui():
"""Launch GUI interface with mode selection"""
def run_scan():
folder_path = filedialog.askdirectory(title="Select Folder with HTML Files")
if folder_path:
mode = mode_var.get()
def scan_thread():
scan_html_folder(folder_path, print, None, mode)
threading.Thread(target=scan_thread, daemon=True).start()
# Show status
status_label.config(text=f"Scanning in {mode} mode...")
root.update()
root = tk.Tk()
root.title("Translation QA Scanner - Enhanced Edition")
root.geometry("690x200")
# Mode selection
mode_frame = tk.Frame(root)
mode_frame.pack(pady=10)
tk.Label(mode_frame, text="Detection Mode:").pack(side=tk.LEFT, padx=5)
mode_var = tk.StringVar(value="quick-scan")
modes = [
("Aggressive (75% threshold)", "aggressive"),
("Quick Scan (85% threshold)", "quick-scan"),
("Custom (Configurable)", "custom"),
("AI Hunter (30% text, 85% semantic)", "ai-hunter")
]
for text, mode in modes:
tk.Radiobutton(mode_frame, text=text, variable=mode_var, value=mode).pack(side=tk.LEFT, padx=5)
# Scan button
scan_button = tk.Button(root, text="Scan Folder for QA Issues",
command=run_scan, height=2, width=30)
scan_button.pack(pady=20)
# Status label
status_label = tk.Label(root, text="")
status_label.pack(pady=5)
# Info label
info_text = "Enhanced scanner with semantic analysis, structural patterns, and fuzzy matching"
if not MINHASH_AVAILABLE:
info_text += "\n(Install 'datasketch' for faster processing of large datasets)"
info_label = tk.Label(root, text=info_text, fg="gray")
info_label.pack(pady=5)
root.mainloop()
if __name__ == "__main__":
import sys
if len(sys.argv) < 2:
launch_gui()
else:
mode = 'standard'
if len(sys.argv) > 2:
if sys.argv[2] == "--aggressive":
mode = 'aggressive'
elif sys.argv[2] == "--custom":
mode = 'custom'
elif sys.argv[2] == "--quick-scan":
mode = 'quick-scan'
elif sys.argv[2] == "--ai-hunter":
mode = 'ai-hunter'
scan_html_folder(sys.argv[1], mode=mode)
def reset_stop_flag():
"""Reset the stop flag - useful for starting a new scan"""
global _stop_flag
_stop_flag = False
print("πŸ”„ Stop flag reset to False")
def is_stop_requested():
"""Check if stop has been requested"""
global _stop_flag
return _stop_flag
# Export the stop_scan function so GUI can call it
__all__ = ['scan_html_folder', 'stop_scan', 'reset_stop_flag', 'is_stop_requested',
'DuplicateDetectionConfig', 'test_stop_functionality']
def test_stop_functionality():
"""Test function to verify stop_scan works"""
global _stop_flag
print(f"Before stop_scan: _stop_flag = {_stop_flag}")
stop_scan()
print(f"After stop_scan: _stop_flag = {_stop_flag}")
_stop_flag = False # Reset
return True
# ADD THIS AT MODULE LEVEL (outside any function/class)
def process_comparison_batch_fast(args):
"""Process a batch of comparisons - MUST BE AT MODULE LEVEL FOR PICKLING"""
batch, data = args
batch_results = []
all_data = data['all_data']
thresholds = data['thresholds']
# Import what we need inside the worker
from difflib import SequenceMatcher
# Import the similarity functions - they must also be at module level
# If they're in the same module, you might need to import them explicitly
# from scan_html_folder import calculate_semantic_similarity, calculate_structural_similarity
for i, j in batch:
data_i = all_data[i]
data_j = all_data[j]
# Calculate ALL similarities - NO SHORTCUTS
# 1. Semantic similarity
sem_sim = calculate_semantic_similarity(
data_i['semantic_sig'],
data_j['semantic_sig']
)
# 2. Structural similarity
struct_sim = calculate_structural_similarity(
data_i['structural_sig'],
data_j['structural_sig']
)
# 3. Text similarity - ALWAYS calculate
text_sim = 0.0
if data_i['text_hash'] and data_j['text_hash']:
if data_i['text_hash'] == data_j['text_hash']:
text_sim = 1.0
else:
# Always calculate full similarity
text_sim = SequenceMatcher(
None,
data_i['text'],
data_j['text']
).ratio()
# Check ALL duplicate conditions
is_duplicate = False
is_retranslation = False
confidence = 0.0
# AI Hunter logic: High semantic + high structural = likely duplicate
if sem_sim >= thresholds['semantic'] and struct_sim >= thresholds['structural']:
is_duplicate = True
is_retranslation = text_sim < 0.6
confidence = (sem_sim + struct_sim) / 2
# Traditional similarity check
elif text_sim >= thresholds['similarity']:
is_duplicate = True
is_retranslation = False
confidence = text_sim
# Store result if duplicate found
if is_duplicate:
batch_results.append({
'i': i,
'j': j,
'sem_sim': sem_sim,
'struct_sim': struct_sim,
'text_sim': text_sim,
'is_duplicate': True,
'is_retranslation': is_retranslation,
'confidence': confidence
})
return batch_results
def parallel_ai_hunter_check(results, duplicate_groups, duplicate_confidence, config, log, should_stop):
"""Parallel AI Hunter checking - FIXED FOR PROCESSPOOLEXECUTOR"""
log("πŸ€– AI Hunter mode: Enhanced semantic and structural checking active")
log("⚑ PARALLEL PROCESSING ENABLED - MAXIMUM PERFORMANCE!")
total_comparisons = (len(results) * (len(results) - 1)) // 2
log(f" ⚠️ Will check ALL {total_comparisons:,} file pairs - NO COMPROMISES!")
# Determine number of workers
cpu_count = multiprocessing.cpu_count()
max_workers_config = 0
try:
import json
import os
config_path = os.path.join(os.path.dirname(__file__), 'config.json')
if os.path.exists(config_path):
with open(config_path, 'r', encoding='utf-8') as f:
full_config = json.load(f)
ai_hunter_config = full_config.get('ai_hunter_config', {})
max_workers_config = ai_hunter_config.get('ai_hunter_max_workers', 1)
except:
max_workers_config = 0
if max_workers_config > 0:
max_workers = min(max_workers_config, cpu_count)
log(f" πŸ–₯️ Using {max_workers} parallel workers (configured limit of {max_workers_config})")
else:
max_workers = cpu_count
log(f" πŸš€ Using ALL {max_workers} CPU cores - MAXIMUM PERFORMANCE!")
# Pre-compute everything once
log(" πŸ“Š Pre-computing all data structures...")
# Build a single data structure with everything we need
all_data = []
text_hash_lookup = {}
for idx, result in enumerate(results):
text = result.get('normalized_text', '')[:2000]
text_hash = hashlib.md5(text.encode()).hexdigest() if text else None
data_entry = {
'idx': idx,
'filename': result['filename'],
'text': text,
'text_hash': text_hash,
'semantic_sig': result.get('semantic_sig', {}),
'structural_sig': result.get('structural_sig', {})
}
all_data.append(data_entry)
if text_hash:
text_hash_lookup[text_hash] = text_hash_lookup.get(text_hash, 0) + 1
# Create ALL comparison tasks
comparison_tasks = []
for i in range(len(results)):
for j in range(i + 1, len(results)):
comparison_tasks.append((i, j))
log(f" πŸ“‹ Created {len(comparison_tasks):,} comparison tasks")
# Optimal batch size
optimal_batch_size = max(1000, total_comparisons // (max_workers * 5))
optimal_batch_size = min(optimal_batch_size, 10000)
batches = []
for i in range(0, len(comparison_tasks), optimal_batch_size):
batch = comparison_tasks[i:i + optimal_batch_size]
batches.append(batch)
log(f" πŸ“¦ Split into {len(batches)} batches of ~{optimal_batch_size} comparisons each")
# Progress tracking
comparisons_done = 0
last_progress = 0
start_time = time.time()
found_duplicates = []
# Prepare data for multiprocessing
worker_data = {
'all_data': all_data,
'thresholds': {
'semantic': config.get_threshold('semantic'),
'structural': config.get_threshold('structural'),
'similarity': config.get_threshold('similarity')
}
}
# Prepare batch arguments
batch_args = [(batch, worker_data) for batch in batches]
# Process with ProcessPoolExecutor
with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor:
# Submit all batches
futures = []
for args in batch_args:
if should_stop():
log("β›” AI Hunter interrupted by user.")
executor.shutdown(wait=True)
return comparisons_done
future = executor.submit(process_comparison_batch_fast, args)
futures.append(future)
# Process results as they complete
for completed_future in concurrent.futures.as_completed(futures):
if should_stop():
log("β›” AI Hunter interrupted by user.")
executor.shutdown(wait=True)
return comparisons_done
# Get results
batch_results = completed_future.result()
# Batch all updates
updates = []
for result in batch_results:
if result['is_duplicate']:
file1 = all_data[result['i']]['filename']
file2 = all_data[result['j']]['filename']
updates.append((file1, file2, result))
# Apply all updates in one lock
if updates:
with merge_lock:
for file1, file2, result in updates:
merge_duplicate_groups(duplicate_groups, file1, file2)
duplicate_confidence[(file1, file2)] = result['confidence']
# Log findings
if result['is_retranslation']:
msg = (f"🎯 AI Hunter: Found potential retranslation\n"
f" Files: {file1} β‰ˆ {file2}\n"
f" Text similarity: {int(result['text_sim']*100)}% (low)\n"
f" Semantic similarity: {int(result['sem_sim']*100)}% (high)\n"
f" Structural similarity: {int(result['struct_sim']*100)}% (high)")
found_duplicates.append(msg)
if len(found_duplicates) <= 3:
log(f"\n [DEBUG] AI Hunter Retranslation Detection:")
log(f" [DEBUG] File 1: {file1}")
log(f" [DEBUG] File 2: {file2}")
log(f" [DEBUG] Text Similarity: {result['text_sim']:.4f}")
log(f" [DEBUG] Semantic Similarity: {result['sem_sim']:.4f}")
log(f" [DEBUG] Structural Similarity: {result['struct_sim']:.4f}")
log(f" [DEBUG] Confidence: {result['confidence']:.4f}")
else:
msg = (f" πŸ“„ Found duplicate: {file1} β‰ˆ {file2} "
f"(confidence: {int(result['confidence']*100)}%)")
found_duplicates.append(msg)
# Update progress
comparisons_done += optimal_batch_size
if comparisons_done > total_comparisons:
comparisons_done = total_comparisons
progress = int((comparisons_done / total_comparisons) * 100)
if progress >= last_progress + 10 or progress == 100:
elapsed = time.time() - start_time
rate = comparisons_done / elapsed if elapsed > 0 else 0
remaining = (total_comparisons - comparisons_done) / rate if rate > 0 else 0
log(f" πŸ“Š AI Hunter progress: {comparisons_done:,}/{total_comparisons:,} "
f"({progress}%) - ~{int(remaining)}s remaining - "
f"Speed: {int(rate):,} comparisons/sec")
for msg in found_duplicates[:5]:
log(msg)
found_duplicates = found_duplicates[5:]
last_progress = progress
# Final summary
elapsed = time.time() - start_time
log(f"βœ… AI Hunter complete! Processed {total_comparisons:,} comparisons in {int(elapsed)}s")
log(f" ⚑ Speed: {int(total_comparisons/elapsed):,} comparisons/sec")
log(f"\n [DEBUG] === AI HUNTER FINAL STATISTICS ===")
log(f" [DEBUG] Total comparisons: {total_comparisons:,}")
log(f" [DEBUG] Time taken: {elapsed:.2f} seconds")
log(f" [DEBUG] Comparisons per second: {int(total_comparisons/elapsed):,}")
log(f" [DEBUG] Duplicate groups found: {len(set(duplicate_groups.values()))}")
log(f" [DEBUG] Total duplicate pairs: {len(duplicate_confidence)}")
log(f" [DEBUG] Parallel workers used: {max_workers}")
log(f" [DEBUG] ProcessPoolExecutor: ENABLED")
log(f" [DEBUG] =====================================\n")
for msg in found_duplicates[-10:]:
log(msg)
return comparisons_done