Spaces:
Running
Running
Delete ocr_manager.py
Browse files- ocr_manager.py +0 -1904
ocr_manager.py
DELETED
|
@@ -1,1904 +0,0 @@
|
|
| 1 |
-
# ocr_manager.py
|
| 2 |
-
"""
|
| 3 |
-
OCR Manager for handling multiple OCR providers
|
| 4 |
-
Handles installation, model downloading, and OCR processing
|
| 5 |
-
Updated with HuggingFace donut model and proper bubble detection integration
|
| 6 |
-
"""
|
| 7 |
-
import os
|
| 8 |
-
import sys
|
| 9 |
-
import cv2
|
| 10 |
-
import json
|
| 11 |
-
import subprocess
|
| 12 |
-
import threading
|
| 13 |
-
import traceback
|
| 14 |
-
from typing import List, Dict, Optional, Tuple, Any
|
| 15 |
-
import numpy as np
|
| 16 |
-
from dataclasses import dataclass
|
| 17 |
-
from PIL import Image
|
| 18 |
-
import logging
|
| 19 |
-
import time
|
| 20 |
-
import random
|
| 21 |
-
import base64
|
| 22 |
-
import io
|
| 23 |
-
import requests
|
| 24 |
-
|
| 25 |
-
try:
|
| 26 |
-
import gptqmodel
|
| 27 |
-
HAS_GPTQ = True
|
| 28 |
-
except ImportError:
|
| 29 |
-
try:
|
| 30 |
-
import auto_gptq
|
| 31 |
-
HAS_GPTQ = True
|
| 32 |
-
except ImportError:
|
| 33 |
-
HAS_GPTQ = False
|
| 34 |
-
|
| 35 |
-
try:
|
| 36 |
-
import optimum
|
| 37 |
-
HAS_OPTIMUM = True
|
| 38 |
-
except ImportError:
|
| 39 |
-
HAS_OPTIMUM = False
|
| 40 |
-
|
| 41 |
-
try:
|
| 42 |
-
import accelerate
|
| 43 |
-
HAS_ACCELERATE = True
|
| 44 |
-
except ImportError:
|
| 45 |
-
HAS_ACCELERATE = False
|
| 46 |
-
|
| 47 |
-
logger = logging.getLogger(__name__)
|
| 48 |
-
|
| 49 |
-
@dataclass
|
| 50 |
-
class OCRResult:
|
| 51 |
-
"""Unified OCR result format with built-in sanitization to prevent data corruption."""
|
| 52 |
-
text: str
|
| 53 |
-
bbox: Tuple[int, int, int, int] # x, y, w, h
|
| 54 |
-
confidence: float
|
| 55 |
-
vertices: Optional[List[Tuple[int, int]]] = None
|
| 56 |
-
|
| 57 |
-
def __post_init__(self):
|
| 58 |
-
"""
|
| 59 |
-
This special method is called automatically after the object is created.
|
| 60 |
-
It acts as a final safeguard to ensure the 'text' attribute is ALWAYS a clean string.
|
| 61 |
-
"""
|
| 62 |
-
# --- THIS IS THE DEFINITIVE FIX ---
|
| 63 |
-
# If the text we received is a tuple, we extract the first element.
|
| 64 |
-
# This makes it impossible for a tuple to exist in a finished object.
|
| 65 |
-
if isinstance(self.text, tuple):
|
| 66 |
-
# Log that we are fixing a critical data error.
|
| 67 |
-
print(f"CRITICAL WARNING: Corrupted tuple detected in OCRResult. Sanitizing '{self.text}' to '{self.text[0]}'.")
|
| 68 |
-
self.text = self.text[0]
|
| 69 |
-
|
| 70 |
-
# Ensure the final result is always a stripped string.
|
| 71 |
-
self.text = str(self.text).strip()
|
| 72 |
-
|
| 73 |
-
class OCRProvider:
|
| 74 |
-
"""Base class for OCR providers"""
|
| 75 |
-
|
| 76 |
-
def __init__(self, log_callback=None):
|
| 77 |
-
# Set thread limits early if environment indicates single-threaded mode
|
| 78 |
-
try:
|
| 79 |
-
if os.environ.get('OMP_NUM_THREADS') == '1':
|
| 80 |
-
# Already in single-threaded mode, ensure it's applied to this process
|
| 81 |
-
try:
|
| 82 |
-
import sys
|
| 83 |
-
if 'torch' in sys.modules:
|
| 84 |
-
import torch
|
| 85 |
-
torch.set_num_threads(1)
|
| 86 |
-
except (ImportError, RuntimeError, AttributeError):
|
| 87 |
-
pass
|
| 88 |
-
try:
|
| 89 |
-
import cv2
|
| 90 |
-
cv2.setNumThreads(1)
|
| 91 |
-
except (ImportError, AttributeError):
|
| 92 |
-
pass
|
| 93 |
-
except Exception:
|
| 94 |
-
pass
|
| 95 |
-
|
| 96 |
-
self.log_callback = log_callback
|
| 97 |
-
self.is_installed = False
|
| 98 |
-
self.is_loaded = False
|
| 99 |
-
self.model = None
|
| 100 |
-
self.stop_flag = None
|
| 101 |
-
self._stopped = False
|
| 102 |
-
|
| 103 |
-
def _log(self, message: str, level: str = "info"):
|
| 104 |
-
"""Log message with stop suppression"""
|
| 105 |
-
# Suppress logs when stopped (allow only essential stop confirmation messages)
|
| 106 |
-
if self._check_stop():
|
| 107 |
-
essential_stop_keywords = [
|
| 108 |
-
"⏹️ Translation stopped by user",
|
| 109 |
-
"⏹️ OCR processing stopped",
|
| 110 |
-
"cleanup", "🧹"
|
| 111 |
-
]
|
| 112 |
-
if not any(keyword in message for keyword in essential_stop_keywords):
|
| 113 |
-
return
|
| 114 |
-
|
| 115 |
-
if self.log_callback:
|
| 116 |
-
self.log_callback(message, level)
|
| 117 |
-
else:
|
| 118 |
-
print(f"[{level.upper()}] {message}")
|
| 119 |
-
|
| 120 |
-
def set_stop_flag(self, stop_flag):
|
| 121 |
-
"""Set the stop flag for checking interruptions"""
|
| 122 |
-
self.stop_flag = stop_flag
|
| 123 |
-
self._stopped = False
|
| 124 |
-
|
| 125 |
-
def _check_stop(self) -> bool:
|
| 126 |
-
"""Check if stop has been requested"""
|
| 127 |
-
if self._stopped:
|
| 128 |
-
return True
|
| 129 |
-
if self.stop_flag and self.stop_flag.is_set():
|
| 130 |
-
self._stopped = True
|
| 131 |
-
return True
|
| 132 |
-
# Check global manga translator cancellation
|
| 133 |
-
try:
|
| 134 |
-
from manga_translator import MangaTranslator
|
| 135 |
-
if MangaTranslator.is_globally_cancelled():
|
| 136 |
-
self._stopped = True
|
| 137 |
-
return True
|
| 138 |
-
except Exception:
|
| 139 |
-
pass
|
| 140 |
-
return False
|
| 141 |
-
|
| 142 |
-
def reset_stop_flags(self):
|
| 143 |
-
"""Reset stop flags when starting new processing"""
|
| 144 |
-
self._stopped = False
|
| 145 |
-
|
| 146 |
-
def check_installation(self) -> bool:
|
| 147 |
-
"""Check if provider is installed"""
|
| 148 |
-
raise NotImplementedError
|
| 149 |
-
|
| 150 |
-
def install(self, progress_callback=None) -> bool:
|
| 151 |
-
"""Install the provider"""
|
| 152 |
-
raise NotImplementedError
|
| 153 |
-
|
| 154 |
-
def load_model(self, **kwargs) -> bool:
|
| 155 |
-
"""Load the OCR model"""
|
| 156 |
-
raise NotImplementedError
|
| 157 |
-
|
| 158 |
-
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 159 |
-
"""Detect text in image"""
|
| 160 |
-
raise NotImplementedError
|
| 161 |
-
|
| 162 |
-
class CustomAPIProvider(OCRProvider):
|
| 163 |
-
"""Custom API OCR provider that uses existing GUI variables"""
|
| 164 |
-
|
| 165 |
-
def __init__(self, log_callback=None):
|
| 166 |
-
super().__init__(log_callback)
|
| 167 |
-
|
| 168 |
-
# Use EXISTING environment variables from TranslatorGUI
|
| 169 |
-
self.api_url = os.environ.get('OPENAI_CUSTOM_BASE_URL', '')
|
| 170 |
-
self.api_key = os.environ.get('API_KEY', '') or os.environ.get('OPENAI_API_KEY', '')
|
| 171 |
-
self.model_name = os.environ.get('MODEL', 'gpt-4o-mini')
|
| 172 |
-
|
| 173 |
-
# OCR prompt - use system prompt or a dedicated OCR prompt variable
|
| 174 |
-
self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT',
|
| 175 |
-
os.environ.get('SYSTEM_PROMPT',
|
| 176 |
-
"YOU ARE AN OCR SYSTEM. YOUR ONLY JOB IS TEXT EXTRACTION.\n\n"
|
| 177 |
-
"CRITICAL RULES:\n"
|
| 178 |
-
"1. DO NOT TRANSLATE ANYTHING\n"
|
| 179 |
-
"2. DO NOT MODIFY THE TEXT\n"
|
| 180 |
-
"3. DO NOT EXPLAIN OR COMMENT\n"
|
| 181 |
-
"4. ONLY OUTPUT THE EXACT TEXT YOU SEE\n"
|
| 182 |
-
"5. PRESERVE NATURAL TEXT FLOW - DO NOT ADD UNNECESSARY LINE BREAKS\n\n"
|
| 183 |
-
"If you see Korean text, output it in Korean.\n"
|
| 184 |
-
"If you see Japanese text, output it in Japanese.\n"
|
| 185 |
-
"If you see Chinese text, output it in Chinese.\n"
|
| 186 |
-
"If you see English text, output it in English.\n\n"
|
| 187 |
-
"IMPORTANT: Only use line breaks where they naturally occur in the original text "
|
| 188 |
-
"(e.g., between dialogue lines or paragraphs). Do not break text mid-sentence or "
|
| 189 |
-
"between every word/character.\n\n"
|
| 190 |
-
"For vertical text common in manga/comics, transcribe it as a continuous line unless "
|
| 191 |
-
"there are clear visual breaks.\n\n"
|
| 192 |
-
"NEVER translate. ONLY extract exactly what is written.\n"
|
| 193 |
-
"Output ONLY the raw text, nothing else."
|
| 194 |
-
))
|
| 195 |
-
|
| 196 |
-
# Use existing temperature and token settings
|
| 197 |
-
self.temperature = float(os.environ.get('TRANSLATION_TEMPERATURE', '0.01'))
|
| 198 |
-
# Don't hardcode to 8192 - get fresh value when actually used
|
| 199 |
-
self.max_tokens = int(os.environ.get('MAX_OUTPUT_TOKENS', '4096'))
|
| 200 |
-
|
| 201 |
-
# Image settings from existing compression variables
|
| 202 |
-
self.image_format = 'jpeg' if os.environ.get('IMAGE_COMPRESSION_FORMAT', 'auto') != 'png' else 'png'
|
| 203 |
-
self.image_quality = int(os.environ.get('JPEG_QUALITY', '100'))
|
| 204 |
-
|
| 205 |
-
# Simple defaults
|
| 206 |
-
self.api_format = 'openai' # Most custom endpoints are OpenAI-compatible
|
| 207 |
-
self.timeout = int(os.environ.get('CHUNK_TIMEOUT', '30'))
|
| 208 |
-
self.api_headers = {} # Additional custom headers
|
| 209 |
-
|
| 210 |
-
# Retry configuration for Custom API OCR calls
|
| 211 |
-
self.max_retries = int(os.environ.get('CUSTOM_OCR_MAX_RETRIES', '3'))
|
| 212 |
-
self.retry_initial_delay = float(os.environ.get('CUSTOM_OCR_RETRY_INITIAL_DELAY', '0.8'))
|
| 213 |
-
self.retry_backoff = float(os.environ.get('CUSTOM_OCR_RETRY_BACKOFF', '1.8'))
|
| 214 |
-
self.retry_jitter = float(os.environ.get('CUSTOM_OCR_RETRY_JITTER', '0.4'))
|
| 215 |
-
self.retry_on_empty = os.environ.get('CUSTOM_OCR_RETRY_ON_EMPTY', '1') == '1'
|
| 216 |
-
|
| 217 |
-
def check_installation(self) -> bool:
|
| 218 |
-
"""Always installed - uses UnifiedClient"""
|
| 219 |
-
self.is_installed = True
|
| 220 |
-
return True
|
| 221 |
-
|
| 222 |
-
def install(self, progress_callback=None) -> bool:
|
| 223 |
-
"""No installation needed for API-based provider"""
|
| 224 |
-
return self.check_installation()
|
| 225 |
-
|
| 226 |
-
def load_model(self, **kwargs) -> bool:
|
| 227 |
-
"""Initialize UnifiedClient with current settings"""
|
| 228 |
-
try:
|
| 229 |
-
from unified_api_client import UnifiedClient
|
| 230 |
-
|
| 231 |
-
# Support passing API key from GUI if available
|
| 232 |
-
if 'api_key' in kwargs:
|
| 233 |
-
api_key = kwargs['api_key']
|
| 234 |
-
else:
|
| 235 |
-
api_key = os.environ.get('API_KEY', '') or os.environ.get('OPENAI_API_KEY', '')
|
| 236 |
-
|
| 237 |
-
if 'model' in kwargs:
|
| 238 |
-
model = kwargs['model']
|
| 239 |
-
else:
|
| 240 |
-
model = os.environ.get('MODEL', 'gpt-4o-mini')
|
| 241 |
-
|
| 242 |
-
if not api_key:
|
| 243 |
-
self._log("❌ No API key configured", "error")
|
| 244 |
-
return False
|
| 245 |
-
|
| 246 |
-
# Create UnifiedClient just like translations do
|
| 247 |
-
self.client = UnifiedClient(model=model, api_key=api_key)
|
| 248 |
-
|
| 249 |
-
#self._log(f"✅ Using {model} for OCR via UnifiedClient")
|
| 250 |
-
self.is_loaded = True
|
| 251 |
-
return True
|
| 252 |
-
|
| 253 |
-
except Exception as e:
|
| 254 |
-
self._log(f"❌ Failed to initialize UnifiedClient: {str(e)}", "error")
|
| 255 |
-
return False
|
| 256 |
-
|
| 257 |
-
def _test_connection(self) -> bool:
|
| 258 |
-
"""Test API connection with a simple request"""
|
| 259 |
-
try:
|
| 260 |
-
# Create a small test image
|
| 261 |
-
test_image = np.ones((100, 100, 3), dtype=np.uint8) * 255
|
| 262 |
-
cv2.putText(test_image, "TEST", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
| 263 |
-
|
| 264 |
-
# Encode image
|
| 265 |
-
image_base64 = self._encode_image(test_image)
|
| 266 |
-
|
| 267 |
-
# Prepare test request based on API format
|
| 268 |
-
if self.api_format == 'openai':
|
| 269 |
-
test_payload = {
|
| 270 |
-
"model": self.model_name,
|
| 271 |
-
"messages": [
|
| 272 |
-
{
|
| 273 |
-
"role": "user",
|
| 274 |
-
"content": [
|
| 275 |
-
{"type": "text", "text": "What text do you see?"},
|
| 276 |
-
{"type": "image_url", "image_url": {"url": f"data:image/{self.image_format};base64,{image_base64}"}}
|
| 277 |
-
]
|
| 278 |
-
}
|
| 279 |
-
],
|
| 280 |
-
"max_tokens": 50
|
| 281 |
-
}
|
| 282 |
-
else:
|
| 283 |
-
# For other formats, just try a basic health check
|
| 284 |
-
return True
|
| 285 |
-
|
| 286 |
-
headers = self._prepare_headers()
|
| 287 |
-
response = requests.post(
|
| 288 |
-
self.api_url,
|
| 289 |
-
headers=headers,
|
| 290 |
-
json=test_payload,
|
| 291 |
-
timeout=10
|
| 292 |
-
)
|
| 293 |
-
|
| 294 |
-
return response.status_code == 200
|
| 295 |
-
|
| 296 |
-
except Exception:
|
| 297 |
-
return False
|
| 298 |
-
|
| 299 |
-
def _encode_image(self, image: np.ndarray) -> str:
|
| 300 |
-
"""Encode numpy array to base64 string"""
|
| 301 |
-
# Convert BGR to RGB if needed
|
| 302 |
-
if len(image.shape) == 3 and image.shape[2] == 3:
|
| 303 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 304 |
-
else:
|
| 305 |
-
image_rgb = image
|
| 306 |
-
|
| 307 |
-
# Convert to PIL Image
|
| 308 |
-
pil_image = Image.fromarray(image_rgb)
|
| 309 |
-
|
| 310 |
-
# Save to bytes buffer
|
| 311 |
-
buffer = io.BytesIO()
|
| 312 |
-
if self.image_format.lower() == 'png':
|
| 313 |
-
pil_image.save(buffer, format='PNG')
|
| 314 |
-
else:
|
| 315 |
-
pil_image.save(buffer, format='JPEG', quality=self.image_quality)
|
| 316 |
-
|
| 317 |
-
# Encode to base64
|
| 318 |
-
buffer.seek(0)
|
| 319 |
-
image_base64 = base64.b64encode(buffer.read()).decode('utf-8')
|
| 320 |
-
|
| 321 |
-
return image_base64
|
| 322 |
-
|
| 323 |
-
def _prepare_headers(self) -> dict:
|
| 324 |
-
"""Prepare request headers"""
|
| 325 |
-
headers = {
|
| 326 |
-
"Content-Type": "application/json"
|
| 327 |
-
}
|
| 328 |
-
|
| 329 |
-
# Add API key if configured
|
| 330 |
-
if self.api_key:
|
| 331 |
-
if self.api_format == 'anthropic':
|
| 332 |
-
headers["x-api-key"] = self.api_key
|
| 333 |
-
else:
|
| 334 |
-
headers["Authorization"] = f"Bearer {self.api_key}"
|
| 335 |
-
|
| 336 |
-
# Add any custom headers
|
| 337 |
-
headers.update(self.api_headers)
|
| 338 |
-
|
| 339 |
-
return headers
|
| 340 |
-
|
| 341 |
-
def _prepare_request_payload(self, image_base64: str) -> dict:
|
| 342 |
-
"""Prepare request payload based on API format"""
|
| 343 |
-
if self.api_format == 'openai':
|
| 344 |
-
return {
|
| 345 |
-
"model": self.model_name,
|
| 346 |
-
"messages": [
|
| 347 |
-
{
|
| 348 |
-
"role": "user",
|
| 349 |
-
"content": [
|
| 350 |
-
{"type": "text", "text": self.ocr_prompt},
|
| 351 |
-
{
|
| 352 |
-
"type": "image_url",
|
| 353 |
-
"image_url": {
|
| 354 |
-
"url": f"data:image/{self.image_format};base64,{image_base64}"
|
| 355 |
-
}
|
| 356 |
-
}
|
| 357 |
-
]
|
| 358 |
-
}
|
| 359 |
-
],
|
| 360 |
-
"max_tokens": self.max_tokens,
|
| 361 |
-
"temperature": self.temperature
|
| 362 |
-
}
|
| 363 |
-
|
| 364 |
-
elif self.api_format == 'anthropic':
|
| 365 |
-
return {
|
| 366 |
-
"model": self.model_name,
|
| 367 |
-
"max_tokens": self.max_tokens,
|
| 368 |
-
"temperature": self.temperature,
|
| 369 |
-
"messages": [
|
| 370 |
-
{
|
| 371 |
-
"role": "user",
|
| 372 |
-
"content": [
|
| 373 |
-
{
|
| 374 |
-
"type": "text",
|
| 375 |
-
"text": self.ocr_prompt
|
| 376 |
-
},
|
| 377 |
-
{
|
| 378 |
-
"type": "image",
|
| 379 |
-
"source": {
|
| 380 |
-
"type": "base64",
|
| 381 |
-
"media_type": f"image/{self.image_format}",
|
| 382 |
-
"data": image_base64
|
| 383 |
-
}
|
| 384 |
-
}
|
| 385 |
-
]
|
| 386 |
-
}
|
| 387 |
-
]
|
| 388 |
-
}
|
| 389 |
-
|
| 390 |
-
else:
|
| 391 |
-
# Custom format - use environment variable for template
|
| 392 |
-
template = os.environ.get('CUSTOM_OCR_REQUEST_TEMPLATE', '{}')
|
| 393 |
-
payload = json.loads(template)
|
| 394 |
-
|
| 395 |
-
# Replace placeholders
|
| 396 |
-
payload_str = json.dumps(payload)
|
| 397 |
-
payload_str = payload_str.replace('{{IMAGE_BASE64}}', image_base64)
|
| 398 |
-
payload_str = payload_str.replace('{{PROMPT}}', self.ocr_prompt)
|
| 399 |
-
payload_str = payload_str.replace('{{MODEL}}', self.model_name)
|
| 400 |
-
payload_str = payload_str.replace('{{MAX_TOKENS}}', str(self.max_tokens))
|
| 401 |
-
payload_str = payload_str.replace('{{TEMPERATURE}}', str(self.temperature))
|
| 402 |
-
|
| 403 |
-
return json.loads(payload_str)
|
| 404 |
-
|
| 405 |
-
def _extract_text_from_response(self, response_data: dict) -> str:
|
| 406 |
-
"""Extract text from API response based on format"""
|
| 407 |
-
try:
|
| 408 |
-
if self.api_format == 'openai':
|
| 409 |
-
# OpenAI format: response.choices[0].message.content
|
| 410 |
-
return response_data.get('choices', [{}])[0].get('message', {}).get('content', '')
|
| 411 |
-
|
| 412 |
-
elif self.api_format == 'anthropic':
|
| 413 |
-
# Anthropic format: response.content[0].text
|
| 414 |
-
content = response_data.get('content', [])
|
| 415 |
-
if content and isinstance(content, list):
|
| 416 |
-
return content[0].get('text', '')
|
| 417 |
-
return ''
|
| 418 |
-
|
| 419 |
-
else:
|
| 420 |
-
# Custom format - use environment variable for path
|
| 421 |
-
response_path = os.environ.get('CUSTOM_OCR_RESPONSE_PATH', 'text')
|
| 422 |
-
|
| 423 |
-
# Navigate through the response using the path
|
| 424 |
-
result = response_data
|
| 425 |
-
for key in response_path.split('.'):
|
| 426 |
-
if isinstance(result, dict):
|
| 427 |
-
result = result.get(key, '')
|
| 428 |
-
elif isinstance(result, list) and key.isdigit():
|
| 429 |
-
idx = int(key)
|
| 430 |
-
result = result[idx] if idx < len(result) else ''
|
| 431 |
-
else:
|
| 432 |
-
result = ''
|
| 433 |
-
break
|
| 434 |
-
|
| 435 |
-
return str(result)
|
| 436 |
-
|
| 437 |
-
except Exception as e:
|
| 438 |
-
self._log(f"Failed to extract text from response: {e}", "error")
|
| 439 |
-
return ''
|
| 440 |
-
|
| 441 |
-
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 442 |
-
"""Process image using UnifiedClient.send_image()"""
|
| 443 |
-
results = []
|
| 444 |
-
|
| 445 |
-
try:
|
| 446 |
-
# Get fresh max_tokens from environment - GUI will have set this
|
| 447 |
-
max_tokens = int(os.environ.get('MAX_OUTPUT_TOKENS', '4096'))
|
| 448 |
-
if not self.is_loaded:
|
| 449 |
-
if not self.load_model():
|
| 450 |
-
return results
|
| 451 |
-
|
| 452 |
-
import cv2
|
| 453 |
-
from PIL import Image
|
| 454 |
-
import base64
|
| 455 |
-
import io
|
| 456 |
-
|
| 457 |
-
# Convert numpy array to PIL Image
|
| 458 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 459 |
-
pil_image = Image.fromarray(image_rgb)
|
| 460 |
-
h, w = image.shape[:2]
|
| 461 |
-
|
| 462 |
-
# Convert PIL Image to base64 string
|
| 463 |
-
buffer = io.BytesIO()
|
| 464 |
-
|
| 465 |
-
# Use the image format from settings
|
| 466 |
-
if self.image_format.lower() == 'png':
|
| 467 |
-
pil_image.save(buffer, format='PNG')
|
| 468 |
-
else:
|
| 469 |
-
pil_image.save(buffer, format='JPEG', quality=self.image_quality)
|
| 470 |
-
|
| 471 |
-
buffer.seek(0)
|
| 472 |
-
image_base64 = base64.b64encode(buffer.read()).decode('utf-8')
|
| 473 |
-
|
| 474 |
-
# For OpenAI vision models, we need BOTH:
|
| 475 |
-
# 1. System prompt with instructions
|
| 476 |
-
# 2. User message that includes the image
|
| 477 |
-
messages = [
|
| 478 |
-
{
|
| 479 |
-
"role": "system",
|
| 480 |
-
"content": self.ocr_prompt # The OCR instruction as system prompt
|
| 481 |
-
},
|
| 482 |
-
{
|
| 483 |
-
"role": "user",
|
| 484 |
-
"content": [
|
| 485 |
-
{
|
| 486 |
-
"type": "text",
|
| 487 |
-
"text": "Image:" # Minimal text, just to have something
|
| 488 |
-
},
|
| 489 |
-
{
|
| 490 |
-
"type": "image_url",
|
| 491 |
-
"image_url": {
|
| 492 |
-
"url": f"data:image/jpeg;base64,{image_base64}"
|
| 493 |
-
}
|
| 494 |
-
}
|
| 495 |
-
]
|
| 496 |
-
}
|
| 497 |
-
]
|
| 498 |
-
|
| 499 |
-
# Now send this properly formatted message
|
| 500 |
-
# The UnifiedClient should handle this correctly
|
| 501 |
-
# But we're NOT using send_image, we're using regular send
|
| 502 |
-
|
| 503 |
-
# Retry-aware call
|
| 504 |
-
from unified_api_client import UnifiedClientError # local import to avoid hard dependency at module import time
|
| 505 |
-
max_attempts = max(1, self.max_retries)
|
| 506 |
-
attempt = 0
|
| 507 |
-
last_error = None
|
| 508 |
-
|
| 509 |
-
# Common refusal/error phrases that indicate a non-OCR response
|
| 510 |
-
refusal_phrases = [
|
| 511 |
-
"I can't extract", "I cannot extract",
|
| 512 |
-
"I'm sorry", "I am sorry",
|
| 513 |
-
"I'm unable", "I am unable",
|
| 514 |
-
"cannot process images",
|
| 515 |
-
"I can't help with that",
|
| 516 |
-
"cannot view images",
|
| 517 |
-
"no text in the image"
|
| 518 |
-
]
|
| 519 |
-
|
| 520 |
-
while attempt < max_attempts:
|
| 521 |
-
# Check for stop before each attempt
|
| 522 |
-
if self._check_stop():
|
| 523 |
-
self._log("⏹️ OCR processing stopped by user", "warning")
|
| 524 |
-
return results
|
| 525 |
-
|
| 526 |
-
try:
|
| 527 |
-
response = self.client.send(
|
| 528 |
-
messages=messages,
|
| 529 |
-
temperature=self.temperature,
|
| 530 |
-
max_tokens=max_tokens
|
| 531 |
-
)
|
| 532 |
-
|
| 533 |
-
# Extract content from response object
|
| 534 |
-
content, finish_reason = response
|
| 535 |
-
|
| 536 |
-
# Validate content
|
| 537 |
-
has_content = bool(content and str(content).strip())
|
| 538 |
-
refused = False
|
| 539 |
-
if has_content:
|
| 540 |
-
# Filter out explicit failure markers
|
| 541 |
-
if "[" in content and "FAILED]" in content:
|
| 542 |
-
refused = True
|
| 543 |
-
elif any(phrase.lower() in content.lower() for phrase in refusal_phrases):
|
| 544 |
-
refused = True
|
| 545 |
-
|
| 546 |
-
# Decide success or retry
|
| 547 |
-
if has_content and not refused:
|
| 548 |
-
text = str(content).strip()
|
| 549 |
-
results.append(OCRResult(
|
| 550 |
-
text=text,
|
| 551 |
-
bbox=(0, 0, w, h),
|
| 552 |
-
confidence=kwargs.get('confidence', 0.85),
|
| 553 |
-
vertices=[(0, 0), (w, 0), (w, h), (0, h)]
|
| 554 |
-
))
|
| 555 |
-
self._log(f"✅ Detected: {text[:50]}...")
|
| 556 |
-
break # success
|
| 557 |
-
else:
|
| 558 |
-
reason = "empty result" if not has_content else "refusal/non-OCR response"
|
| 559 |
-
last_error = f"{reason} (finish_reason: {finish_reason})"
|
| 560 |
-
# Check if we should retry on empty or refusal
|
| 561 |
-
should_retry = (not has_content and self.retry_on_empty) or refused
|
| 562 |
-
attempt += 1
|
| 563 |
-
if attempt >= max_attempts or not should_retry:
|
| 564 |
-
# No more retries or shouldn't retry
|
| 565 |
-
if not has_content:
|
| 566 |
-
self._log(f"⚠️ No text detected (finish_reason: {finish_reason})")
|
| 567 |
-
else:
|
| 568 |
-
self._log(f"❌ Model returned non-OCR response: {str(content)[:120]}", "warning")
|
| 569 |
-
break
|
| 570 |
-
# Backoff before retrying
|
| 571 |
-
delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter)
|
| 572 |
-
self._log(f"🔄 Retry {attempt}/{max_attempts - 1} after {delay:.1f}s due to {reason}...", "warning")
|
| 573 |
-
time.sleep(delay)
|
| 574 |
-
time.sleep(0.1) # Brief pause for stability
|
| 575 |
-
self._log("💤 OCR retry pausing briefly for stability", "debug")
|
| 576 |
-
continue
|
| 577 |
-
|
| 578 |
-
except UnifiedClientError as ue:
|
| 579 |
-
msg = str(ue)
|
| 580 |
-
last_error = msg
|
| 581 |
-
# Do not retry on explicit user cancellation
|
| 582 |
-
if 'cancelled' in msg.lower() or 'stopped by user' in msg.lower():
|
| 583 |
-
self._log(f"❌ OCR cancelled: {msg}", "error")
|
| 584 |
-
break
|
| 585 |
-
attempt += 1
|
| 586 |
-
if attempt >= max_attempts:
|
| 587 |
-
self._log(f"❌ OCR failed after {attempt} attempts: {msg}", "error")
|
| 588 |
-
break
|
| 589 |
-
delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter)
|
| 590 |
-
self._log(f"🔄 API error, retry {attempt}/{max_attempts - 1} after {delay:.1f}s: {msg}", "warning")
|
| 591 |
-
time.sleep(delay)
|
| 592 |
-
time.sleep(0.1) # Brief pause for stability
|
| 593 |
-
self._log("💤 OCR API error retry pausing briefly for stability", "debug")
|
| 594 |
-
continue
|
| 595 |
-
except Exception as e_inner:
|
| 596 |
-
last_error = str(e_inner)
|
| 597 |
-
attempt += 1
|
| 598 |
-
if attempt >= max_attempts:
|
| 599 |
-
self._log(f"❌ OCR exception after {attempt} attempts: {last_error}", "error")
|
| 600 |
-
break
|
| 601 |
-
delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter)
|
| 602 |
-
self._log(f"🔄 Exception, retry {attempt}/{max_attempts - 1} after {delay:.1f}s: {last_error}", "warning")
|
| 603 |
-
time.sleep(delay)
|
| 604 |
-
time.sleep(0.1) # Brief pause for stability
|
| 605 |
-
self._log("💤 OCR exception retry pausing briefly for stability", "debug")
|
| 606 |
-
continue
|
| 607 |
-
|
| 608 |
-
except Exception as e:
|
| 609 |
-
self._log(f"❌ Error: {str(e)}", "error")
|
| 610 |
-
import traceback
|
| 611 |
-
self._log(traceback.format_exc(), "debug")
|
| 612 |
-
|
| 613 |
-
return results
|
| 614 |
-
|
| 615 |
-
class MangaOCRProvider(OCRProvider):
|
| 616 |
-
"""Manga OCR provider using HuggingFace model directly"""
|
| 617 |
-
|
| 618 |
-
def __init__(self, log_callback=None):
|
| 619 |
-
super().__init__(log_callback)
|
| 620 |
-
self.processor = None
|
| 621 |
-
self.model = None
|
| 622 |
-
self.tokenizer = None
|
| 623 |
-
|
| 624 |
-
def check_installation(self) -> bool:
|
| 625 |
-
"""Check if transformers is installed"""
|
| 626 |
-
try:
|
| 627 |
-
import transformers
|
| 628 |
-
import torch
|
| 629 |
-
self.is_installed = True
|
| 630 |
-
return True
|
| 631 |
-
except ImportError:
|
| 632 |
-
return False
|
| 633 |
-
|
| 634 |
-
def install(self, progress_callback=None) -> bool:
|
| 635 |
-
"""Install transformers and torch"""
|
| 636 |
-
pass
|
| 637 |
-
|
| 638 |
-
def _is_valid_local_model_dir(self, path: str) -> bool:
|
| 639 |
-
"""Check that a local HF model directory has required files."""
|
| 640 |
-
try:
|
| 641 |
-
if not path or not os.path.isdir(path):
|
| 642 |
-
return False
|
| 643 |
-
needed_any_weights = any(
|
| 644 |
-
os.path.exists(os.path.join(path, name)) for name in (
|
| 645 |
-
'pytorch_model.bin',
|
| 646 |
-
'model.safetensors'
|
| 647 |
-
)
|
| 648 |
-
)
|
| 649 |
-
has_config = os.path.exists(os.path.join(path, 'config.json'))
|
| 650 |
-
has_processor = (
|
| 651 |
-
os.path.exists(os.path.join(path, 'preprocessor_config.json')) or
|
| 652 |
-
os.path.exists(os.path.join(path, 'processor_config.json'))
|
| 653 |
-
)
|
| 654 |
-
has_tokenizer = (
|
| 655 |
-
os.path.exists(os.path.join(path, 'tokenizer.json')) or
|
| 656 |
-
os.path.exists(os.path.join(path, 'tokenizer_config.json'))
|
| 657 |
-
)
|
| 658 |
-
return has_config and needed_any_weights and has_processor and has_tokenizer
|
| 659 |
-
except Exception:
|
| 660 |
-
return False
|
| 661 |
-
|
| 662 |
-
def load_model(self, **kwargs) -> bool:
|
| 663 |
-
"""Load the manga-ocr model, preferring a local directory to avoid re-downloading"""
|
| 664 |
-
print("\n>>> MangaOCRProvider.load_model() called")
|
| 665 |
-
try:
|
| 666 |
-
if not self.is_installed and not self.check_installation():
|
| 667 |
-
print("ERROR: Transformers not installed")
|
| 668 |
-
self._log("❌ Transformers not installed", "error")
|
| 669 |
-
return False
|
| 670 |
-
|
| 671 |
-
# Always disable progress bars to avoid tqdm issues in some environments
|
| 672 |
-
import os
|
| 673 |
-
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
|
| 674 |
-
|
| 675 |
-
from transformers import VisionEncoderDecoderModel, AutoTokenizer, AutoImageProcessor
|
| 676 |
-
import torch
|
| 677 |
-
|
| 678 |
-
# Prefer a local model directory if present to avoid any Hub access
|
| 679 |
-
candidates = []
|
| 680 |
-
env_local = os.environ.get("MANGA_OCR_LOCAL_DIR")
|
| 681 |
-
if env_local:
|
| 682 |
-
candidates.append(env_local)
|
| 683 |
-
|
| 684 |
-
# Project root one level up from this file
|
| 685 |
-
root_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
|
| 686 |
-
candidates.append(os.path.join(root_dir, 'models', 'manga-ocr-base'))
|
| 687 |
-
candidates.append(os.path.join(root_dir, 'models', 'kha-white', 'manga-ocr-base'))
|
| 688 |
-
|
| 689 |
-
model_source = None
|
| 690 |
-
local_only = False
|
| 691 |
-
# Find a valid local dir
|
| 692 |
-
for cand in candidates:
|
| 693 |
-
if self._is_valid_local_model_dir(cand):
|
| 694 |
-
model_source = cand
|
| 695 |
-
local_only = True
|
| 696 |
-
break
|
| 697 |
-
|
| 698 |
-
# If no valid local dir, use Hub
|
| 699 |
-
if not model_source:
|
| 700 |
-
model_source = "kha-white/manga-ocr-base"
|
| 701 |
-
# Make sure we are not forcing offline mode
|
| 702 |
-
if os.environ.get("HF_HUB_OFFLINE") == "1":
|
| 703 |
-
try:
|
| 704 |
-
del os.environ["HF_HUB_OFFLINE"]
|
| 705 |
-
except Exception:
|
| 706 |
-
pass
|
| 707 |
-
self._log("🔥 Loading manga-ocr model from Hugging Face Hub")
|
| 708 |
-
self._log(f" Repo: {model_source}")
|
| 709 |
-
else:
|
| 710 |
-
# Only set offline when local dir is fully valid
|
| 711 |
-
os.environ.setdefault("HF_HUB_OFFLINE", "1")
|
| 712 |
-
self._log("🔥 Loading manga-ocr model from local directory")
|
| 713 |
-
self._log(f" Local path: {model_source}")
|
| 714 |
-
|
| 715 |
-
# Decide target device once; we will move after full CPU load to avoid meta tensors
|
| 716 |
-
use_cuda = torch.cuda.is_available()
|
| 717 |
-
|
| 718 |
-
# Try loading components, falling back to Hub if local-only fails
|
| 719 |
-
def _load_components(source: str, local_flag: bool):
|
| 720 |
-
self._log(" Loading tokenizer...")
|
| 721 |
-
tok = AutoTokenizer.from_pretrained(source, local_files_only=local_flag)
|
| 722 |
-
|
| 723 |
-
self._log(" Loading image processor...")
|
| 724 |
-
try:
|
| 725 |
-
from transformers import AutoProcessor
|
| 726 |
-
except Exception:
|
| 727 |
-
AutoProcessor = None
|
| 728 |
-
try:
|
| 729 |
-
proc = AutoImageProcessor.from_pretrained(source, local_files_only=local_flag)
|
| 730 |
-
except Exception as e_proc:
|
| 731 |
-
if AutoProcessor is not None:
|
| 732 |
-
self._log(f" ⚠️ AutoImageProcessor failed: {e_proc}. Trying AutoProcessor...", "warning")
|
| 733 |
-
proc = AutoProcessor.from_pretrained(source, local_files_only=local_flag)
|
| 734 |
-
else:
|
| 735 |
-
raise
|
| 736 |
-
|
| 737 |
-
self._log(" Loading model...")
|
| 738 |
-
# Prevent meta tensors by forcing full materialization on CPU at load time
|
| 739 |
-
os.environ.setdefault('TORCHDYNAMO_DISABLE', '1')
|
| 740 |
-
mdl = VisionEncoderDecoderModel.from_pretrained(
|
| 741 |
-
source,
|
| 742 |
-
local_files_only=local_flag,
|
| 743 |
-
low_cpu_mem_usage=False,
|
| 744 |
-
device_map=None,
|
| 745 |
-
torch_dtype=torch.float32 # Use torch_dtype instead of dtype
|
| 746 |
-
)
|
| 747 |
-
return tok, proc, mdl
|
| 748 |
-
|
| 749 |
-
try:
|
| 750 |
-
self.tokenizer, self.processor, self.model = _load_components(model_source, local_only)
|
| 751 |
-
except Exception as e_local:
|
| 752 |
-
if local_only:
|
| 753 |
-
# Fallback to Hub once if local fails
|
| 754 |
-
self._log(f" ⚠️ Local model load failed: {e_local}", "warning")
|
| 755 |
-
try:
|
| 756 |
-
if os.environ.get("HF_HUB_OFFLINE") == "1":
|
| 757 |
-
del os.environ["HF_HUB_OFFLINE"]
|
| 758 |
-
except Exception:
|
| 759 |
-
pass
|
| 760 |
-
model_source = "kha-white/manga-ocr-base"
|
| 761 |
-
local_only = False
|
| 762 |
-
self._log(" Retrying from Hugging Face Hub...")
|
| 763 |
-
self.tokenizer, self.processor, self.model = _load_components(model_source, local_only)
|
| 764 |
-
else:
|
| 765 |
-
raise
|
| 766 |
-
|
| 767 |
-
# Move to CUDA only after full CPU materialization
|
| 768 |
-
target_device = 'cpu'
|
| 769 |
-
if use_cuda:
|
| 770 |
-
try:
|
| 771 |
-
self.model = self.model.to('cuda')
|
| 772 |
-
target_device = 'cuda'
|
| 773 |
-
except Exception as move_err:
|
| 774 |
-
self._log(f" ⚠️ Could not move model to CUDA: {move_err}", "warning")
|
| 775 |
-
target_device = 'cpu'
|
| 776 |
-
|
| 777 |
-
# Finalize eval mode
|
| 778 |
-
self.model.eval()
|
| 779 |
-
|
| 780 |
-
# Sanity-check: ensure no parameter remains on 'meta' device
|
| 781 |
-
try:
|
| 782 |
-
for n, p in self.model.named_parameters():
|
| 783 |
-
dev = getattr(p, 'device', None)
|
| 784 |
-
if dev is not None and getattr(dev, 'type', '') == 'meta':
|
| 785 |
-
raise RuntimeError(f"Parameter {n} is on 'meta' after load")
|
| 786 |
-
except Exception as sanity_err:
|
| 787 |
-
self._log(f"❌ Manga-OCR model load sanity check failed: {sanity_err}", "error")
|
| 788 |
-
return False
|
| 789 |
-
|
| 790 |
-
print(f"SUCCESS: Model loaded on {target_device.upper()}")
|
| 791 |
-
self._log(f" ✅ Model loaded on {target_device.upper()}")
|
| 792 |
-
self.is_loaded = True
|
| 793 |
-
self._log("✅ Manga OCR model ready")
|
| 794 |
-
print(">>> Returning True from load_model()")
|
| 795 |
-
return True
|
| 796 |
-
|
| 797 |
-
except Exception as e:
|
| 798 |
-
print(f"\nEXCEPTION in load_model: {e}")
|
| 799 |
-
import traceback
|
| 800 |
-
print(traceback.format_exc())
|
| 801 |
-
self._log(f"❌ Failed to load manga-ocr model: {str(e)}", "error")
|
| 802 |
-
self._log(traceback.format_exc(), "error")
|
| 803 |
-
try:
|
| 804 |
-
if 'local_only' in locals() and local_only:
|
| 805 |
-
self._log("Hint: Local load failed. Ensure your models/manga-ocr-base contains required files (config.json, preprocessor_config.json, tokenizer.json or tokenizer_config.json, and model weights).", "warning")
|
| 806 |
-
except Exception:
|
| 807 |
-
pass
|
| 808 |
-
return False
|
| 809 |
-
|
| 810 |
-
def _run_ocr(self, pil_image):
|
| 811 |
-
"""Run OCR on a PIL image using the HuggingFace model"""
|
| 812 |
-
import torch
|
| 813 |
-
|
| 814 |
-
# Process image (keyword arg for broader compatibility across transformers versions)
|
| 815 |
-
inputs = self.processor(images=pil_image, return_tensors="pt")
|
| 816 |
-
pixel_values = inputs["pixel_values"]
|
| 817 |
-
|
| 818 |
-
# Move to same device as model
|
| 819 |
-
try:
|
| 820 |
-
model_device = next(self.model.parameters()).device
|
| 821 |
-
except StopIteration:
|
| 822 |
-
model_device = torch.device('cpu')
|
| 823 |
-
pixel_values = pixel_values.to(model_device)
|
| 824 |
-
|
| 825 |
-
# Generate text
|
| 826 |
-
with torch.no_grad():
|
| 827 |
-
generated_ids = self.model.generate(pixel_values)
|
| 828 |
-
|
| 829 |
-
# Decode
|
| 830 |
-
generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 831 |
-
|
| 832 |
-
return generated_text
|
| 833 |
-
|
| 834 |
-
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 835 |
-
"""
|
| 836 |
-
Process the image region passed to it.
|
| 837 |
-
This could be a bubble region or the full image.
|
| 838 |
-
"""
|
| 839 |
-
results = []
|
| 840 |
-
|
| 841 |
-
# Check for stop at start
|
| 842 |
-
if self._check_stop():
|
| 843 |
-
self._log("⏹️ Manga-OCR processing stopped by user", "warning")
|
| 844 |
-
return results
|
| 845 |
-
|
| 846 |
-
try:
|
| 847 |
-
if not self.is_loaded:
|
| 848 |
-
if not self.load_model():
|
| 849 |
-
return results
|
| 850 |
-
|
| 851 |
-
import cv2
|
| 852 |
-
from PIL import Image
|
| 853 |
-
|
| 854 |
-
# Get confidence from kwargs
|
| 855 |
-
confidence = kwargs.get('confidence', 0.7)
|
| 856 |
-
|
| 857 |
-
# Convert numpy array to PIL
|
| 858 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 859 |
-
pil_image = Image.fromarray(image_rgb)
|
| 860 |
-
h, w = image.shape[:2]
|
| 861 |
-
|
| 862 |
-
self._log("🔍 Processing region with manga-ocr...")
|
| 863 |
-
|
| 864 |
-
# Check for stop before inference
|
| 865 |
-
if self._check_stop():
|
| 866 |
-
self._log("⏹️ Manga-OCR inference stopped by user", "warning")
|
| 867 |
-
return results
|
| 868 |
-
|
| 869 |
-
# Run OCR on the image region
|
| 870 |
-
text = self._run_ocr(pil_image)
|
| 871 |
-
|
| 872 |
-
if text and text.strip():
|
| 873 |
-
# Return result for this region with its actual bbox
|
| 874 |
-
results.append(OCRResult(
|
| 875 |
-
text=text.strip(),
|
| 876 |
-
bbox=(0, 0, w, h), # Relative to the region passed in
|
| 877 |
-
confidence=confidence,
|
| 878 |
-
vertices=[(0, 0), (w, 0), (w, h), (0, h)]
|
| 879 |
-
))
|
| 880 |
-
self._log(f"✅ Detected text: {text[:50]}...")
|
| 881 |
-
|
| 882 |
-
except Exception as e:
|
| 883 |
-
self._log(f"❌ Error in manga-ocr: {str(e)}", "error")
|
| 884 |
-
|
| 885 |
-
return results
|
| 886 |
-
|
| 887 |
-
class Qwen2VL(OCRProvider):
|
| 888 |
-
"""OCR using Qwen2-VL - Vision Language Model that can read Korean text"""
|
| 889 |
-
|
| 890 |
-
def __init__(self, log_callback=None):
|
| 891 |
-
super().__init__(log_callback)
|
| 892 |
-
self.processor = None
|
| 893 |
-
self.model = None
|
| 894 |
-
self.tokenizer = None
|
| 895 |
-
|
| 896 |
-
# Get OCR prompt from environment or use default
|
| 897 |
-
self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT',
|
| 898 |
-
"YOU ARE AN OCR SYSTEM. YOUR ONLY JOB IS TEXT EXTRACTION.\n\n"
|
| 899 |
-
"CRITICAL RULES:\n"
|
| 900 |
-
"1. DO NOT TRANSLATE ANYTHING\n"
|
| 901 |
-
"2. DO NOT MODIFY THE TEXT\n"
|
| 902 |
-
"3. DO NOT EXPLAIN OR COMMENT\n"
|
| 903 |
-
"4. ONLY OUTPUT THE EXACT TEXT YOU SEE\n"
|
| 904 |
-
"5. PRESERVE NATURAL TEXT FLOW - DO NOT ADD UNNECESSARY LINE BREAKS\n\n"
|
| 905 |
-
"If you see Korean text, output it in Korean.\n"
|
| 906 |
-
"If you see Japanese text, output it in Japanese.\n"
|
| 907 |
-
"If you see Chinese text, output it in Chinese.\n"
|
| 908 |
-
"If you see English text, output it in English.\n\n"
|
| 909 |
-
"IMPORTANT: Only use line breaks where they naturally occur in the original text "
|
| 910 |
-
"(e.g., between dialogue lines or paragraphs). Do not break text mid-sentence or "
|
| 911 |
-
"between every word/character.\n\n"
|
| 912 |
-
"For vertical text common in manga/comics, transcribe it as a continuous line unless "
|
| 913 |
-
"there are clear visual breaks.\n\n"
|
| 914 |
-
"NEVER translate. ONLY extract exactly what is written.\n"
|
| 915 |
-
"Output ONLY the raw text, nothing else."
|
| 916 |
-
)
|
| 917 |
-
|
| 918 |
-
def set_ocr_prompt(self, prompt: str):
|
| 919 |
-
"""Allow setting the OCR prompt dynamically"""
|
| 920 |
-
self.ocr_prompt = prompt
|
| 921 |
-
|
| 922 |
-
def check_installation(self) -> bool:
|
| 923 |
-
"""Check if required packages are installed"""
|
| 924 |
-
try:
|
| 925 |
-
import transformers
|
| 926 |
-
import torch
|
| 927 |
-
self.is_installed = True
|
| 928 |
-
return True
|
| 929 |
-
except ImportError:
|
| 930 |
-
return False
|
| 931 |
-
|
| 932 |
-
def install(self, progress_callback=None) -> bool:
|
| 933 |
-
"""Install requirements for Qwen2-VL"""
|
| 934 |
-
pass
|
| 935 |
-
|
| 936 |
-
def load_model(self, model_size=None, **kwargs) -> bool:
|
| 937 |
-
"""Load Qwen2-VL model with size selection"""
|
| 938 |
-
self._log(f"DEBUG: load_model called with model_size={model_size}")
|
| 939 |
-
|
| 940 |
-
try:
|
| 941 |
-
if not self.is_installed and not self.check_installation():
|
| 942 |
-
self._log("❌ Not installed", "error")
|
| 943 |
-
return False
|
| 944 |
-
|
| 945 |
-
self._log("🔥 Loading Qwen2-VL for Advanced OCR...")
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
|
| 949 |
-
from transformers import AutoProcessor, AutoTokenizer
|
| 950 |
-
import torch
|
| 951 |
-
|
| 952 |
-
# Model options
|
| 953 |
-
model_options = {
|
| 954 |
-
"1": "Qwen/Qwen2-VL-2B-Instruct",
|
| 955 |
-
"2": "Qwen/Qwen2-VL-7B-Instruct",
|
| 956 |
-
"3": "Qwen/Qwen2-VL-72B-Instruct",
|
| 957 |
-
"4": "custom"
|
| 958 |
-
}
|
| 959 |
-
# CHANGE: Default to 7B instead of 2B
|
| 960 |
-
# Check for saved preference first
|
| 961 |
-
if model_size is None:
|
| 962 |
-
# Try to get from environment or config
|
| 963 |
-
import os
|
| 964 |
-
model_size = os.environ.get('QWEN2VL_MODEL_SIZE', '1')
|
| 965 |
-
|
| 966 |
-
# Determine which model to load
|
| 967 |
-
if model_size and str(model_size).startswith("custom:"):
|
| 968 |
-
# Custom model passed with ID
|
| 969 |
-
model_id = str(model_size).replace("custom:", "")
|
| 970 |
-
self.loaded_model_size = "Custom"
|
| 971 |
-
self.model_id = model_id
|
| 972 |
-
self._log(f"Loading custom model: {model_id}")
|
| 973 |
-
elif model_size == "4":
|
| 974 |
-
# Custom option selected but no ID - shouldn't happen
|
| 975 |
-
self._log("❌ Custom model selected but no ID provided", "error")
|
| 976 |
-
return False
|
| 977 |
-
elif model_size and str(model_size) in model_options:
|
| 978 |
-
# Standard model option
|
| 979 |
-
option = model_options[str(model_size)]
|
| 980 |
-
if option == "custom":
|
| 981 |
-
self._log("❌ Custom model needs an ID", "error")
|
| 982 |
-
return False
|
| 983 |
-
model_id = option
|
| 984 |
-
# Set loaded_model_size for status display
|
| 985 |
-
if model_size == "1":
|
| 986 |
-
self.loaded_model_size = "2B"
|
| 987 |
-
elif model_size == "2":
|
| 988 |
-
self.loaded_model_size = "7B"
|
| 989 |
-
elif model_size == "3":
|
| 990 |
-
self.loaded_model_size = "72B"
|
| 991 |
-
else:
|
| 992 |
-
# CHANGE: Default to 7B (option "2") instead of 2B
|
| 993 |
-
model_id = model_options["1"] # Changed from "1" to "2"
|
| 994 |
-
self.loaded_model_size = "2B" # Changed from "2B" to "7B"
|
| 995 |
-
self._log("No model size specified, defaulting to 2B") # Changed message
|
| 996 |
-
|
| 997 |
-
self._log(f"Loading model: {model_id}")
|
| 998 |
-
|
| 999 |
-
# Load processor and tokenizer
|
| 1000 |
-
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 1001 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 1002 |
-
|
| 1003 |
-
# Load the model - let it figure out the class dynamically
|
| 1004 |
-
if torch.cuda.is_available():
|
| 1005 |
-
self._log(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 1006 |
-
# Use auto model class
|
| 1007 |
-
from transformers import AutoModelForVision2Seq
|
| 1008 |
-
self.model = AutoModelForVision2Seq.from_pretrained(
|
| 1009 |
-
model_id,
|
| 1010 |
-
dtype=torch.float16,
|
| 1011 |
-
device_map="auto",
|
| 1012 |
-
trust_remote_code=True
|
| 1013 |
-
)
|
| 1014 |
-
self._log("✅ Model loaded on GPU")
|
| 1015 |
-
else:
|
| 1016 |
-
self._log("Loading on CPU...")
|
| 1017 |
-
from transformers import AutoModelForVision2Seq
|
| 1018 |
-
self.model = AutoModelForVision2Seq.from_pretrained(
|
| 1019 |
-
model_id,
|
| 1020 |
-
dtype=torch.float32,
|
| 1021 |
-
trust_remote_code=True
|
| 1022 |
-
)
|
| 1023 |
-
self._log("✅ Model loaded on CPU")
|
| 1024 |
-
|
| 1025 |
-
self.model.eval()
|
| 1026 |
-
self.is_loaded = True
|
| 1027 |
-
self._log("✅ Qwen2-VL ready for Advanced OCR!")
|
| 1028 |
-
return True
|
| 1029 |
-
|
| 1030 |
-
except Exception as e:
|
| 1031 |
-
self._log(f"❌ Failed to load: {str(e)}", "error")
|
| 1032 |
-
import traceback
|
| 1033 |
-
self._log(traceback.format_exc(), "debug")
|
| 1034 |
-
return False
|
| 1035 |
-
|
| 1036 |
-
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 1037 |
-
"""Process image with Qwen2-VL for Korean text extraction"""
|
| 1038 |
-
results = []
|
| 1039 |
-
if hasattr(self, 'model_id'):
|
| 1040 |
-
self._log(f"DEBUG: Using model: {self.model_id}", "debug")
|
| 1041 |
-
|
| 1042 |
-
# Check if OCR prompt was passed in kwargs (for dynamic updates)
|
| 1043 |
-
if 'ocr_prompt' in kwargs:
|
| 1044 |
-
self.ocr_prompt = kwargs['ocr_prompt']
|
| 1045 |
-
|
| 1046 |
-
try:
|
| 1047 |
-
if not self.is_loaded:
|
| 1048 |
-
if not self.load_model():
|
| 1049 |
-
return results
|
| 1050 |
-
|
| 1051 |
-
import cv2
|
| 1052 |
-
from PIL import Image
|
| 1053 |
-
import torch
|
| 1054 |
-
|
| 1055 |
-
# Convert to PIL
|
| 1056 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 1057 |
-
pil_image = Image.fromarray(image_rgb)
|
| 1058 |
-
h, w = image.shape[:2]
|
| 1059 |
-
|
| 1060 |
-
self._log(f"🔍 Processing with Qwen2-VL ({w}x{h} pixels)...")
|
| 1061 |
-
|
| 1062 |
-
# Use the configurable OCR prompt
|
| 1063 |
-
messages = [
|
| 1064 |
-
{
|
| 1065 |
-
"role": "user",
|
| 1066 |
-
"content": [
|
| 1067 |
-
{
|
| 1068 |
-
"type": "image",
|
| 1069 |
-
"image": pil_image,
|
| 1070 |
-
},
|
| 1071 |
-
{
|
| 1072 |
-
"type": "text",
|
| 1073 |
-
"text": self.ocr_prompt # Use the configurable prompt
|
| 1074 |
-
}
|
| 1075 |
-
]
|
| 1076 |
-
}
|
| 1077 |
-
]
|
| 1078 |
-
|
| 1079 |
-
# Alternative simpler prompt if the above still causes issues:
|
| 1080 |
-
# "text": "OCR: Extract text as-is"
|
| 1081 |
-
|
| 1082 |
-
# Process with Qwen2-VL
|
| 1083 |
-
text = self.processor.apply_chat_template(
|
| 1084 |
-
messages,
|
| 1085 |
-
tokenize=False,
|
| 1086 |
-
add_generation_prompt=True
|
| 1087 |
-
)
|
| 1088 |
-
|
| 1089 |
-
inputs = self.processor(
|
| 1090 |
-
text=[text],
|
| 1091 |
-
images=[pil_image],
|
| 1092 |
-
padding=True,
|
| 1093 |
-
return_tensors="pt"
|
| 1094 |
-
)
|
| 1095 |
-
|
| 1096 |
-
# Get the device and dtype the model is currently on
|
| 1097 |
-
model_device = next(self.model.parameters()).device
|
| 1098 |
-
model_dtype = next(self.model.parameters()).dtype
|
| 1099 |
-
|
| 1100 |
-
# Move inputs to the same device as the model and cast float tensors to model dtype
|
| 1101 |
-
try:
|
| 1102 |
-
# Move first
|
| 1103 |
-
inputs = inputs.to(model_device)
|
| 1104 |
-
# Then align dtypes only for floating tensors (e.g., pixel_values)
|
| 1105 |
-
for k, v in inputs.items():
|
| 1106 |
-
if isinstance(v, torch.Tensor) and torch.is_floating_point(v):
|
| 1107 |
-
inputs[k] = v.to(model_dtype)
|
| 1108 |
-
except Exception:
|
| 1109 |
-
# Fallback: ensure at least pixel_values is correct if present
|
| 1110 |
-
try:
|
| 1111 |
-
if isinstance(inputs, dict) and "pixel_values" in inputs:
|
| 1112 |
-
pv = inputs["pixel_values"].to(model_device)
|
| 1113 |
-
if torch.is_floating_point(pv):
|
| 1114 |
-
inputs["pixel_values"] = pv.to(model_dtype)
|
| 1115 |
-
except Exception:
|
| 1116 |
-
pass
|
| 1117 |
-
|
| 1118 |
-
# Ensure pixel_values explicitly matches model dtype if present
|
| 1119 |
-
try:
|
| 1120 |
-
if isinstance(inputs, dict) and "pixel_values" in inputs:
|
| 1121 |
-
inputs["pixel_values"] = inputs["pixel_values"].to(device=model_device, dtype=model_dtype)
|
| 1122 |
-
except Exception:
|
| 1123 |
-
pass
|
| 1124 |
-
|
| 1125 |
-
# Generate text with stricter parameters to avoid creative responses
|
| 1126 |
-
use_amp = (hasattr(torch, 'cuda') and model_device.type == 'cuda' and model_dtype in (torch.float16, torch.bfloat16))
|
| 1127 |
-
autocast_dev = 'cuda' if model_device.type == 'cuda' else 'cpu'
|
| 1128 |
-
autocast_dtype = model_dtype if model_dtype in (torch.float16, torch.bfloat16) else None
|
| 1129 |
-
|
| 1130 |
-
with torch.no_grad():
|
| 1131 |
-
if use_amp and autocast_dtype is not None:
|
| 1132 |
-
with torch.autocast(autocast_dev, dtype=autocast_dtype):
|
| 1133 |
-
generated_ids = self.model.generate(
|
| 1134 |
-
**inputs,
|
| 1135 |
-
max_new_tokens=128, # Reduced from 512 - manga bubbles are typically short
|
| 1136 |
-
do_sample=False, # Keep deterministic
|
| 1137 |
-
temperature=0.01, # Keep your very low temperature
|
| 1138 |
-
top_p=1.0, # Keep no nucleus sampling
|
| 1139 |
-
repetition_penalty=1.0, # Keep no repetition penalty
|
| 1140 |
-
num_beams=1, # Ensure greedy decoding (faster than beam search)
|
| 1141 |
-
use_cache=True, # Enable KV cache for speed
|
| 1142 |
-
early_stopping=True, # Stop at EOS token
|
| 1143 |
-
pad_token_id=self.tokenizer.pad_token_id, # Proper padding
|
| 1144 |
-
eos_token_id=self.tokenizer.eos_token_id, # Proper stopping
|
| 1145 |
-
)
|
| 1146 |
-
else:
|
| 1147 |
-
generated_ids = self.model.generate(
|
| 1148 |
-
**inputs,
|
| 1149 |
-
max_new_tokens=128, # Reduced from 512 - manga bubbles are typically short
|
| 1150 |
-
do_sample=False, # Keep deterministic
|
| 1151 |
-
temperature=0.01, # Keep your very low temperature
|
| 1152 |
-
top_p=1.0, # Keep no nucleus sampling
|
| 1153 |
-
repetition_penalty=1.0, # Keep no repetition penalty
|
| 1154 |
-
num_beams=1, # Ensure greedy decoding (faster than beam search)
|
| 1155 |
-
use_cache=True, # Enable KV cache for speed
|
| 1156 |
-
early_stopping=True, # Stop at EOS token
|
| 1157 |
-
pad_token_id=self.tokenizer.pad_token_id, # Proper padding
|
| 1158 |
-
eos_token_id=self.tokenizer.eos_token_id, # Proper stopping
|
| 1159 |
-
)
|
| 1160 |
-
|
| 1161 |
-
# Decode the output
|
| 1162 |
-
generated_ids_trimmed = [
|
| 1163 |
-
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 1164 |
-
]
|
| 1165 |
-
output_text = self.processor.batch_decode(
|
| 1166 |
-
generated_ids_trimmed,
|
| 1167 |
-
skip_special_tokens=True,
|
| 1168 |
-
clean_up_tokenization_spaces=False
|
| 1169 |
-
)[0]
|
| 1170 |
-
|
| 1171 |
-
if output_text and output_text.strip():
|
| 1172 |
-
text = output_text.strip()
|
| 1173 |
-
|
| 1174 |
-
# ADDED: Filter out any response that looks like an explanation or apology
|
| 1175 |
-
# Common patterns that indicate the model is being "helpful" instead of just extracting
|
| 1176 |
-
unwanted_patterns = [
|
| 1177 |
-
"죄송합니다", # "I apologize"
|
| 1178 |
-
"sorry",
|
| 1179 |
-
"apologize",
|
| 1180 |
-
"이미지에는", # "in this image"
|
| 1181 |
-
"텍스트가 없습니다", # "there is no text"
|
| 1182 |
-
"I cannot",
|
| 1183 |
-
"I don't see",
|
| 1184 |
-
"There is no",
|
| 1185 |
-
"질문이 있으시면", # "if you have questions"
|
| 1186 |
-
]
|
| 1187 |
-
|
| 1188 |
-
# Check if response contains unwanted patterns
|
| 1189 |
-
text_lower = text.lower()
|
| 1190 |
-
is_explanation = any(pattern.lower() in text_lower for pattern in unwanted_patterns)
|
| 1191 |
-
|
| 1192 |
-
# Also check if the response is suspiciously long for a bubble
|
| 1193 |
-
# Most manga bubbles are short, if we get 50+ chars it might be an explanation
|
| 1194 |
-
is_too_long = len(text) > 100 and ('.' in text or ',' in text or '!' in text)
|
| 1195 |
-
|
| 1196 |
-
if is_explanation or is_too_long:
|
| 1197 |
-
self._log(f"⚠️ Model returned explanation instead of text, ignoring", "warning")
|
| 1198 |
-
# Return empty result or just skip this region
|
| 1199 |
-
return results
|
| 1200 |
-
|
| 1201 |
-
# Check language
|
| 1202 |
-
has_korean = any('\uAC00' <= c <= '\uD7AF' for c in text)
|
| 1203 |
-
has_japanese = any('\u3040' <= c <= '\u309F' or '\u30A0' <= c <= '\u30FF' for c in text)
|
| 1204 |
-
has_chinese = any('\u4E00' <= c <= '\u9FFF' for c in text)
|
| 1205 |
-
|
| 1206 |
-
if has_korean:
|
| 1207 |
-
self._log(f"✅ Korean detected: {text[:50]}...")
|
| 1208 |
-
elif has_japanese:
|
| 1209 |
-
self._log(f"✅ Japanese detected: {text[:50]}...")
|
| 1210 |
-
elif has_chinese:
|
| 1211 |
-
self._log(f"✅ Chinese detected: {text[:50]}...")
|
| 1212 |
-
else:
|
| 1213 |
-
self._log(f"✅ Text: {text[:50]}...")
|
| 1214 |
-
|
| 1215 |
-
results.append(OCRResult(
|
| 1216 |
-
text=text,
|
| 1217 |
-
bbox=(0, 0, w, h),
|
| 1218 |
-
confidence=0.9,
|
| 1219 |
-
vertices=[(0, 0), (w, 0), (w, h), (0, h)]
|
| 1220 |
-
))
|
| 1221 |
-
else:
|
| 1222 |
-
self._log("⚠️ No text detected", "warning")
|
| 1223 |
-
|
| 1224 |
-
except Exception as e:
|
| 1225 |
-
self._log(f"❌ Error: {str(e)}", "error")
|
| 1226 |
-
import traceback
|
| 1227 |
-
self._log(traceback.format_exc(), "debug")
|
| 1228 |
-
|
| 1229 |
-
return results
|
| 1230 |
-
|
| 1231 |
-
class EasyOCRProvider(OCRProvider):
|
| 1232 |
-
"""EasyOCR provider for multiple languages"""
|
| 1233 |
-
|
| 1234 |
-
def __init__(self, log_callback=None, languages=None):
|
| 1235 |
-
super().__init__(log_callback)
|
| 1236 |
-
# Default to safe language combination
|
| 1237 |
-
self.languages = languages or ['ja', 'en'] # Safe default
|
| 1238 |
-
self._validate_language_combination()
|
| 1239 |
-
|
| 1240 |
-
def _validate_language_combination(self):
|
| 1241 |
-
"""Validate and fix EasyOCR language combinations"""
|
| 1242 |
-
# EasyOCR language compatibility rules
|
| 1243 |
-
incompatible_pairs = [
|
| 1244 |
-
(['ja', 'ko'], 'Japanese and Korean cannot be used together'),
|
| 1245 |
-
(['ja', 'zh'], 'Japanese and Chinese cannot be used together'),
|
| 1246 |
-
(['ko', 'zh'], 'Korean and Chinese cannot be used together')
|
| 1247 |
-
]
|
| 1248 |
-
|
| 1249 |
-
for incompatible, reason in incompatible_pairs:
|
| 1250 |
-
if all(lang in self.languages for lang in incompatible):
|
| 1251 |
-
self._log(f"⚠️ EasyOCR: {reason}", "warning")
|
| 1252 |
-
# Keep first language + English
|
| 1253 |
-
self.languages = [self.languages[0], 'en']
|
| 1254 |
-
self._log(f"🔧 Auto-adjusted to: {self.languages}", "info")
|
| 1255 |
-
break
|
| 1256 |
-
|
| 1257 |
-
def check_installation(self) -> bool:
|
| 1258 |
-
"""Check if easyocr is installed"""
|
| 1259 |
-
try:
|
| 1260 |
-
import easyocr
|
| 1261 |
-
self.is_installed = True
|
| 1262 |
-
return True
|
| 1263 |
-
except ImportError:
|
| 1264 |
-
return False
|
| 1265 |
-
|
| 1266 |
-
def install(self, progress_callback=None) -> bool:
|
| 1267 |
-
"""Install easyocr"""
|
| 1268 |
-
pass
|
| 1269 |
-
|
| 1270 |
-
def load_model(self, **kwargs) -> bool:
|
| 1271 |
-
"""Load easyocr model"""
|
| 1272 |
-
try:
|
| 1273 |
-
if not self.is_installed and not self.check_installation():
|
| 1274 |
-
self._log("❌ easyocr not installed", "error")
|
| 1275 |
-
return False
|
| 1276 |
-
|
| 1277 |
-
self._log(f"🔥 Loading easyocr model for languages: {self.languages}...")
|
| 1278 |
-
import easyocr
|
| 1279 |
-
|
| 1280 |
-
# This will download models on first run
|
| 1281 |
-
self.model = easyocr.Reader(self.languages, gpu=True)
|
| 1282 |
-
self.is_loaded = True
|
| 1283 |
-
|
| 1284 |
-
self._log("✅ easyocr model loaded successfully")
|
| 1285 |
-
return True
|
| 1286 |
-
|
| 1287 |
-
except Exception as e:
|
| 1288 |
-
self._log(f"❌ Failed to load easyocr: {str(e)}", "error")
|
| 1289 |
-
# Try CPU mode if GPU fails
|
| 1290 |
-
try:
|
| 1291 |
-
import easyocr
|
| 1292 |
-
self.model = easyocr.Reader(self.languages, gpu=False)
|
| 1293 |
-
self.is_loaded = True
|
| 1294 |
-
self._log("✅ easyocr loaded in CPU mode")
|
| 1295 |
-
return True
|
| 1296 |
-
except:
|
| 1297 |
-
return False
|
| 1298 |
-
|
| 1299 |
-
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 1300 |
-
"""Detect text using easyocr"""
|
| 1301 |
-
results = []
|
| 1302 |
-
|
| 1303 |
-
try:
|
| 1304 |
-
if not self.is_loaded:
|
| 1305 |
-
if not self.load_model():
|
| 1306 |
-
return results
|
| 1307 |
-
|
| 1308 |
-
# EasyOCR can work directly with numpy arrays
|
| 1309 |
-
ocr_results = self.model.readtext(image, detail=1)
|
| 1310 |
-
|
| 1311 |
-
# Parse results
|
| 1312 |
-
for (bbox, text, confidence) in ocr_results:
|
| 1313 |
-
# bbox is a list of 4 points
|
| 1314 |
-
xs = [point[0] for point in bbox]
|
| 1315 |
-
ys = [point[1] for point in bbox]
|
| 1316 |
-
x_min, x_max = min(xs), max(xs)
|
| 1317 |
-
y_min, y_max = min(ys), max(ys)
|
| 1318 |
-
|
| 1319 |
-
results.append(OCRResult(
|
| 1320 |
-
text=text,
|
| 1321 |
-
bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)),
|
| 1322 |
-
confidence=confidence,
|
| 1323 |
-
vertices=[(int(p[0]), int(p[1])) for p in bbox]
|
| 1324 |
-
))
|
| 1325 |
-
|
| 1326 |
-
self._log(f"✅ Detected {len(results)} text regions")
|
| 1327 |
-
|
| 1328 |
-
except Exception as e:
|
| 1329 |
-
self._log(f"❌ Error in easyocr detection: {str(e)}", "error")
|
| 1330 |
-
|
| 1331 |
-
return results
|
| 1332 |
-
|
| 1333 |
-
|
| 1334 |
-
class PaddleOCRProvider(OCRProvider):
|
| 1335 |
-
"""PaddleOCR provider with memory safety measures"""
|
| 1336 |
-
|
| 1337 |
-
def check_installation(self) -> bool:
|
| 1338 |
-
"""Check if paddleocr is installed"""
|
| 1339 |
-
try:
|
| 1340 |
-
from paddleocr import PaddleOCR
|
| 1341 |
-
self.is_installed = True
|
| 1342 |
-
return True
|
| 1343 |
-
except ImportError:
|
| 1344 |
-
return False
|
| 1345 |
-
|
| 1346 |
-
def install(self, progress_callback=None) -> bool:
|
| 1347 |
-
"""Install paddleocr"""
|
| 1348 |
-
pass
|
| 1349 |
-
|
| 1350 |
-
def load_model(self, **kwargs) -> bool:
|
| 1351 |
-
"""Load paddleocr model with memory-safe configurations"""
|
| 1352 |
-
try:
|
| 1353 |
-
if not self.is_installed and not self.check_installation():
|
| 1354 |
-
self._log("❌ paddleocr not installed", "error")
|
| 1355 |
-
return False
|
| 1356 |
-
|
| 1357 |
-
self._log("🔥 Loading PaddleOCR model...")
|
| 1358 |
-
|
| 1359 |
-
# Set memory-safe environment variables BEFORE importing
|
| 1360 |
-
import os
|
| 1361 |
-
os.environ['OMP_NUM_THREADS'] = '1' # Prevent OpenMP conflicts
|
| 1362 |
-
os.environ['MKL_NUM_THREADS'] = '1' # Prevent MKL conflicts
|
| 1363 |
-
os.environ['OPENBLAS_NUM_THREADS'] = '1' # Prevent OpenBLAS conflicts
|
| 1364 |
-
os.environ['FLAGS_use_mkldnn'] = '0' # Disable MKL-DNN
|
| 1365 |
-
|
| 1366 |
-
from paddleocr import PaddleOCR
|
| 1367 |
-
|
| 1368 |
-
# Try memory-safe configurations
|
| 1369 |
-
configs_to_try = [
|
| 1370 |
-
# Config 1: Most memory-safe configuration
|
| 1371 |
-
{
|
| 1372 |
-
'use_angle_cls': False, # Disable angle to save memory
|
| 1373 |
-
'lang': 'ch',
|
| 1374 |
-
'rec_batch_num': 1, # Process one at a time
|
| 1375 |
-
'max_text_length': 100, # Limit text length
|
| 1376 |
-
'drop_score': 0.5, # Higher threshold to reduce detections
|
| 1377 |
-
'cpu_threads': 1, # Single thread to avoid conflicts
|
| 1378 |
-
},
|
| 1379 |
-
# Config 2: Minimal memory footprint
|
| 1380 |
-
{
|
| 1381 |
-
'lang': 'ch',
|
| 1382 |
-
'rec_batch_num': 1,
|
| 1383 |
-
'cpu_threads': 1,
|
| 1384 |
-
},
|
| 1385 |
-
# Config 3: Absolute minimal
|
| 1386 |
-
{
|
| 1387 |
-
'lang': 'ch'
|
| 1388 |
-
},
|
| 1389 |
-
# Config 4: Empty config
|
| 1390 |
-
{}
|
| 1391 |
-
]
|
| 1392 |
-
|
| 1393 |
-
for i, config in enumerate(configs_to_try):
|
| 1394 |
-
try:
|
| 1395 |
-
self._log(f" Trying configuration {i+1}/{len(configs_to_try)}: {config}")
|
| 1396 |
-
|
| 1397 |
-
# Force garbage collection before loading
|
| 1398 |
-
import gc
|
| 1399 |
-
gc.collect()
|
| 1400 |
-
|
| 1401 |
-
self.model = PaddleOCR(**config)
|
| 1402 |
-
self.is_loaded = True
|
| 1403 |
-
self.current_config = config
|
| 1404 |
-
self._log(f"✅ PaddleOCR loaded successfully with config: {config}")
|
| 1405 |
-
return True
|
| 1406 |
-
except Exception as e:
|
| 1407 |
-
error_str = str(e)
|
| 1408 |
-
self._log(f" Config {i+1} failed: {error_str}", "debug")
|
| 1409 |
-
|
| 1410 |
-
# Clean up on failure
|
| 1411 |
-
if hasattr(self, 'model'):
|
| 1412 |
-
del self.model
|
| 1413 |
-
gc.collect()
|
| 1414 |
-
continue
|
| 1415 |
-
|
| 1416 |
-
self._log(f"❌ PaddleOCR failed to load with any configuration", "error")
|
| 1417 |
-
return False
|
| 1418 |
-
|
| 1419 |
-
except Exception as e:
|
| 1420 |
-
self._log(f"❌ Failed to load paddleocr: {str(e)}", "error")
|
| 1421 |
-
import traceback
|
| 1422 |
-
self._log(traceback.format_exc(), "debug")
|
| 1423 |
-
return False
|
| 1424 |
-
|
| 1425 |
-
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 1426 |
-
"""Detect text with memory safety measures"""
|
| 1427 |
-
results = []
|
| 1428 |
-
|
| 1429 |
-
try:
|
| 1430 |
-
if not self.is_loaded:
|
| 1431 |
-
if not self.load_model():
|
| 1432 |
-
return results
|
| 1433 |
-
|
| 1434 |
-
import cv2
|
| 1435 |
-
import numpy as np
|
| 1436 |
-
import gc
|
| 1437 |
-
|
| 1438 |
-
# Memory safety: Ensure image isn't too large
|
| 1439 |
-
h, w = image.shape[:2] if len(image.shape) >= 2 else (0, 0)
|
| 1440 |
-
|
| 1441 |
-
# Limit image size to prevent memory issues
|
| 1442 |
-
MAX_DIMENSION = 1500
|
| 1443 |
-
if h > MAX_DIMENSION or w > MAX_DIMENSION:
|
| 1444 |
-
scale = min(MAX_DIMENSION/h, MAX_DIMENSION/w)
|
| 1445 |
-
new_h, new_w = int(h*scale), int(w*scale)
|
| 1446 |
-
self._log(f"⚠️ Resizing large image from {w}x{h} to {new_w}x{new_h} for memory safety", "warning")
|
| 1447 |
-
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA)
|
| 1448 |
-
scale_factor = 1/scale
|
| 1449 |
-
else:
|
| 1450 |
-
scale_factor = 1.0
|
| 1451 |
-
|
| 1452 |
-
# Ensure correct format
|
| 1453 |
-
if len(image.shape) == 2: # Grayscale
|
| 1454 |
-
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
| 1455 |
-
elif len(image.shape) == 4: # Batch
|
| 1456 |
-
image = image[0]
|
| 1457 |
-
|
| 1458 |
-
# Ensure uint8 type
|
| 1459 |
-
if image.dtype != np.uint8:
|
| 1460 |
-
if image.max() <= 1.0:
|
| 1461 |
-
image = (image * 255).astype(np.uint8)
|
| 1462 |
-
else:
|
| 1463 |
-
image = image.astype(np.uint8)
|
| 1464 |
-
|
| 1465 |
-
# Make a copy to avoid memory corruption
|
| 1466 |
-
image_copy = image.copy()
|
| 1467 |
-
|
| 1468 |
-
# Force garbage collection before OCR
|
| 1469 |
-
gc.collect()
|
| 1470 |
-
|
| 1471 |
-
# Process with timeout protection
|
| 1472 |
-
import signal
|
| 1473 |
-
import threading
|
| 1474 |
-
|
| 1475 |
-
ocr_results = None
|
| 1476 |
-
ocr_error = None
|
| 1477 |
-
|
| 1478 |
-
def run_ocr():
|
| 1479 |
-
nonlocal ocr_results, ocr_error
|
| 1480 |
-
try:
|
| 1481 |
-
ocr_results = self.model.ocr(image_copy)
|
| 1482 |
-
except Exception as e:
|
| 1483 |
-
ocr_error = e
|
| 1484 |
-
|
| 1485 |
-
# Run OCR in a separate thread with timeout
|
| 1486 |
-
ocr_thread = threading.Thread(target=run_ocr)
|
| 1487 |
-
ocr_thread.daemon = True
|
| 1488 |
-
ocr_thread.start()
|
| 1489 |
-
ocr_thread.join(timeout=30) # 30 second timeout
|
| 1490 |
-
|
| 1491 |
-
if ocr_thread.is_alive():
|
| 1492 |
-
self._log("❌ PaddleOCR timeout - taking too long", "error")
|
| 1493 |
-
return results
|
| 1494 |
-
|
| 1495 |
-
if ocr_error:
|
| 1496 |
-
raise ocr_error
|
| 1497 |
-
|
| 1498 |
-
# Parse results
|
| 1499 |
-
results = self._parse_ocr_results(ocr_results)
|
| 1500 |
-
|
| 1501 |
-
# Scale coordinates back if image was resized
|
| 1502 |
-
if scale_factor != 1.0 and results:
|
| 1503 |
-
for r in results:
|
| 1504 |
-
x, y, width, height = r.bbox
|
| 1505 |
-
r.bbox = (int(x*scale_factor), int(y*scale_factor),
|
| 1506 |
-
int(width*scale_factor), int(height*scale_factor))
|
| 1507 |
-
r.vertices = [(int(v[0]*scale_factor), int(v[1]*scale_factor))
|
| 1508 |
-
for v in r.vertices]
|
| 1509 |
-
|
| 1510 |
-
if results:
|
| 1511 |
-
self._log(f"✅ Detected {len(results)} text regions", "info")
|
| 1512 |
-
else:
|
| 1513 |
-
self._log("No text regions found", "debug")
|
| 1514 |
-
|
| 1515 |
-
# Clean up
|
| 1516 |
-
del image_copy
|
| 1517 |
-
gc.collect()
|
| 1518 |
-
|
| 1519 |
-
except Exception as e:
|
| 1520 |
-
error_msg = str(e) if str(e) else type(e).__name__
|
| 1521 |
-
|
| 1522 |
-
if "memory" in error_msg.lower() or "0x" in error_msg:
|
| 1523 |
-
self._log("❌ Memory access violation in PaddleOCR", "error")
|
| 1524 |
-
self._log(" This is a known Windows issue with PaddleOCR", "info")
|
| 1525 |
-
self._log(" Please switch to EasyOCR or manga-ocr instead", "warning")
|
| 1526 |
-
elif "trace_order.size()" in error_msg:
|
| 1527 |
-
self._log("❌ PaddleOCR internal error", "error")
|
| 1528 |
-
self._log(" Please switch to EasyOCR or manga-ocr", "warning")
|
| 1529 |
-
else:
|
| 1530 |
-
self._log(f"❌ Error in paddleocr detection: {error_msg}", "error")
|
| 1531 |
-
|
| 1532 |
-
import traceback
|
| 1533 |
-
self._log(traceback.format_exc(), "debug")
|
| 1534 |
-
|
| 1535 |
-
return results
|
| 1536 |
-
|
| 1537 |
-
def _parse_ocr_results(self, ocr_results) -> List[OCRResult]:
|
| 1538 |
-
"""Parse OCR results safely"""
|
| 1539 |
-
results = []
|
| 1540 |
-
|
| 1541 |
-
if isinstance(ocr_results, bool) and ocr_results == False:
|
| 1542 |
-
return results
|
| 1543 |
-
|
| 1544 |
-
if ocr_results is None or not isinstance(ocr_results, list):
|
| 1545 |
-
return results
|
| 1546 |
-
|
| 1547 |
-
if len(ocr_results) == 0:
|
| 1548 |
-
return results
|
| 1549 |
-
|
| 1550 |
-
# Handle batch format
|
| 1551 |
-
if isinstance(ocr_results[0], list) and len(ocr_results[0]) > 0:
|
| 1552 |
-
first_item = ocr_results[0][0]
|
| 1553 |
-
if isinstance(first_item, list) and len(first_item) > 0:
|
| 1554 |
-
if isinstance(first_item[0], (list, tuple)) and len(first_item[0]) == 2:
|
| 1555 |
-
ocr_results = ocr_results[0]
|
| 1556 |
-
|
| 1557 |
-
# Parse detections
|
| 1558 |
-
for detection in ocr_results:
|
| 1559 |
-
if not detection or isinstance(detection, bool):
|
| 1560 |
-
continue
|
| 1561 |
-
|
| 1562 |
-
if not isinstance(detection, (list, tuple)) or len(detection) < 2:
|
| 1563 |
-
continue
|
| 1564 |
-
|
| 1565 |
-
try:
|
| 1566 |
-
bbox_points = detection[0]
|
| 1567 |
-
text_data = detection[1]
|
| 1568 |
-
|
| 1569 |
-
if not isinstance(bbox_points, (list, tuple)) or len(bbox_points) != 4:
|
| 1570 |
-
continue
|
| 1571 |
-
|
| 1572 |
-
if not isinstance(text_data, (tuple, list)) or len(text_data) < 2:
|
| 1573 |
-
continue
|
| 1574 |
-
|
| 1575 |
-
text = str(text_data[0]).strip()
|
| 1576 |
-
confidence = float(text_data[1])
|
| 1577 |
-
|
| 1578 |
-
if not text or confidence < 0.3:
|
| 1579 |
-
continue
|
| 1580 |
-
|
| 1581 |
-
xs = [float(p[0]) for p in bbox_points]
|
| 1582 |
-
ys = [float(p[1]) for p in bbox_points]
|
| 1583 |
-
x_min, x_max = min(xs), max(xs)
|
| 1584 |
-
y_min, y_max = min(ys), max(ys)
|
| 1585 |
-
|
| 1586 |
-
if (x_max - x_min) < 5 or (y_max - y_min) < 5:
|
| 1587 |
-
continue
|
| 1588 |
-
|
| 1589 |
-
results.append(OCRResult(
|
| 1590 |
-
text=text,
|
| 1591 |
-
bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)),
|
| 1592 |
-
confidence=confidence,
|
| 1593 |
-
vertices=[(int(p[0]), int(p[1])) for p in bbox_points]
|
| 1594 |
-
))
|
| 1595 |
-
|
| 1596 |
-
except Exception:
|
| 1597 |
-
continue
|
| 1598 |
-
|
| 1599 |
-
return results
|
| 1600 |
-
|
| 1601 |
-
class DocTROCRProvider(OCRProvider):
|
| 1602 |
-
"""DocTR OCR provider"""
|
| 1603 |
-
|
| 1604 |
-
def check_installation(self) -> bool:
|
| 1605 |
-
"""Check if doctr is installed"""
|
| 1606 |
-
try:
|
| 1607 |
-
from doctr.models import ocr_predictor
|
| 1608 |
-
self.is_installed = True
|
| 1609 |
-
return True
|
| 1610 |
-
except ImportError:
|
| 1611 |
-
return False
|
| 1612 |
-
|
| 1613 |
-
def install(self, progress_callback=None) -> bool:
|
| 1614 |
-
"""Install doctr"""
|
| 1615 |
-
pass
|
| 1616 |
-
|
| 1617 |
-
def load_model(self, **kwargs) -> bool:
|
| 1618 |
-
"""Load doctr model"""
|
| 1619 |
-
try:
|
| 1620 |
-
if not self.is_installed and not self.check_installation():
|
| 1621 |
-
self._log("❌ doctr not installed", "error")
|
| 1622 |
-
return False
|
| 1623 |
-
|
| 1624 |
-
self._log("🔥 Loading DocTR model...")
|
| 1625 |
-
from doctr.models import ocr_predictor
|
| 1626 |
-
|
| 1627 |
-
# Load pretrained model
|
| 1628 |
-
self.model = ocr_predictor(pretrained=True)
|
| 1629 |
-
self.is_loaded = True
|
| 1630 |
-
|
| 1631 |
-
self._log("✅ DocTR model loaded successfully")
|
| 1632 |
-
return True
|
| 1633 |
-
|
| 1634 |
-
except Exception as e:
|
| 1635 |
-
self._log(f"❌ Failed to load doctr: {str(e)}", "error")
|
| 1636 |
-
return False
|
| 1637 |
-
|
| 1638 |
-
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 1639 |
-
"""Detect text using doctr"""
|
| 1640 |
-
results = []
|
| 1641 |
-
|
| 1642 |
-
try:
|
| 1643 |
-
if not self.is_loaded:
|
| 1644 |
-
if not self.load_model():
|
| 1645 |
-
return results
|
| 1646 |
-
|
| 1647 |
-
from doctr.io import DocumentFile
|
| 1648 |
-
|
| 1649 |
-
# DocTR expects document format
|
| 1650 |
-
# Convert numpy array to PIL and save temporarily
|
| 1651 |
-
import tempfile
|
| 1652 |
-
import cv2
|
| 1653 |
-
|
| 1654 |
-
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
| 1655 |
-
cv2.imwrite(tmp.name, image)
|
| 1656 |
-
doc = DocumentFile.from_images(tmp.name)
|
| 1657 |
-
|
| 1658 |
-
# Run OCR
|
| 1659 |
-
result = self.model(doc)
|
| 1660 |
-
|
| 1661 |
-
# Parse results
|
| 1662 |
-
h, w = image.shape[:2]
|
| 1663 |
-
for page in result.pages:
|
| 1664 |
-
for block in page.blocks:
|
| 1665 |
-
for line in block.lines:
|
| 1666 |
-
for word in line.words:
|
| 1667 |
-
# Handle different geometry formats
|
| 1668 |
-
geometry = word.geometry
|
| 1669 |
-
|
| 1670 |
-
if len(geometry) == 4:
|
| 1671 |
-
# Standard format: (x1, y1, x2, y2)
|
| 1672 |
-
x1, y1, x2, y2 = geometry
|
| 1673 |
-
elif len(geometry) == 2:
|
| 1674 |
-
# Alternative format: ((x1, y1), (x2, y2))
|
| 1675 |
-
(x1, y1), (x2, y2) = geometry
|
| 1676 |
-
else:
|
| 1677 |
-
self._log(f"Unexpected geometry format: {geometry}", "warning")
|
| 1678 |
-
continue
|
| 1679 |
-
|
| 1680 |
-
# Convert relative coordinates to absolute
|
| 1681 |
-
x1, x2 = int(x1 * w), int(x2 * w)
|
| 1682 |
-
y1, y2 = int(y1 * h), int(y2 * h)
|
| 1683 |
-
|
| 1684 |
-
results.append(OCRResult(
|
| 1685 |
-
text=word.value,
|
| 1686 |
-
bbox=(x1, y1, x2 - x1, y2 - y1),
|
| 1687 |
-
confidence=word.confidence,
|
| 1688 |
-
vertices=[(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
|
| 1689 |
-
))
|
| 1690 |
-
|
| 1691 |
-
# Clean up temp file
|
| 1692 |
-
try:
|
| 1693 |
-
os.unlink(tmp.name)
|
| 1694 |
-
except:
|
| 1695 |
-
pass
|
| 1696 |
-
|
| 1697 |
-
self._log(f"DocTR detected {len(results)} text regions")
|
| 1698 |
-
|
| 1699 |
-
except Exception as e:
|
| 1700 |
-
self._log(f"Error in doctr detection: {str(e)}", "error")
|
| 1701 |
-
import traceback
|
| 1702 |
-
self._log(traceback.format_exc(), "error")
|
| 1703 |
-
|
| 1704 |
-
return results
|
| 1705 |
-
|
| 1706 |
-
|
| 1707 |
-
class RapidOCRProvider(OCRProvider):
|
| 1708 |
-
"""RapidOCR provider for fast local OCR"""
|
| 1709 |
-
|
| 1710 |
-
def check_installation(self) -> bool:
|
| 1711 |
-
"""Check if rapidocr is installed"""
|
| 1712 |
-
try:
|
| 1713 |
-
import rapidocr_onnxruntime
|
| 1714 |
-
self.is_installed = True
|
| 1715 |
-
return True
|
| 1716 |
-
except ImportError:
|
| 1717 |
-
return False
|
| 1718 |
-
|
| 1719 |
-
def install(self, progress_callback=None) -> bool:
|
| 1720 |
-
"""Install rapidocr (requires manual pip install)"""
|
| 1721 |
-
# RapidOCR requires manual installation
|
| 1722 |
-
if progress_callback:
|
| 1723 |
-
progress_callback("RapidOCR requires manual pip installation")
|
| 1724 |
-
self._log("Run: pip install rapidocr-onnxruntime", "info")
|
| 1725 |
-
return False # Always return False since we can't auto-install
|
| 1726 |
-
|
| 1727 |
-
def load_model(self, **kwargs) -> bool:
|
| 1728 |
-
"""Load RapidOCR model"""
|
| 1729 |
-
try:
|
| 1730 |
-
if not self.is_installed and not self.check_installation():
|
| 1731 |
-
self._log("RapidOCR not installed", "error")
|
| 1732 |
-
return False
|
| 1733 |
-
|
| 1734 |
-
self._log("Loading RapidOCR...")
|
| 1735 |
-
from rapidocr_onnxruntime import RapidOCR
|
| 1736 |
-
|
| 1737 |
-
self.model = RapidOCR()
|
| 1738 |
-
self.is_loaded = True
|
| 1739 |
-
|
| 1740 |
-
self._log("RapidOCR model loaded successfully")
|
| 1741 |
-
return True
|
| 1742 |
-
|
| 1743 |
-
except Exception as e:
|
| 1744 |
-
self._log(f"Failed to load RapidOCR: {str(e)}", "error")
|
| 1745 |
-
return False
|
| 1746 |
-
|
| 1747 |
-
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 1748 |
-
"""Detect text using RapidOCR"""
|
| 1749 |
-
if not self.is_loaded:
|
| 1750 |
-
self._log("RapidOCR model not loaded", "error")
|
| 1751 |
-
return []
|
| 1752 |
-
|
| 1753 |
-
results = []
|
| 1754 |
-
|
| 1755 |
-
try:
|
| 1756 |
-
# Convert numpy array to PIL Image for RapidOCR
|
| 1757 |
-
if len(image.shape) == 3:
|
| 1758 |
-
# BGR to RGB
|
| 1759 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 1760 |
-
else:
|
| 1761 |
-
image_rgb = image
|
| 1762 |
-
|
| 1763 |
-
# RapidOCR expects PIL Image or numpy array
|
| 1764 |
-
ocr_results, _ = self.model(image_rgb)
|
| 1765 |
-
|
| 1766 |
-
if ocr_results:
|
| 1767 |
-
for result in ocr_results:
|
| 1768 |
-
# RapidOCR returns [bbox, text, confidence]
|
| 1769 |
-
bbox_points = result[0] # 4 corner points
|
| 1770 |
-
text = result[1]
|
| 1771 |
-
confidence = float(result[2])
|
| 1772 |
-
|
| 1773 |
-
if not text or not text.strip():
|
| 1774 |
-
continue
|
| 1775 |
-
|
| 1776 |
-
# Convert 4-point bbox to x,y,w,h format
|
| 1777 |
-
xs = [point[0] for point in bbox_points]
|
| 1778 |
-
ys = [point[1] for point in bbox_points]
|
| 1779 |
-
x_min, x_max = min(xs), max(xs)
|
| 1780 |
-
y_min, y_max = min(ys), max(ys)
|
| 1781 |
-
|
| 1782 |
-
results.append(OCRResult(
|
| 1783 |
-
text=text.strip(),
|
| 1784 |
-
bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)),
|
| 1785 |
-
confidence=confidence,
|
| 1786 |
-
vertices=[(int(p[0]), int(p[1])) for p in bbox_points]
|
| 1787 |
-
))
|
| 1788 |
-
|
| 1789 |
-
self._log(f"Detected {len(results)} text regions")
|
| 1790 |
-
|
| 1791 |
-
except Exception as e:
|
| 1792 |
-
self._log(f"Error in RapidOCR detection: {str(e)}", "error")
|
| 1793 |
-
|
| 1794 |
-
return results
|
| 1795 |
-
|
| 1796 |
-
class OCRManager:
|
| 1797 |
-
"""Manager for multiple OCR providers"""
|
| 1798 |
-
|
| 1799 |
-
def __init__(self, log_callback=None):
|
| 1800 |
-
self.log_callback = log_callback
|
| 1801 |
-
self.providers = {
|
| 1802 |
-
'custom-api': CustomAPIProvider(log_callback) ,
|
| 1803 |
-
'manga-ocr': MangaOCRProvider(log_callback),
|
| 1804 |
-
'easyocr': EasyOCRProvider(log_callback),
|
| 1805 |
-
'paddleocr': PaddleOCRProvider(log_callback),
|
| 1806 |
-
'doctr': DocTROCRProvider(log_callback),
|
| 1807 |
-
'rapidocr': RapidOCRProvider(log_callback),
|
| 1808 |
-
'Qwen2-VL': Qwen2VL(log_callback)
|
| 1809 |
-
}
|
| 1810 |
-
self.current_provider = None
|
| 1811 |
-
self.stop_flag = None
|
| 1812 |
-
|
| 1813 |
-
def get_provider(self, name: str) -> Optional[OCRProvider]:
|
| 1814 |
-
"""Get OCR provider by name"""
|
| 1815 |
-
return self.providers.get(name)
|
| 1816 |
-
|
| 1817 |
-
def set_current_provider(self, name: str):
|
| 1818 |
-
"""Set current active provider"""
|
| 1819 |
-
if name in self.providers:
|
| 1820 |
-
self.current_provider = name
|
| 1821 |
-
return True
|
| 1822 |
-
return False
|
| 1823 |
-
|
| 1824 |
-
def check_provider_status(self, name: str) -> Dict[str, bool]:
|
| 1825 |
-
"""Check installation and loading status of provider"""
|
| 1826 |
-
provider = self.providers.get(name)
|
| 1827 |
-
if not provider:
|
| 1828 |
-
return {'installed': False, 'loaded': False}
|
| 1829 |
-
|
| 1830 |
-
result = {
|
| 1831 |
-
'installed': provider.check_installation(),
|
| 1832 |
-
'loaded': provider.is_loaded
|
| 1833 |
-
}
|
| 1834 |
-
if self.log_callback:
|
| 1835 |
-
self.log_callback(f"DEBUG: check_provider_status({name}) returning loaded={result['loaded']}", "debug")
|
| 1836 |
-
return result
|
| 1837 |
-
|
| 1838 |
-
def install_provider(self, name: str, progress_callback=None) -> bool:
|
| 1839 |
-
"""Install a provider"""
|
| 1840 |
-
provider = self.providers.get(name)
|
| 1841 |
-
if not provider:
|
| 1842 |
-
return False
|
| 1843 |
-
|
| 1844 |
-
return provider.install(progress_callback)
|
| 1845 |
-
|
| 1846 |
-
def load_provider(self, name: str, **kwargs) -> bool:
|
| 1847 |
-
"""Load a provider's model with optional parameters"""
|
| 1848 |
-
provider = self.providers.get(name)
|
| 1849 |
-
if not provider:
|
| 1850 |
-
return False
|
| 1851 |
-
|
| 1852 |
-
return provider.load_model(**kwargs) # <-- Passes model_size and any other kwargs
|
| 1853 |
-
|
| 1854 |
-
def shutdown(self):
|
| 1855 |
-
"""Release models/processors/tokenizers for all providers and clear caches."""
|
| 1856 |
-
try:
|
| 1857 |
-
import gc
|
| 1858 |
-
for name, provider in list(self.providers.items()):
|
| 1859 |
-
try:
|
| 1860 |
-
if hasattr(provider, 'model'):
|
| 1861 |
-
provider.model = None
|
| 1862 |
-
if hasattr(provider, 'processor'):
|
| 1863 |
-
provider.processor = None
|
| 1864 |
-
if hasattr(provider, 'tokenizer'):
|
| 1865 |
-
provider.tokenizer = None
|
| 1866 |
-
if hasattr(provider, 'reader'):
|
| 1867 |
-
provider.reader = None
|
| 1868 |
-
if hasattr(provider, 'is_loaded'):
|
| 1869 |
-
provider.is_loaded = False
|
| 1870 |
-
except Exception:
|
| 1871 |
-
pass
|
| 1872 |
-
gc.collect()
|
| 1873 |
-
try:
|
| 1874 |
-
import torch
|
| 1875 |
-
torch.cuda.empty_cache()
|
| 1876 |
-
except Exception:
|
| 1877 |
-
pass
|
| 1878 |
-
except Exception:
|
| 1879 |
-
pass
|
| 1880 |
-
|
| 1881 |
-
def detect_text(self, image: np.ndarray, provider_name: str = None, **kwargs) -> List[OCRResult]:
|
| 1882 |
-
"""Detect text using specified or current provider"""
|
| 1883 |
-
provider_name = provider_name or self.current_provider
|
| 1884 |
-
if not provider_name:
|
| 1885 |
-
return []
|
| 1886 |
-
|
| 1887 |
-
provider = self.providers.get(provider_name)
|
| 1888 |
-
if not provider:
|
| 1889 |
-
return []
|
| 1890 |
-
|
| 1891 |
-
return provider.detect_text(image, **kwargs)
|
| 1892 |
-
|
| 1893 |
-
def set_stop_flag(self, stop_flag):
|
| 1894 |
-
"""Set stop flag for all providers"""
|
| 1895 |
-
self.stop_flag = stop_flag
|
| 1896 |
-
for provider in self.providers.values():
|
| 1897 |
-
if hasattr(provider, 'set_stop_flag'):
|
| 1898 |
-
provider.set_stop_flag(stop_flag)
|
| 1899 |
-
|
| 1900 |
-
def reset_stop_flags(self):
|
| 1901 |
-
"""Reset stop flags for all providers"""
|
| 1902 |
-
for provider in self.providers.values():
|
| 1903 |
-
if hasattr(provider, 'reset_stop_flags'):
|
| 1904 |
-
provider.reset_stop_flags()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|