""" Image Translation Module for EPUB Translator Handles detection, extraction, and translation of images containing text Includes support for web novel images and watermark handling """ import os import json import base64 import zipfile from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter import io from typing import List, Dict, Optional, Tuple import re from bs4 import BeautifulSoup import logging import time import queue import threading # OpenCV availability check try: import cv2 import numpy as np CV2_AVAILABLE = True except ImportError: CV2_AVAILABLE = False print("โš ๏ธ OpenCV not available - advanced image processing disabled") import numpy as np from unified_api_client import UnifiedClientError logger = logging.getLogger(__name__) def requires_cv2(func): """Decorator to skip methods that require OpenCV""" def wrapper(self, *args, **kwargs): if not CV2_AVAILABLE: # Return sensible defaults based on the function if func.__name__ == '_detect_watermark_pattern': return False, None elif func.__name__ in ['_remove_periodic_watermark', '_adaptive_histogram_equalization', '_bilateral_filter', '_enhance_text_regions']: # Return the image array unchanged return args[0] if args else None else: return None return func(self, *args, **kwargs) return wrapper def send_image_with_interrupt(client, messages, image_data, temperature, max_tokens, stop_check_fn, chunk_timeout=None, context='image_translation'): """Send image API request with interrupt capability and timeout retry""" import queue import threading from unified_api_client import UnifiedClientError result_queue = queue.Queue() def api_call(): try: start_time = time.time() result = client.send_image(messages, image_data, temperature=temperature, max_tokens=max_tokens, context=context) elapsed = time.time() - start_time result_queue.put((result, elapsed)) except Exception as e: result_queue.put(e) api_thread = threading.Thread(target=api_call) api_thread.daemon = True api_thread.start() # Use chunk timeout if provided, otherwise use default timeout = chunk_timeout if chunk_timeout else 300 check_interval = 0.5 elapsed = 0 while elapsed < timeout: try: result = result_queue.get(timeout=check_interval) if isinstance(result, Exception): raise result if isinstance(result, tuple): api_result, api_time = result # Check if it took too long if chunk_timeout and api_time > chunk_timeout: raise UnifiedClientError(f"Image API call took {api_time:.1f}s (timeout: {chunk_timeout}s)") return api_result return result except queue.Empty: if stop_check_fn and stop_check_fn(): raise UnifiedClientError("Image translation stopped by user") elapsed += check_interval raise UnifiedClientError(f"Image API call timed out after {timeout} seconds") class ImageTranslator: def __init__(self, client, output_dir: str, profile_name: str = "", system_prompt: str = "", temperature: float = 0.3, log_callback=None, progress_manager=None, history_manager=None, chunk_context_manager=None): """ Initialize the image translator Args: client: UnifiedClient instance for API calls output_dir: Directory to save translated images profile_name: Source language for translation system_prompt: System prompt from GUI to use for translation temperature: Temperature for translation log_callback: Optional callback function for logging progress_manager: Shared ProgressManager instance for synchronization """ self.client = client self.output_dir = output_dir self.profile_name = profile_name self.system_prompt = system_prompt self.temperature = temperature self.log_callback = log_callback self.progress_manager = progress_manager # Use shared progress manager self.images_dir = os.path.join(output_dir, "images") self.translated_images_dir = os.path.join(output_dir, "translated_images") os.makedirs(self.translated_images_dir, exist_ok=True) self.api_delay = float(os.getenv("SEND_INTERVAL_SECONDS", "2")) # Track processed images to avoid duplicates self.processed_images = {} self.image_translations = {} # Configuration from environment self.process_webnovel = os.getenv("PROCESS_WEBNOVEL_IMAGES", "1") == "1" self.webnovel_min_height = int(os.getenv("WEBNOVEL_MIN_HEIGHT", "1000")) self.image_max_tokens = int(os.getenv("MAX_OUTPUT_TOKENS", "8192")) self.chunk_height = int(os.getenv("IMAGE_CHUNK_HEIGHT", "2000")) # Add context tracking for image chunks self.contextual_enabled = os.getenv("CONTEXTUAL", "1") == "1" self.history_manager = history_manager self.chunk_context_manager = chunk_context_manager self.remove_ai_artifacts = os.getenv("REMOVE_AI_ARTIFACTS", "0") == "1" def extract_images_from_chapter(self, chapter_html: str) -> List[Dict]: """ Extract image references from chapter HTML Returns: List of dicts with image info: {src, alt, width, height} """ soup = BeautifulSoup(chapter_html, 'html.parser') images = [] for img in soup.find_all('img'): img_info = { 'src': img.get('src', ''), 'alt': img.get('alt', ''), 'width': img.get('width'), 'height': img.get('height'), 'style': img.get('style', '') } if img_info['src']: images.append(img_info) return images def compress_image(self, image_path): """ Compress an image based on settings from environment variables Args: image_path: Path to the input image Returns: Path to compressed image (temporary or saved) """ try: # Check if compression is enabled if os.getenv("ENABLE_IMAGE_COMPRESSION", "0") != "1": return image_path # Return original if compression disabled print(f" ๐Ÿ—œ๏ธ Compressing image: {os.path.basename(image_path)}") # Load compression settings from environment target_format = os.getenv("IMAGE_COMPRESSION_FORMAT", "auto") max_dimension = int(os.getenv("MAX_IMAGE_DIMENSION", "2048")) max_size_mb = float(os.getenv("MAX_IMAGE_SIZE_MB", "10")) quality_settings = { 'webp': int(os.getenv("WEBP_QUALITY", "85")), 'jpeg': int(os.getenv("JPEG_QUALITY", "85")), 'png': int(os.getenv("PNG_COMPRESSION", "6")) } auto_compress = os.getenv("AUTO_COMPRESS_ENABLED", "1") == "1" preserve_transparency = os.getenv("PRESERVE_TRANSPARENCY", "0") == "1" # Default is now False preserve_original_format = os.getenv("PRESERVE_ORIGINAL_FORMAT", "0") == "1" # New option optimize_for_ocr = os.getenv("OPTIMIZE_FOR_OCR", "1") == "1" progressive = os.getenv("PROGRESSIVE_ENCODING", "1") == "1" save_compressed = os.getenv("SAVE_COMPRESSED_IMAGES", "0") == "1" # Open image with Image.open(image_path) as img: original_format = img.format.lower() if img.format else 'png' has_transparency = img.mode in ('RGBA', 'LA') or (img.mode == 'P' and 'transparency' in img.info) # Special handling for GIF files is_gif = original_format == 'gif' if is_gif and not preserve_original_format: print(f" ๐ŸŽž๏ธ GIF detected - converting to static image for better compression") # For animated GIFs, we'll take the first frame # Convert to RGBA to preserve any transparency if img.mode == 'P' and 'transparency' in img.info: img = img.convert('RGBA') elif img.mode not in ('RGB', 'RGBA'): img = img.convert('RGB') elif is_gif and preserve_original_format: print(f" ๐ŸŽž๏ธ GIF detected - preserving original format as requested") # Calculate original size original_size_mb = os.path.getsize(image_path) / (1024 * 1024) print(f" ๐Ÿ“Š Original: {img.width}x{img.height}, {original_size_mb:.2f}MB, format: {original_format}") # Get chunk height from environment - this comes from the GUI setting chunk_height = int(os.getenv("IMAGE_CHUNK_HEIGHT", "1500")) print(f" ๐Ÿ“ Using chunk height from settings: {chunk_height}px") # Check if resizing is needed - BUT NOT FOR TALL IMAGES THAT WILL BE CHUNKED! needs_resize = img.width > max_dimension or img.height > max_dimension # CRITICAL: Check if this is a tall image that will be chunked # If so, DO NOT resize the height! is_tall_text_image = img.height > chunk_height if needs_resize: if is_tall_text_image: # Only resize width if needed, NEVER touch the height for tall images if img.width > max_dimension: # Keep aspect ratio but don't exceed max width ratio = max_dimension / img.width new_width = max_dimension new_height = int(img.height * ratio) print(f" โš ๏ธ Tall image ({img.height}px > chunk height {chunk_height}px)") print(f" ๐Ÿ“ Resizing width only: {img.width} โ†’ {new_width} (height: {img.height} โ†’ {new_height})") img = img.resize((new_width, new_height), Image.Resampling.LANCZOS) else: print(f" โœ… Tall image ({img.height}px) - keeping dimensions (will be chunked into {(img.height + chunk_height - 1) // chunk_height} chunks)") else: # Normal resize for regular images (not tall enough to chunk) ratio = min(max_dimension / img.width, max_dimension / img.height) new_size = (int(img.width * ratio), int(img.height * ratio)) img = img.resize(new_size, Image.Resampling.LANCZOS) print(f" ๐Ÿ“ Regular image resized to: {new_size[0]}x{new_size[1]}") # Auto-select format if needed if preserve_original_format and target_format == 'auto': # Keep the original format target_format = original_format # Special handling for formats that might not be ideal if original_format == 'bmp': target_format = 'png' # Convert BMP to PNG as BMP is uncompressed print(f" ๐Ÿ“ธ Preserving original format: {target_format}") elif target_format == 'auto': # For GIFs with text (web novel chapters), prefer PNG or WebP if is_gif: if has_transparency and preserve_transparency: target_format = 'png' # Better for text with transparency else: target_format = 'webp' # Good compression for text elif has_transparency and preserve_transparency: target_format = 'webp' elif optimize_for_ocr and img.width * img.height > 1000000: target_format = 'webp' elif original_size_mb > 5: target_format = 'webp' else: target_format = 'jpeg' print(f" ๐ŸŽฏ Auto-selected format: {target_format}") # Handle transparency conversion if needed if target_format == 'jpeg' and (has_transparency or img.mode == 'RGBA'): # Convert to RGB with white background rgb_img = Image.new('RGB', img.size, (255, 255, 255)) if img.mode == 'RGBA': rgb_img.paste(img, mask=img.split()[3]) else: rgb_img.paste(img) img = rgb_img # Apply OCR optimization if enabled if optimize_for_ocr: # Skip OCR optimization for GIF files in palette mode when preserving format if target_format == 'gif' and img.mode in ('P', 'L'): print(f" โš ๏ธ Applying OCR optimization to GIF (converting modes temporarily)") # Convert to RGB temporarily for enhancement, then convert back original_mode = img.mode transparency_info = None if img.mode == 'P': # Preserve transparency info if present transparency_info = img.info.get('transparency', None) # Convert to RGBA if has transparency, otherwise RGB if transparency_info is not None: img = img.convert('RGBA') else: img = img.convert('RGB') elif img.mode == 'L': img = img.convert('RGB') # Apply enhancements from PIL import ImageEnhance enhancer = ImageEnhance.Contrast(img) img = enhancer.enhance(1.2) enhancer = ImageEnhance.Sharpness(img) img = enhancer.enhance(1.1) # Extra sharpening for GIF text img = enhancer.enhance(1.2) # Convert back to original mode for GIF saving if original_mode == 'P': # Quantize back to palette mode img = img.quantize(colors=256, method=2) # MEDIANCUT if transparency_info is not None: img.info['transparency'] = transparency_info elif original_mode == 'L': img = img.convert('L') else: # Normal OCR optimization for non-GIF formats or RGB-mode images from PIL import ImageEnhance enhancer = ImageEnhance.Contrast(img) img = enhancer.enhance(1.2) enhancer = ImageEnhance.Sharpness(img) img = enhancer.enhance(1.1) # Extra sharpening for GIF text which might be lower quality if is_gif: img = enhancer.enhance(1.2) # Prepare save parameters based on format save_params = {} if target_format == 'webp': # For WebP, decide whether to keep transparency if has_transparency and preserve_transparency: save_params = { 'format': 'WEBP', 'quality': quality_settings['webp'], 'method': 6, 'lossless': False, 'exact': True # Preserve transparency } else: # Convert to RGB with white background for WebP without transparency if img.mode in ('RGBA', 'LA', 'P'): rgb_img = Image.new('RGB', img.size, (255, 255, 255)) if img.mode == 'RGBA': rgb_img.paste(img, mask=img.split()[3]) elif img.mode == 'LA': rgb_img.paste(img, mask=img.split()[1]) else: # P mode if 'transparency' in img.info: img = img.convert('RGBA') rgb_img.paste(img, mask=img.split()[3]) else: rgb_img.paste(img) img = rgb_img save_params = { 'format': 'WEBP', 'quality': quality_settings['webp'], 'method': 6, 'lossless': False } elif target_format == 'jpeg': save_params = { 'format': 'JPEG', 'quality': quality_settings['jpeg'], 'optimize': True, 'progressive': progressive } elif target_format == 'png': # For PNG, handle transparency properly if not (has_transparency and preserve_transparency): # Convert to RGB with white background if not preserving transparency if img.mode in ('RGBA', 'LA', 'P'): rgb_img = Image.new('RGB', img.size, (255, 255, 255)) if img.mode == 'RGBA': rgb_img.paste(img, mask=img.split()[3]) elif img.mode == 'LA': rgb_img.paste(img, mask=img.split()[1]) else: # P mode if 'transparency' in img.info: img = img.convert('RGBA') rgb_img.paste(img, mask=img.split()[3]) else: rgb_img.paste(img) img = rgb_img elif img.mode == 'P' and 'transparency' in img.info: # Convert palette mode with transparency to RGBA img = img.convert('RGBA') save_params = { 'format': 'PNG', 'compress_level': quality_settings['png'], 'optimize': True } elif target_format == 'gif': # GIF format - limited but preserving original when requested print(f" โš ๏ธ Warning: GIF format has limited colors (256) and may reduce text quality") if img.mode not in ('P', 'L'): # Convert to palette mode for GIF img = img.quantize(colors=256, method=2) # MEDIANCUT method save_params = { 'format': 'GIF', 'optimize': True } # Auto-compress to meet token target if specified if auto_compress: target_tokens = int(os.getenv("TARGET_IMAGE_TOKENS", "1000")) # For text-heavy images (like web novel GIFs), be less aggressive if is_gif or 'chapter' in os.path.basename(image_path).lower(): target_mb = min(max_size_mb, 3.0) # Allow up to 3MB for text clarity else: target_mb = min(max_size_mb, 2.0) # Regular images print(f" ๐ŸŽฏ Auto-compress target: {target_mb:.1f}MB for token efficiency") max_size_mb = target_mb # Save compressed image output_path = None quality = save_params.get('quality', 85) # Try different quality levels to meet size target while quality > 10: from io import BytesIO buffer = BytesIO() if 'quality' in save_params: save_params['quality'] = quality img.save(buffer, **save_params) compressed_size_mb = len(buffer.getvalue()) / (1024 * 1024) if compressed_size_mb <= max_size_mb or quality <= 10: # Size is acceptable or we've reached minimum quality if save_compressed: # FIXED: Handle PyInstaller paths properly try: # Try to determine the proper output directory # First check if self.output_dir is absolute and exists if hasattr(self, 'output_dir') and self.output_dir and os.path.isabs(self.output_dir): base_output_dir = self.output_dir else: # Fall back to using the directory of the source image base_output_dir = os.path.dirname(image_path) # Look for a typical output structure if 'translated_images' not in base_output_dir: # Try to find or create the translated_images directory parent_dir = base_output_dir while parent_dir and not os.path.exists(os.path.join(parent_dir, 'translated_images')): new_parent = os.path.dirname(parent_dir) if new_parent == parent_dir: # Reached root break parent_dir = new_parent if parent_dir and os.path.exists(os.path.join(parent_dir, 'translated_images')): base_output_dir = parent_dir else: # Create translated_images in the same directory as the source base_output_dir = os.path.dirname(image_path) compressed_dir = os.path.join(base_output_dir, "translated_images", "compressed") # Ensure the directory exists with proper error handling try: os.makedirs(compressed_dir, exist_ok=True) except OSError as e: print(f" โš ๏ธ Failed to create compressed directory: {e}") # Fall back to source image directory compressed_dir = os.path.join(os.path.dirname(image_path), "compressed") os.makedirs(compressed_dir, exist_ok=True) base_name = os.path.basename(image_path) name, original_ext = os.path.splitext(base_name) # Add source format info to filename if converting from GIF if is_gif and target_format != 'gif': name = f"{name}_from_gif" ext = '.webp' if target_format == 'webp' else f'.{target_format}' output_path = os.path.join(compressed_dir, f"{name}_compressed{ext}") # Write the file with proper error handling try: with open(output_path, 'wb') as f: f.write(buffer.getvalue()) print(f" ๐Ÿ’พ Saved compressed image: {output_path}") except OSError as e: print(f" โŒ Failed to save compressed image: {e}") # Fall back to temporary file raise # This will trigger the temporary file fallback below except Exception as e: print(f" โš ๏ธ Failed to save to permanent location: {e}") # Fall back to temporary file import tempfile ext = '.webp' if target_format == 'webp' else f'.{target_format}' with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as tmp: tmp.write(buffer.getvalue()) output_path = tmp.name print(f" ๐Ÿ“ Created temp compressed image instead") else: # Save to temporary file import tempfile ext = '.webp' if target_format == 'webp' else f'.{target_format}' with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as tmp: tmp.write(buffer.getvalue()) output_path = tmp.name print(f" ๐Ÿ“ Created temp compressed image") compression_ratio = (1 - compressed_size_mb / original_size_mb) * 100 if compression_ratio > 0: print(f" โœ… Compressed: {original_size_mb:.2f}MB โ†’ {compressed_size_mb:.2f}MB " f"({compression_ratio:.1f}% reduction, quality: {quality})") else: print(f" โš ๏ธ Compression increased size: {original_size_mb:.2f}MB โ†’ {compressed_size_mb:.2f}MB " f"({abs(compression_ratio):.1f}% larger, quality: {quality})") # Special note for GIF conversions if is_gif: print(f" ๐ŸŽž๏ธ GIF converted to {target_format.upper()} for better compression") return output_path # Reduce quality and try again quality -= 5 print(f" ๐Ÿ”„ Size {compressed_size_mb:.2f}MB > target {max_size_mb:.2f}MB, " f"reducing quality to {quality}") # If we couldn't meet the target, return the best we got print(f" โš ๏ธ Could not meet size target, using minimum quality") return output_path if output_path else image_path except Exception as e: print(f" โŒ Compression failed: {e}") import traceback traceback.print_exc() return image_path # Return original on error def _process_image_with_compression(self, image_path, context, check_stop_fn): """Process image with optional compression before translation""" try: # Apply compression if enabled if os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1": compressed_path = self.compress_image(image_path) if compressed_path != image_path: # Use compressed image for translation result = self._process_single_image_original(compressed_path, context, check_stop_fn) # Clean up temp file if needed if not os.getenv("SAVE_COMPRESSED_IMAGES", "0") == "1": try: os.unlink(compressed_path) except: pass return result # No compression, use original method return self._process_single_image_original(image_path, context, check_stop_fn) except Exception as e: print(f" โŒ Error in image processing: {e}") return None def _process_image_chunks_single_api(self, img, width, height, context, check_stop_fn): """Process all image chunks in a single API call with compression support""" num_chunks = (height + self.chunk_height - 1) // self.chunk_height overlap_percentage = float(os.getenv('IMAGE_CHUNK_OVERLAP_PERCENT', '1')) overlap = int(self.chunk_height * (overlap_percentage / 100)) print(" ๐Ÿš€ Using SINGLE API CALL mode for " + str(num_chunks) + " chunks") print(f" ๐Ÿ“ Chunk overlap: {overlap_percentage}% ({overlap} pixels)") #print(" ๐Ÿ“Š This is more efficient and produces better translations") #print(" โณ Estimated time: 30-90 seconds total") # Check for stop at the very beginning if check_stop_fn and check_stop_fn(): print(" โŒ Image translation stopped by user") return None # Load progress for resumability prog = self.load_progress() image_basename = os.path.basename(self.current_image_path) if hasattr(self, 'current_image_path') else str(hash(str(img))) # Detect original image format from filename or image original_format = 'png' # default if hasattr(self, 'current_image_path'): ext = os.path.splitext(self.current_image_path)[1].lower() if ext in ['.gif', '.jpg', '.jpeg', '.png', '.webp']: original_format = ext[1:] # Remove the dot if original_format == 'jpg': original_format = 'jpeg' # Check if we should preserve original format preserve_original_format = os.getenv("PRESERVE_ORIGINAL_FORMAT", "0") == "1" # Try to extract chapter number chapter_num = None if hasattr(self, 'current_chapter_num'): chapter_num = self.current_chapter_num else: import re match = re.search(r'ch(?:apter)?[\s_-]*(\d+)', image_basename, re.IGNORECASE) if match: chapter_num = match.group(1) # Create unique key if chapter_num: image_key = "ch" + str(chapter_num) + "_" + image_basename else: image_key = image_basename # Check if already processed if "single_api_chunks" not in prog: prog["single_api_chunks"] = {} if image_key in prog["single_api_chunks"] and prog["single_api_chunks"][image_key].get("completed"): print(" โญ๏ธ Image already translated, using cached result") return prog["single_api_chunks"][image_key]["translation"] # Prepare chunks try: content_parts = [] print(" ๐Ÿ“ฆ Preparing " + str(num_chunks) + " image chunks...") # Check if we should save debug images save_cleaned = os.getenv('SAVE_CLEANED_IMAGES', '0') == '1' if save_cleaned: debug_dir = os.path.join(self.output_dir, "translated_images", "debug_chunks") os.makedirs(debug_dir, exist_ok=True) print(" ๐Ÿ” Debug mode: Saving chunks to " + debug_dir) # Create subdirectory for compressed chunks compressed_debug_dir = os.path.join(debug_dir, "compressed") os.makedirs(compressed_debug_dir, exist_ok=True) # Check if compression is enabled compression_enabled = os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1" total_uncompressed_size = 0 total_compressed_size = 0 # Temporarily set the original format in environment for _image_to_bytes_with_compression old_env_format = os.environ.get("ORIGINAL_IMAGE_FORMAT", "") if preserve_original_format and original_format: os.environ["ORIGINAL_IMAGE_FORMAT"] = original_format for i in range(num_chunks): # Check for stop during preparation if check_stop_fn and check_stop_fn(): print(" โŒ Stopped while preparing chunk " + str(i+1) + "/" + str(num_chunks)) # Restore environment if old_env_format: os.environ["ORIGINAL_IMAGE_FORMAT"] = old_env_format elif "ORIGINAL_IMAGE_FORMAT" in os.environ: del os.environ["ORIGINAL_IMAGE_FORMAT"] return None # Calculate chunk boundaries with overlap start_y = max(0, i * self.chunk_height - (overlap if i > 0 else 0)) end_y = min(height, (i + 1) * self.chunk_height) # Crop the chunk chunk = img.crop((0, start_y, width, end_y)) # Save uncompressed debug chunk if enabled if save_cleaned: # Use original format for debug chunks if preserving format if preserve_original_format and original_format == 'gif': chunk_ext = 'gif' # Need to convert to palette mode for GIF if chunk.mode not in ('P', 'L'): chunk_to_save = chunk.quantize(colors=256, method=2) # MEDIANCUT else: chunk_to_save = chunk else: chunk_ext = 'png' chunk_to_save = chunk chunk_filename = image_key + "_chunk_" + str(i+1) + "_of_" + str(num_chunks) + "_y" + str(start_y) + "-" + str(end_y) + "." + chunk_ext chunk_path = os.path.join(debug_dir, chunk_filename) if chunk_ext == 'gif': chunk_to_save.save(chunk_path, "GIF", optimize=True) else: chunk_to_save.save(chunk_path, "PNG") print(" ๐Ÿ’พ Saved debug chunk: " + chunk_filename) # Get uncompressed size uncompressed_size = os.path.getsize(chunk_path) total_uncompressed_size += uncompressed_size # Convert chunk to bytes with compression if enabled if compression_enabled: print(f" ๐Ÿ—œ๏ธ Compressing chunk {i+1}/{num_chunks}...") # Use the compression method chunk_bytes = self._image_to_bytes_with_compression(chunk) # Determine format based on compression settings format_setting = os.getenv("IMAGE_COMPRESSION_FORMAT", "auto") if format_setting == "auto": if preserve_original_format and original_format == 'gif': # If original was GIF and we're preserving format, use GIF format_used = 'gif' else: # Check if chunk has transparency has_transparency = chunk.mode in ('RGBA', 'LA') or (chunk.mode == 'P' and 'transparency' in chunk.info) preserve_transparency = os.getenv("PRESERVE_TRANSPARENCY", "0") == "1" if has_transparency and preserve_transparency: format_used = 'png' else: format_used = 'webp' # Default to WebP for best compression else: format_used = format_setting # Calculate compression stats compressed_size = len(chunk_bytes) if save_cleaned: # Get the actual original size of the chunk before compression original_chunk_buffer = io.BytesIO() chunk.save(original_chunk_buffer, format='PNG') actual_original_size = len(original_chunk_buffer.getvalue()) compression_ratio = (1 - compressed_size / actual_original_size) * 100 print(f" ๐Ÿ“Š Chunk {i+1}: {uncompressed_size:,} โ†’ {compressed_size:,} bytes ({compression_ratio:.1f}% reduction, format: {format_used.upper()})") total_compressed_size += compressed_size # Save compressed chunk for debugging compressed_chunk_filename = image_key + "_chunk_" + str(i+1) + "_compressed." + format_used.lower() compressed_chunk_path = os.path.join(compressed_debug_dir, compressed_chunk_filename) with open(compressed_chunk_path, 'wb') as f: f.write(chunk_bytes) print(f" ๐Ÿ’พ Saved compressed chunk: {compressed_chunk_filename}") else: # No compression - use original format if preserving, otherwise PNG if preserve_original_format and original_format == 'gif': chunk_bytes = self._image_to_bytes(chunk, format='GIF') format_used = 'gif' else: chunk_bytes = self._image_to_bytes(chunk, format='PNG') format_used = 'png' if save_cleaned: total_compressed_size += len(chunk_bytes) # Convert to base64 chunk_base64 = base64.b64encode(chunk_bytes).decode('utf-8') # Add image to content with appropriate format content_parts.append({ "type": "image_url", "image_url": { "url": f"data:image/{format_used.lower()};base64," + chunk_base64 } }) # Restore original environment variable if old_env_format: os.environ["ORIGINAL_IMAGE_FORMAT"] = old_env_format elif "ORIGINAL_IMAGE_FORMAT" in os.environ: del os.environ["ORIGINAL_IMAGE_FORMAT"] # Count the number of images in content_parts num_images = sum(1 for part in content_parts if part.get("type") == "image_url") # Show overall compression stats if enabled if compression_enabled and save_cleaned and total_uncompressed_size > 0: overall_compression = (1 - total_compressed_size / total_uncompressed_size) * 100 print(f"\n ๐Ÿ“Š Overall compression stats:") print(f" Total uncompressed: {total_uncompressed_size:,} bytes ({total_uncompressed_size / 1024 / 1024:.2f} MB)") print(f" Total compressed: {total_compressed_size:,} bytes ({total_compressed_size / 1024 / 1024:.2f} MB)") print(f" Reduction: {overall_compression:.1f}%") print(f" Savings: {(total_uncompressed_size - total_compressed_size):,} bytes\n") except Exception as e: # Make sure to restore environment if 'old_env_format' in locals(): if old_env_format: os.environ["ORIGINAL_IMAGE_FORMAT"] = old_env_format elif "ORIGINAL_IMAGE_FORMAT" in os.environ: del os.environ["ORIGINAL_IMAGE_FORMAT"] print(" โŒ Error preparing chunks: " + str(e)) import traceback traceback.print_exc() print(" ๐Ÿ”„ Falling back to sequential chunk processing...") return self._process_image_chunks(img, width, height, context, check_stop_fn) # Calculate token estimate based on provider if 'gemini' in self.client.model.lower(): # Gemini charges flat 258 tokens per image estimated_image_tokens = num_images * 258 elif 'gpt-4' in self.client.model.lower() or 'gpt-4o' in self.client.model.lower(): # GPT-4V uses ~85 tokens per 512x512 tile # Adjust estimate based on compression if compression_enabled: # Compressed images use fewer tokens tiles_per_chunk = max(1, (self.chunk_height * width * 0.7) // (512 * 512)) else: tiles_per_chunk = max(1, (self.chunk_height * width) // (512 * 512)) estimated_image_tokens = num_images * tiles_per_chunk * 85 elif 'claude' in self.client.model.lower(): # Claude varies by resolution, estimate based on compression if compression_enabled: estimated_image_tokens = num_images * 1500 # Compressed images else: estimated_image_tokens = num_images * 2000 # Uncompressed else: # Default conservative estimate estimated_image_tokens = num_images * 1000 # Calculate text tokens text_tokens = sum(len(part.get("text", "")) for part in content_parts if part.get("type") == "text") // 4 estimated_text_tokens = len(self.system_prompt) // 4 + text_tokens + 200 total_estimated_tokens = estimated_image_tokens + estimated_text_tokens print(" ๐Ÿ“Š Token estimate:") print(" Number of images: " + str(num_images)) print(" Image tokens: ~" + "{:,}".format(estimated_image_tokens) + " (model: " + self.client.model + ")") if compression_enabled: print(" Compression: ENABLED โœ…") print(" Text tokens: ~" + "{:,}".format(estimated_text_tokens)) print(" Total: ~" + "{:,}".format(total_estimated_tokens) + " tokens") # Make the API call try: # Build messages messages = [{"role": "system", "content": self.system_prompt}] messages.append({ "role": "user", "content": content_parts }) print("\n ๐Ÿ”„ Sending " + str(num_chunks) + " chunks to API in single call...") if compression_enabled: print(" ๐Ÿ—œ๏ธ Using compressed chunks for efficient API usage") # Final stop check before API call if check_stop_fn and check_stop_fn(): print(" โŒ Stopped before API call") return None # Use send_image_with_interrupt for interruptible API call start_time = time.time() # Get timeout settings chunk_timeout = int(os.getenv('CHUNK_TIMEOUT', '0')) retry_timeout = os.getenv('RETRY_TIMEOUT', '0') == '1' # Make interruptible API call # Since we already have images in content_parts, we need to use regular send, not send_image try: # Create a wrapper to make regular send interruptible result_queue = queue.Queue() def api_call(): try: start = time.time() result = self.client.send( messages=messages, temperature=self.temperature, max_tokens=self.image_max_tokens ) elapsed_time = time.time() - start result_queue.put((result, elapsed_time)) except Exception as e: result_queue.put(e) api_thread = threading.Thread(target=api_call) api_thread.daemon = True api_thread.start() # Check for completion or stop timeout = chunk_timeout if chunk_timeout else 900 check_interval = 0.5 elapsed_check = 0 while elapsed_check < timeout: try: result = result_queue.get(timeout=check_interval) if isinstance(result, Exception): raise result if isinstance(result, tuple): response, elapsed_time = result elapsed = elapsed_time break except queue.Empty: if check_stop_fn and check_stop_fn(): raise UnifiedClientError("Translation stopped by user") elapsed_check += check_interval else: raise UnifiedClientError("API call timed out after " + str(timeout) + " seconds") except UnifiedClientError as e: if "stopped by user" in str(e).lower(): print(" โŒ Translation stopped by user during API call") return None elif "timed out" in str(e).lower(): print(" โฑ๏ธ API call timed out: " + str(e)) print(" ๐Ÿ”„ Falling back to sequential chunk processing...") return self._process_image_chunks(img, width, height, context, check_stop_fn) else: raise # Handle the result based on what's returned if isinstance(response, tuple): response, elapsed_time = response # Handle case where elapsed_time might be 'stop' or other non-numeric try: elapsed = float(elapsed_time) except (ValueError, TypeError): elapsed = time.time() - start_time # Success! print(" ๐Ÿ“ก API response received in " + "{:.1f}".format(elapsed) + "s") # Check if response is valid if not response: print(" โŒ No response from API") print(" ๐Ÿ”„ Falling back to sequential chunk processing...") return self._process_image_chunks(img, width, height, context, check_stop_fn) # Extract content from UnifiedResponse if hasattr(response, 'content'): translation_response = response.content elif hasattr(response, 'text'): translation_response = response.text else: translation_response = str(response) # Unescape the response text if it has escaped characters if '\\n' in translation_response or translation_response.startswith('('): print(" ๐Ÿ”ง Detected escaped text, unescaping...") translation_response = self._unescape_response_text(translation_response) # Check if we got actual content if not translation_response or not translation_response.strip(): print(" โŒ Empty response content from API") print(" ๐Ÿ”„ Falling back to sequential chunk processing...") return self._process_image_chunks(img, width, height, context, check_stop_fn) # Process response trans_finish = getattr(response, 'finish_reason', 'unknown') print(" ๐Ÿ“ก Finish reason: " + trans_finish) print(" ๐Ÿ“„ Response length: " + str(len(translation_response)) + " characters") if trans_finish in ["length", "max_tokens"]: print(" โš ๏ธ Translation was TRUNCATED! Consider increasing Max tokens.") translation_response += "\n\n[TRANSLATION TRUNCATED DUE TO TOKEN LIMIT]" # Clean translation based on REMOVE_AI_ARTIFACTS setting if self.remove_ai_artifacts: cleaned_translation = self._clean_translation_response(translation_response) print(" ๐Ÿงน Cleaned translation (artifact removal enabled)") else: cleaned_translation = translation_response print(" ๐Ÿ“ Using raw translation (artifact removal disabled)") # Normalize and sanitize to avoid squared/cubed glyphs cleaned_translation = self._normalize_unicode_width(cleaned_translation) cleaned_translation = self._sanitize_unicode_characters(cleaned_translation) if not cleaned_translation: print(" โŒ No text extracted from response after cleaning") print(" ๐Ÿ”„ Falling back to sequential chunk processing...") return self._process_image_chunks(img, width, height, context, check_stop_fn) # Save to progress if "single_api_chunks" not in prog: prog["single_api_chunks"] = {} prog["single_api_chunks"][image_key] = { "completed": True, "translation": cleaned_translation, "chunks": num_chunks, "overlap": overlap, "compression_enabled": compression_enabled, "original_format": original_format, "timestamp": time.time() } self.save_progress(prog) print(" โœ… Translation complete (" + str(len(cleaned_translation)) + " chars)") return cleaned_translation except Exception as e: error_str = str(e) error_msg = error_str.lower() # Log the full error print(" โŒ API Error: " + error_str) import traceback traceback.print_exc() # Check for stop if "stopped by user" in error_msg or (check_stop_fn and check_stop_fn()): print(" โŒ Translation stopped by user") return None # For any API error at this point, fall back to sequential print(" ๐Ÿ”„ Single API call failed, falling back to sequential chunk processing...") return self._process_image_chunks(img, width, height, context, check_stop_fn) def should_translate_image(self, image_path: str, check_illustration: bool = True) -> bool: """ Determine if an image should be translated based on various heuristics Args: image_path: Path to the image file check_illustration: Whether to check if it's likely an illustration Returns: True if image likely contains translatable text """ # Skip if already processed if image_path in self.processed_images: return False # Check file extension - ADD GIF SUPPORT ext = os.path.splitext(image_path)[1].lower() if ext not in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']: return False # Check file size (skip very small images) if os.path.exists(image_path): size = os.path.getsize(image_path) if size < 5000: # Less than 5KB (lowered threshold for GIFs) return False # For GIF files from web novels, always process them if ext == '.gif' and 'chapter' in os.path.basename(image_path).lower(): print(f" ๐Ÿ“œ Web novel GIF detected: {os.path.basename(image_path)}") return True # Check file size (skip very small images) if os.path.exists(image_path): size = os.path.getsize(image_path) if size < 10000: # Less than 10KB return False # Check image dimensions try: with Image.open(image_path) as img: width, height = img.size # Skip very small images (likely icons) if width < 100 or height < 100: return False # Calculate aspect ratio aspect_ratio = width / height # Check for web novel/long text images (very tall, narrow images) if self.process_webnovel and height > self.webnovel_min_height and aspect_ratio < 0.5: # This is likely a web novel chapter or long text screenshot print(f" ๐Ÿ“œ Web novel/long text image detected: {os.path.basename(image_path)}") return True # Skip OTHER extreme aspect ratios (but not tall text images) if aspect_ratio > 5: # Very wide images return False # Additional check for illustrations (typically larger, square-ish images) if check_illustration: # Large images with normal aspect ratios are often illustrations if width > 800 and height > 600 and 0.5 < aspect_ratio < 2: # Check filename for illustration indicators filename = os.path.basename(image_path).lower() illustration_indicators = [ 'illust', 'illustration', 'art', 'artwork', 'drawing', 'painting', 'sketch', 'design', 'visual', 'graphic', 'image', 'picture', 'fig', 'figure', 'plate' ] # If filename suggests it's an illustration, skip for indicator in illustration_indicators: if indicator in filename: print(f" ๐Ÿ“Ž Skipping likely illustration: {filename}") return False except Exception: return False # Check filename patterns that suggest text content filename = os.path.basename(image_path).lower() # Strong indicators of text content (including web novel patterns) text_indicators = [ 'text', 'title', 'chapter', 'page', 'dialog', 'dialogue', 'bubble', 'sign', 'note', 'letter', 'message', 'notice', 'banner', 'caption', 'subtitle', 'heading', 'label', 'menu', 'interface', 'ui', 'screen', 'display', 'novel', 'webnovel', 'lightnovel', 'wn', 'ln', # Web novel indicators 'chap', 'ch', 'episode', 'ep' # Chapter indicators ] # Strong indicators to skip skip_indicators = [ 'cover', 'logo', 'decoration', 'ornament', 'border', 'background', 'wallpaper', 'texture', 'pattern', 'icon', 'button', 'avatar', 'profile', 'portrait', 'landscape', 'scenery', 'character', 'hero', 'heroine' ] # Check for text indicators for indicator in text_indicators: if indicator in filename: print(f" ๐Ÿ“ Text-likely image detected: {filename}") return True # Check for skip indicators for indicator in skip_indicators: if indicator in filename: print(f" ๐ŸŽจ Skipping decorative/character image: {filename}") return False # For ambiguous cases, if it's a tall image, assume it might be text try: with Image.open(image_path) as img: width, height = img.size if height > width * 2: # Height is more than twice the width print(f" ๐Ÿ“œ Tall image detected, assuming possible text content") return True except: pass # Default to False to avoid processing regular illustrations return False def load_progress(self): """Load progress tracking for image chunks""" if self.progress_manager: # Use the shared progress manager's data prog = self.progress_manager.prog.copy() # Ensure image_chunks key exists if "image_chunks" not in prog: prog["image_chunks"] = {} return prog else: # Fallback to original behavior if no progress manager provided progress_file = os.path.join(self.output_dir, "translation_progress.json") if os.path.exists(progress_file): try: with open(progress_file, 'r', encoding='utf-8') as f: prog = json.load(f) # Ensure image_chunks key exists if "image_chunks" not in prog: prog["image_chunks"] = {} return prog except Exception as e: print(f"โš ๏ธ Warning: Could not load progress file: {e}") # Return minimal structure to avoid breaking return { "chapters": {}, "content_hashes": {}, "chapter_chunks": {}, "image_chunks": {}, "version": "2.1" } # Return the same structure as TranslateKRtoEN expects return { "chapters": {}, "content_hashes": {}, "chapter_chunks": {}, "image_chunks": {}, "version": "2.1" } def save_progress(self, prog): """Save progress tracking - with safe writing""" if self.progress_manager: # Update the shared progress manager's data self.progress_manager.prog["image_chunks"] = prog.get("image_chunks", {}) # Save through the progress manager self.progress_manager.save() else: # Fallback to original behavior if no progress manager provided progress_file = os.path.join(self.output_dir, "translation_progress.json") try: # Write to a temporary file first temp_file = progress_file + '.tmp' with open(temp_file, 'w', encoding='utf-8') as f: json.dump(prog, f, ensure_ascii=False, indent=2) # If successful, replace the original file if os.path.exists(progress_file): os.remove(progress_file) os.rename(temp_file, progress_file) except Exception as e: print(f"โš ๏ธ Warning: Failed to save progress: {e}") # Clean up temp file if it exists if os.path.exists(temp_file): try: os.remove(temp_file) except: pass def preprocess_image_for_watermarks(self, image_path: str) -> str: """ Enhanced preprocessing for watermark removal and text clarity Now returns path to processed image instead of bytes Args: image_path: Path to the image file Returns: Path to processed image (either cleaned permanent file or original) """ try: # Check if watermark removal is enabled if not os.getenv("ENABLE_WATERMARK_REMOVAL", "1") == "1": return image_path # Return original path print(f" ๐Ÿงน Preprocessing image for watermark removal...") # Open image img = Image.open(image_path) # Convert to RGB if necessary if img.mode not in ('RGB', 'RGBA'): img = img.convert('RGB') # Check if advanced watermark removal is enabled AND cv2 is available if os.getenv("ADVANCED_WATERMARK_REMOVAL", "0") == "1": if CV2_AVAILABLE: print(f" ๐Ÿ”ฌ Using advanced watermark removal...") # Convert to numpy array for advanced processing img_array = np.array(img) # These will safely return defaults if cv2 is not available has_pattern, pattern_mask = self._detect_watermark_pattern(img_array) if has_pattern: print(f" ๐Ÿ” Detected watermark pattern in image") img_array = self._remove_periodic_watermark(img_array, pattern_mask) img_array = self._adaptive_histogram_equalization(img_array) img_array = self._bilateral_filter(img_array) img_array = self._enhance_text_regions(img_array) # Convert back to PIL Image img = Image.fromarray(img_array) else: print(f" โš ๏ธ Advanced watermark removal requested but OpenCV not available") # Apply basic PIL enhancements (always works) enhancer = ImageEnhance.Contrast(img) img = enhancer.enhance(1.5) enhancer = ImageEnhance.Brightness(img) img = enhancer.enhance(1.1) img = img.filter(ImageFilter.SHARPEN) # Check if we should save cleaned images save_cleaned = os.getenv("SAVE_CLEANED_IMAGES", "1") == "1" if save_cleaned: # Save to permanent location cleaned_dir = os.path.join(self.translated_images_dir, "cleaned") os.makedirs(cleaned_dir, exist_ok=True) base_name = os.path.basename(image_path) name, ext = os.path.splitext(base_name) cleaned_path = os.path.join(cleaned_dir, f"{name}_cleaned{ext}") img.save(cleaned_path, optimize=True) print(f" ๐Ÿ’พ Saved cleaned image: {cleaned_path}") return cleaned_path # Return path to cleaned image else: # Save to temporary file import tempfile _, ext = os.path.splitext(image_path) with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as tmp: img.save(tmp.name, optimize=False) print(f" ๐Ÿ“ Created temp cleaned image") return tmp.name # Return temp path except Exception as e: logger.warning(f"Could not preprocess image: {e}") return image_path # Return original on error @requires_cv2 def _detect_watermark_pattern(self, img_array: np.ndarray) -> Tuple[bool, Optional[np.ndarray]]: """Detect repeating watermark patterns using FFT""" try: # Convert to grayscale for pattern detection if len(img_array.shape) == 3: gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY) else: gray = img_array # Apply FFT to detect periodicity f_transform = np.fft.fft2(gray) f_shift = np.fft.fftshift(f_transform) magnitude = np.log(np.abs(f_shift) + 1) # Log scale for better visualization # Look for peaks that indicate repeating patterns mean_mag = np.mean(magnitude) std_mag = np.std(magnitude) threshold = mean_mag + 2 * std_mag # Create binary mask of high-frequency components pattern_mask = magnitude > threshold # Exclude center (DC component) - represents average brightness center_y, center_x = pattern_mask.shape[0] // 2, pattern_mask.shape[1] // 2 pattern_mask[center_y-10:center_y+10, center_x-10:center_x+10] = False # Count significant peaks pattern_threshold = int(os.getenv("WATERMARK_PATTERN_THRESHOLD", "10")) peak_count = np.sum(pattern_mask) # If we have significant peaks, there's likely a repeating pattern has_pattern = peak_count > pattern_threshold return has_pattern, pattern_mask if has_pattern else None except Exception as e: logger.warning(f"Pattern detection failed: {e}") return False, None @requires_cv2 def _remove_periodic_watermark(self, img_array: np.ndarray, pattern_mask: np.ndarray) -> np.ndarray: """Remove periodic watermark using frequency domain filtering""" try: result = img_array.copy() # Process each color channel for channel in range(img_array.shape[2] if len(img_array.shape) == 3 else 1): if len(img_array.shape) == 3: gray = img_array[:, :, channel] else: gray = img_array # Apply FFT f_transform = np.fft.fft2(gray) f_shift = np.fft.fftshift(f_transform) # Apply notch filter to remove periodic components f_shift[pattern_mask] = 0 # Inverse FFT f_ishift = np.fft.ifftshift(f_shift) img_filtered = np.fft.ifft2(f_ishift) img_filtered = np.real(img_filtered) # Ensure values are in valid range img_filtered = np.clip(img_filtered, 0, 255) if len(img_array.shape) == 3: result[:, :, channel] = img_filtered else: result = img_filtered return result.astype(np.uint8) except Exception as e: logger.warning(f"Watermark removal failed: {e}") return img_array @requires_cv2 def _adaptive_histogram_equalization(self, img_array: np.ndarray) -> np.ndarray: """Apply CLAHE (Contrast Limited Adaptive Histogram Equalization)""" try: # Convert to LAB color space for better results lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB) # Split channels l, a, b = cv2.split(lab) # Apply CLAHE to L channel only clahe_limit = float(os.getenv("WATERMARK_CLAHE_LIMIT", "3.0")) clahe = cv2.createCLAHE(clipLimit=clahe_limit, tileGridSize=(8, 8)) l = clahe.apply(l) # Merge channels back lab = cv2.merge([l, a, b]) # Convert back to RGB enhanced = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB) return enhanced except Exception as e: logger.warning(f"Adaptive histogram equalization failed: {e}") return img_array @requires_cv2 def _bilateral_filter(self, img_array: np.ndarray) -> np.ndarray: """Apply bilateral filter for edge-preserving denoising""" try: # Bilateral filter removes noise while keeping edges sharp filtered = cv2.bilateralFilter( img_array, d=9, sigmaColor=75, sigmaSpace=75 ) return filtered except Exception as e: logger.warning(f"Bilateral filtering failed: {e}") return img_array @requires_cv2 def _enhance_text_regions(self, img_array: np.ndarray) -> np.ndarray: """Specifically enhance regions likely to contain text""" try: # Convert to grayscale for text detection gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY) # Step 1: Detect text regions using gradient analysis grad_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3) grad_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3) gradient_magnitude = np.sqrt(grad_x**2 + grad_y**2) # Normalize gradient gradient_magnitude = (gradient_magnitude / gradient_magnitude.max() * 255).astype(np.uint8) # Step 2: Create text probability mask kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) gradient_density = cv2.morphologyEx(gradient_magnitude, cv2.MORPH_CLOSE, kernel) # Threshold to get text regions _, text_mask = cv2.threshold(gradient_density, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # Dilate to connect text regions text_mask = cv2.dilate(text_mask, kernel, iterations=2) # Step 3: Enhance contrast in text regions enhanced = img_array.copy() # Create 3-channel mask text_mask_3ch = cv2.cvtColor(text_mask, cv2.COLOR_GRAY2RGB) / 255.0 # Apply enhancement only to text regions enhanced = enhanced.astype(np.float32) enhanced = enhanced * (1 + (0.2 * text_mask_3ch)) # 20% enhancement in text regions enhanced = np.clip(enhanced, 0, 255).astype(np.uint8) return enhanced except Exception as e: logger.warning(f"Text region enhancement failed: {e}") return img_array def translate_image(self, image_path: str, context: str = "", check_stop_fn=None) -> Optional[str]: """ Translate text in an image using vision API - with chunking for tall images and stop support """ processed_path = None compressed_path = None try: self.current_image_path = image_path print(f" ๐Ÿ” translate_image called for: {image_path}") # Check for stop at the beginning if check_stop_fn and check_stop_fn(): print(" โŒ Image translation stopped by user") return None if not os.path.exists(image_path): logger.warning(f"Image not found: {image_path}") print(f" โŒ Image file does not exist!") return None # Get configuration hide_label = os.getenv("HIDE_IMAGE_TRANSLATION_LABEL", "0") == "1" # Apply compression FIRST if enabled compressed_path = image_path if os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1": compressed_path = self.compress_image(image_path) # If compression produced a different file, use it if compressed_path != image_path: print(f" ๐Ÿ—œ๏ธ Using compressed image for translation") # Apply watermark preprocessing (on compressed image if applicable) processed_path = self.preprocess_image_for_watermarks(compressed_path) # Open and process the image (now using processed_path) with Image.open(processed_path) as img: width, height = img.size aspect_ratio = width / height if height > 0 else 1 print(f" ๐Ÿ“ Image dimensions: {width}x{height}, aspect ratio: {aspect_ratio:.2f}") # Convert to RGB if necessary if img.mode not in ('RGB', 'RGBA'): img = img.convert('RGB') # Determine if it's a long text image is_long_text = height > self.webnovel_min_height and aspect_ratio < 0.5 # Process chunks or single image if height > self.chunk_height: # Check if single API mode is enabled if os.getenv("SINGLE_API_IMAGE_CHUNKS", "1") == "1": translated_text = self._process_image_chunks_single_api(img, width, height, context, check_stop_fn) else: translated_text = self._process_image_chunks(img, width, height, context, check_stop_fn) else: translated_text = self._process_single_image(img, context, check_stop_fn) if not translated_text: return None # Store the result for caching (use original path as key) self.processed_images[image_path] = translated_text # Save translation for debugging self._save_translation_debug(image_path, translated_text) # Create HTML output - use processed_path for the image reference # Handle cross-drive paths on Windows try: img_rel_path = os.path.relpath(processed_path, self.output_dir) except ValueError as e: # This happens when paths are on different drives in Windows print(f" โš ๏ธ Cross-drive path detected, copying image to output directory") # Copy the processed image to the output directory's images folder import shutil images_output_dir = os.path.join(self.output_dir, "images") os.makedirs(images_output_dir, exist_ok=True) # Generate a unique filename to avoid conflicts base_name = os.path.basename(processed_path) dest_path = os.path.join(images_output_dir, base_name) # Handle potential naming conflicts if os.path.exists(dest_path): name, ext = os.path.splitext(base_name) counter = 1 while os.path.exists(dest_path): dest_path = os.path.join(images_output_dir, f"{name}_{counter}{ext}") counter += 1 # Copy the file shutil.copy2(processed_path, dest_path) print(f" ๐Ÿ“‹ Copied image to: {dest_path}") # Calculate relative path from the copied location img_rel_path = os.path.relpath(dest_path, self.output_dir) # Update processed_path for cleanup logic processed_path = dest_path html_output = self._create_html_output(img_rel_path, translated_text, is_long_text, hide_label, check_stop_fn and check_stop_fn()) return html_output except Exception as e: logger.error(f"Error translating image {image_path}: {e}") print(f" โŒ Exception in translate_image: {e}") import traceback traceback.print_exc() return None finally: # Clean up temp files if they were created # Clean up compressed file if it's temporary if compressed_path and compressed_path != image_path: if not os.getenv("SAVE_COMPRESSED_IMAGES", "0") == "1": try: if os.path.exists(compressed_path): os.unlink(compressed_path) print(f" ๐Ÿงน Cleaned up temp compressed file") except Exception as e: logger.warning(f"Could not delete temp compressed file: {e}") # Clean up processed file if it's temporary if processed_path and processed_path != image_path and processed_path != compressed_path: if not os.getenv("SAVE_CLEANED_IMAGES", "0") == "1": try: if os.path.exists(processed_path): os.unlink(processed_path) print(f" ๐Ÿงน Cleaned up temp processed file") except Exception as e: logger.warning(f"Could not delete temp processed file: {e}") def _process_single_image(self, img, context, check_stop_fn): """Process a single image that doesn't need chunking""" # Clear any previous context self.image_chunk_context = [] print(f" ๐Ÿ‘ Image height OK ({img.height}px), processing as single image...") # Check for stop before processing if check_stop_fn and check_stop_fn(): print(" โŒ Image translation stopped by user") return None # Convert image to bytes using compression settings image_bytes = self._image_to_bytes_with_compression(img) # Call API translation = self._call_vision_api(image_bytes, context, check_stop_fn) if translation: if self.remove_ai_artifacts: translation = self._clean_translation_response(translation) # Normalize and sanitize output translation = self._normalize_unicode_width(translation) translation = self._sanitize_unicode_characters(translation) return translation else: print(f" โŒ Translation returned empty result") return None def _image_to_bytes_with_compression(self, img): """Convert PIL Image to bytes with compression settings applied""" # Check if compression is enabled if os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1": # Get compression settings format_setting = os.getenv("IMAGE_COMPRESSION_FORMAT", "auto") webp_quality = int(os.getenv("WEBP_QUALITY", "85")) jpeg_quality = int(os.getenv("JPEG_QUALITY", "85")) png_compression = int(os.getenv("PNG_COMPRESSION", "6")) preserve_transparency = os.getenv("PRESERVE_TRANSPARENCY", "0") == "1" optimize_for_ocr = os.getenv("OPTIMIZE_FOR_OCR", "1") == "1" # Store original mode for GIF handling original_mode = img.mode transparency_info = None # Check if this is a chunk from a GIF (palette mode) is_gif_chunk = img.mode in ('P', 'L') # Apply OCR optimization if enabled if optimize_for_ocr: # Handle GIF chunks in palette mode if is_gif_chunk: print(f" ๐ŸŽจ Chunk is in {img.mode} mode - converting for optimization") if img.mode == 'P': # Preserve transparency info if present transparency_info = img.info.get('transparency', None) # Convert to RGBA if has transparency, otherwise RGB if transparency_info is not None: img = img.convert('RGBA') else: img = img.convert('RGB') elif img.mode == 'L': img = img.convert('RGB') # Apply enhancements (now safe for all modes) from PIL import ImageEnhance enhancer = ImageEnhance.Contrast(img) img = enhancer.enhance(1.2) enhancer = ImageEnhance.Sharpness(img) img = enhancer.enhance(1.1) # Extra sharpening for GIF-sourced chunks if is_gif_chunk: img = enhancer.enhance(1.2) print(f" โœจ Applied extra sharpening for GIF-sourced chunk") # Auto-select format if needed if format_setting == "auto": # Check if we should preserve original format preserve_original_format = os.getenv("PRESERVE_ORIGINAL_FORMAT", "0") == "1" original_format = os.getenv("ORIGINAL_IMAGE_FORMAT", "").lower() # If preserving format and we know the original format if preserve_original_format and original_format: if original_format == 'gif': format_setting = 'gif' print(f" ๐ŸŽž๏ธ Preserving GIF format for chunk") elif original_format in ['png', 'jpeg', 'jpg', 'webp']: format_setting = original_format.replace('jpg', 'jpeg') print(f" ๐Ÿ“ธ Preserving {format_setting.upper()} format for chunk") else: # Fallback to PNG for unknown formats format_setting = "png" print(f" ๐Ÿ“ธ Using PNG for chunk (unknown original format: {original_format})") # Legacy fallback: If chunk is in palette mode and preserve format is on, assume GIF elif preserve_original_format and is_gif_chunk: format_setting = 'gif' print(f" ๐ŸŽž๏ธ Preserving GIF format for chunk (palette mode detected)") else: # Check image characteristics for auto-selection has_transparency = img.mode in ('RGBA', 'LA') or (img.mode == 'P' and 'transparency' in img.info) # For chunks, prefer WebP for best compression unless transparency is needed if has_transparency and preserve_transparency: format_setting = "png" # PNG for transparency else: format_setting = "webp" # WebP for best compression print(f" ๐ŸŽฏ Auto-selected format for chunk: {format_setting}") # Use the selected format with compression if format_setting == "webp": print(f" ๐Ÿ—œ๏ธ Compressing chunk as WebP (quality: {webp_quality})") return self._image_to_bytes(img, format='WEBP', quality=webp_quality) elif format_setting == "jpeg": print(f" ๐Ÿ—œ๏ธ Compressing chunk as JPEG (quality: {jpeg_quality})") return self._image_to_bytes(img, format='JPEG', quality=jpeg_quality) elif format_setting == "png": # PNG uses compression level, not quality print(f" ๐Ÿ—œ๏ธ Compressing chunk as PNG (compression: {png_compression})") img_bytes = io.BytesIO() img.save(img_bytes, format='PNG', compress_level=png_compression, optimize=True) img_bytes.seek(0) data = img_bytes.read() # Log compression info print(f" ๐Ÿ“Š Chunk size: {len(data) / 1024:.1f}KB") return data elif format_setting == "gif": # GIF format for chunks print(f" ๐ŸŽž๏ธ Saving chunk as GIF") img_bytes = io.BytesIO() # Convert to palette mode if needed if img.mode not in ('P', 'L'): img = img.quantize(colors=256, method=2) # MEDIANCUT img.save(img_bytes, format='GIF', optimize=True) img_bytes.seek(0) data = img_bytes.read() # Log compression info print(f" ๐Ÿ“Š Chunk size: {len(data) / 1024:.1f}KB") return data # Default: use existing method without compression print(f" โš ๏ธ Compression disabled, using default PNG format") return self._image_to_bytes(img) def _image_to_bytes(self, img, format='PNG', quality=None): """Convert PIL Image to bytes with various format options""" img_bytes = io.BytesIO() if format == 'WEBP': # WebP is much better for manga/text images # Ensure RGB mode for WebP (no RGBA in some cases) if img.mode == 'RGBA' and not os.getenv("PRESERVE_TRANSPARENCY", "0") == "1": # Create white background background = Image.new('RGB', img.size, (255, 255, 255)) background.paste(img, mask=img.split()[3]) img = background elif img.mode not in ['RGB', 'L', 'RGBA']: img = img.convert('RGB') if quality: img.save(img_bytes, format='WEBP', quality=quality, method=6) else: img.save(img_bytes, format='WEBP', lossless=True) elif format == 'JPEG': # JPEG doesn't support transparency, so convert RGBA to RGB if img.mode == 'RGBA': # Create white background background = Image.new('RGB', img.size, (255, 255, 255)) background.paste(img, mask=img.split()[3]) img = background elif img.mode != 'RGB': img = img.convert('RGB') # Save as JPEG with specified quality if quality: img.save(img_bytes, format='JPEG', quality=quality, optimize=True, progressive=os.getenv("PROGRESSIVE_ENCODING", "1") == "1") else: img.save(img_bytes, format='JPEG', quality=85, optimize=True) elif format == 'GIF': # GIF format handling if img.mode not in ('P', 'L'): # Convert to palette mode for GIF img = img.quantize(colors=256, method=2) # MEDIANCUT method # Save as GIF img.save(img_bytes, format='GIF', optimize=True) else: # Default PNG format compress_level = int(os.getenv("PNG_COMPRESSION", "6")) img.save(img_bytes, format='PNG', compress_level=compress_level, optimize=True) img_bytes.seek(0) data = img_bytes.read() # Log the size for debugging size_kb = len(data) / 1024 if size_kb > 500: # Warn if chunk is over 500KB print(f" โš ๏ธ Large chunk detected: {size_kb:.1f}KB - consider enabling compression!") return data def _process_image_chunks(self, img, width, height, context, check_stop_fn): """Process a tall image by splitting it into chunks with contextual support""" num_chunks = (height + self.chunk_height - 1) // self.chunk_height overlap = 100 # Pixels of overlap between chunks print(f" โœ‚๏ธ Image too tall ({height}px), splitting into {num_chunks} chunks of {self.chunk_height}px...") # Clear context for new image self.image_chunk_context = [] # Add retry info if enabled if os.getenv("RETRY_TIMEOUT", "1") == "1": timeout_seconds = int(os.getenv("CHUNK_TIMEOUT", "180")) print(f" โฑ๏ธ Auto-retry enabled: Will retry if chunks take > {timeout_seconds}s") print(f" โณ This may take {num_chunks * 30}-{num_chunks * 60} seconds to complete") print(f" โ„น๏ธ Stop will take effect after current chunk completes") # Check if we should save debug chunks save_debug_chunks = os.getenv('SAVE_CLEANED_IMAGES', '0') == '1' save_compressed_chunks = os.getenv('SAVE_COMPRESSED_IMAGES', '0') == '1' if save_debug_chunks or save_compressed_chunks: debug_dir = os.path.join(self.output_dir, "translated_images", "debug_chunks") os.makedirs(debug_dir, exist_ok=True) print(f" ๐Ÿ” Debug mode: Saving chunks to {debug_dir}") # Load progress - maintaining full structure prog = self.load_progress() # Create unique key for this image - include chapter info if available image_basename = os.path.basename(self.current_image_path) if hasattr(self, 'current_image_path') else str(hash(str(img))) # Try to extract chapter number from context or path chapter_num = None if hasattr(self, 'current_chapter_num'): chapter_num = self.current_chapter_num else: # Try to extract from filename import re match = re.search(r'ch(?:apter)?[\s_-]*(\d+)', image_basename, re.IGNORECASE) if match: chapter_num = match.group(1) # Create a more unique key that includes chapter info if chapter_num: image_key = f"ch{chapter_num}_{image_basename}" else: image_key = image_basename # Initialize image chunk tracking if "image_chunks" not in prog: prog["image_chunks"] = {} if image_key not in prog["image_chunks"]: prog["image_chunks"][image_key] = { "total": num_chunks, "completed": [], "chunks": {}, "height": height, "width": width, "chapter": chapter_num, # Store chapter association "filename": image_basename } all_translations = [] was_stopped = False # Process chunks for i in range(num_chunks): # Check if this chunk was already translated if i in prog["image_chunks"][image_key]["completed"]: saved_chunk = prog["image_chunks"][image_key]["chunks"].get(str(i)) if saved_chunk: all_translations.append(saved_chunk) print(f" โญ๏ธ Chunk {i+1}/{num_chunks} already translated, skipping") continue # Check for stop before processing each chunk if check_stop_fn and check_stop_fn(): print(f" โŒ Stopped at chunk {i+1}/{num_chunks}") was_stopped = True break # Calculate chunk boundaries with overlap start_y = max(0, i * self.chunk_height - (overlap if i > 0 else 0)) end_y = min(height, (i + 1) * self.chunk_height) current_filename = os.path.basename(self.current_image_path) if hasattr(self, 'current_image_path') else 'unknown' print(f" ๐Ÿ“„ Processing chunk {i+1}/{num_chunks} (y: {start_y}-{end_y}) for {current_filename}") if self.log_callback and hasattr(self.log_callback, '__self__') and hasattr(self.log_callback.__self__, 'append_chunk_progress'): self.log_callback.__self__.append_chunk_progress( i + 1, num_chunks, "image", f"Image: {os.path.basename(self.current_image_path) if hasattr(self, 'current_image_path') else 'unknown'}" ) print(f" โณ Estimated time: 30-60 seconds for this chunk") # Crop and process the chunk chunk = img.crop((0, start_y, width, end_y)) # Convert chunk to bytes with compression chunk_bytes = self._image_to_bytes_with_compression(chunk) # Save debug chunks if enabled if save_debug_chunks or save_compressed_chunks: # Save original chunk if save_debug_chunks: chunk_path = os.path.join(debug_dir, f"chunk_{i+1}_original.png") chunk.save(chunk_path) print(f" ๐Ÿ’พ Saved original chunk: {chunk_path}") # Save compressed chunk if enabled if save_compressed_chunks and os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1": compressed_dir = os.path.join(self.output_dir, "translated_images", "compressed", "chunks") os.makedirs(compressed_dir, exist_ok=True) # Use compression settings to save chunk format_setting = os.getenv("IMAGE_COMPRESSION_FORMAT", "auto") if format_setting == "auto": format_setting = "webp" # Default to WebP for chunks # Create a temporary in-memory file for the compressed chunk from io import BytesIO compressed_buffer = BytesIO() if format_setting == "webp": quality = int(os.getenv("WEBP_QUALITY", "85")) chunk.save(compressed_buffer, format='WEBP', quality=quality, method=6) compressed_chunk_path = os.path.join(compressed_dir, f"chunk_{i+1}_compressed.webp") elif format_setting == "jpeg": quality = int(os.getenv("JPEG_QUALITY", "85")) # Convert RGBA to RGB for JPEG if chunk.mode == 'RGBA': rgb_chunk = Image.new('RGB', chunk.size, (255, 255, 255)) rgb_chunk.paste(chunk, mask=chunk.split()[3]) chunk_to_save = rgb_chunk else: chunk_to_save = chunk chunk_to_save.save(compressed_buffer, format='JPEG', quality=quality, optimize=True) compressed_chunk_path = os.path.join(compressed_dir, f"chunk_{i+1}_compressed.jpg") else: # PNG compress_level = int(os.getenv("PNG_COMPRESSION", "6")) chunk.save(compressed_buffer, format='PNG', compress_level=compress_level, optimize=True) compressed_chunk_path = os.path.join(compressed_dir, f"chunk_{i+1}_compressed.png") # Write the compressed chunk to disk with open(compressed_chunk_path, 'wb') as f: f.write(compressed_buffer.getvalue()) # Get actual original chunk size before compression chunk_buffer = BytesIO() chunk.save(chunk_buffer, format='PNG') actual_original_size = len(chunk_buffer.getvalue()) / 1024 # KB # Log compression info compressed_size = len(compressed_buffer.getvalue()) / 1024 # KB compression_ratio = (1 - compressed_size / actual_original_size) * 100 if actual_original_size > 0 else 0 print(f" ๐Ÿ’พ Saved compressed chunk: {compressed_chunk_path}") print(f" ๐Ÿ“Š Chunk compression: {actual_original_size:.1f}KB โ†’ {compressed_size:.1f}KB ({compression_ratio:.1f}% reduction)") # Get custom image chunk prompt template from environment image_chunk_prompt_template = os.getenv("IMAGE_CHUNK_PROMPT", "This is part {chunk_idx} of {total_chunks} of a longer image. You must maintain the narrative flow with the previous chunks while translating it and following all system prompt guidelines previously mentioned. {context}") # Build context for this chunk chunk_context = image_chunk_prompt_template.format( chunk_idx=i+1, total_chunks=num_chunks, context=context ) # Translate chunk WITH CONTEXT translation = self._call_vision_api(chunk_bytes, chunk_context, check_stop_fn) if translation: # Clean AI artifacts from chunk if self.remove_ai_artifacts: chunk_text = self._clean_translation_response(translation) else: chunk_text = translation # Normalize and sanitize each chunk chunk_text = self._normalize_unicode_width(chunk_text) chunk_text = self._sanitize_unicode_characters(chunk_text) all_translations.append(chunk_text) print(f" ๐Ÿ” DEBUG: Chunk {i+1} length: {len(chunk_text)} chars") if len(chunk_text) > 10000: # Flag suspiciously large chunks print(f" โš ๏ธ WARNING: Chunk unusually large!") print(f" First 500 chars: {chunk_text[:500]}") print(f" Last 500 chars: {chunk_text[-500:]}") # Store context for next chunks if self.contextual_enabled: self.image_chunk_context.append({ "user": chunk_context, "assistant": chunk_text }) # Save chunk progress prog["image_chunks"][image_key]["completed"].append(i) prog["image_chunks"][image_key]["chunks"][str(i)] = chunk_text self.save_progress(prog) print(f" โœ… Chunk {i+1} translated and saved ({len(chunk_text)} chars)") else: print(f" โš ๏ธ Chunk {i+1} returned no text") # Delay between chunks if not the last one if i < num_chunks - 1 and not was_stopped: self._api_delay_with_stop_check(check_stop_fn) if check_stop_fn and check_stop_fn(): was_stopped = True break # Combine all chunk translations if all_translations: translated_text = "\n\n".join(all_translations) if was_stopped: translated_text += "\n\n[TRANSLATION STOPPED BY USER]" print(f" โœ… Combined {len(all_translations)} chunks into final translation") return translated_text else: print(f" โŒ No successful translations from any chunks") return None def set_current_chapter(self, chapter_num): """Set the current chapter number for progress tracking""" self.current_chapter_num = chapter_num def _call_vision_api(self, image_data, context, check_stop_fn): """Make the actual API call for vision translation with retry support""" # Build messages - NO HARDCODED PROMPT messages = [ {"role": "system", "content": self.system_prompt} ] # Add context from previous chunks if contextual is enabled if hasattr(self, 'contextual_enabled') and self.contextual_enabled: if hasattr(self, 'image_chunk_context') and self.image_chunk_context: # Include ALL previous chunks from this image, not just last 2 print(f" ๐Ÿ“š Including ALL {len(self.image_chunk_context)} previous chunks as context") for ctx in self.image_chunk_context: messages.extend([ {"role": "user", "content": ctx["user"]}, {"role": "assistant", "content": ctx["assistant"]} ]) # Add current chunk (this already exists) messages.append({ "role": "user", "content": context if context else "" }) if hasattr(self, 'current_chapter_num'): chapter_num = self.current_chapter_num image_idx = getattr(self, 'current_image_index', 0) output_filename = f"response_{chapter_num:03d}_Chapter_{chapter_num}_image_{image_idx}.html" self.client.set_output_filename(output_filename) retry_timeout_enabled = os.getenv("RETRY_TIMEOUT", "1") == "1" chunk_timeout = int(os.getenv("CHUNK_TIMEOUT", "180")) if retry_timeout_enabled else None max_timeout_retries = 2 # Store original values original_max_tokens = self.image_max_tokens original_temp = self.temperature # Initialize retry counters timeout_retry_count = 0 while True: try: current_max_tokens = self.image_max_tokens current_temp = self.temperature print(f" ๐Ÿ”„ Calling vision API...") print(f" ๐Ÿ“Š Using temperature: {current_temp}") print(f" ๐Ÿ“Š Output Token Limit: {current_max_tokens}") if chunk_timeout: print(f" โฑ๏ธ Timeout enabled: {chunk_timeout} seconds") # Final stop check before API call if check_stop_fn and check_stop_fn(): print(" โŒ Stopped before API call") return None # Use the new interrupt function translation_response, trans_finish = send_image_with_interrupt( self.client, messages, image_data, current_temp, current_max_tokens, check_stop_fn, chunk_timeout, 'image_translation' ) print(f" ๐Ÿ“ก API response received, finish_reason: {trans_finish}") # Check if translation was truncated if trans_finish in ["length", "max_tokens"]: print(f" โš ๏ธ Translation was TRUNCATED! Consider increasing Max tokens.") translation_response += "\n\n[TRANSLATION TRUNCATED DUE TO TOKEN LIMIT]" # Success - restore original values if they were changed if timeout_retry_count > 0: self.image_max_tokens = original_max_tokens self.temperature = original_temp print(f" โœ… Restored original settings after successful retry") return translation_response.strip() except Exception as e: from unified_api_client import UnifiedClientError error_msg = str(e) print(f"\n๐Ÿ” DEBUG: Image Translation Failed") print(f" Error: {error_msg}") print(f" Error Type: {type(e).__name__}") # Handle user stop if "stopped by user" in error_msg: print(" โŒ Image translation stopped by user") return None # Handle timeout specifically if "took" in error_msg and "timeout:" in error_msg: if timeout_retry_count < max_timeout_retries: timeout_retry_count += 1 print(f" โฑ๏ธ Chunk took too long, retry {timeout_retry_count}/{max_timeout_retries}") print(f" ๐Ÿ”„ Retrying") time.sleep(2) continue else: print(f" โŒ Max timeout retries reached for image") # Restore original values self.image_max_tokens = original_max_tokens self.temperature = original_temp return f"[Image Translation Error: Timeout after {max_timeout_retries} retries]" # Handle other timeouts elif "timed out" in error_msg and "timeout:" not in error_msg: print(f" โš ๏ธ {error_msg}, retrying...") time.sleep(5) continue # For other errors, restore values and return error if timeout_retry_count > 0: self.image_max_tokens = original_max_tokens self.temperature = original_temp print(f" โŒ Translation failed: {e}") print(f" โŒ Error type: {type(e).__name__}") return f"[Image Translation Error: {str(e)}]" def _clean_translation_response(self, response): """Clean AI artifacts from translation response while preserving content""" if not response or not response.strip(): return response # First, preserve the original response length for debugging original_length = len(response) # Remove common AI prefixes - but be more careful lines = response.split('\n') # Check if first line is just a prefix without content if len(lines) > 1 and lines[0].strip() and lines[0].strip().lower() in [ 'sure', 'here', "i'll translate", 'certainly', 'okay', 'here is the translation:', 'translation:', "here's the translation:", "i'll translate the text from the image:", "let me translate that for you:" ]: # Remove only the first line if it's just a prefix response = '\n'.join(lines[1:]).strip() elif len(lines) > 1 and lines[0].strip() and any( lines[0].strip().lower().startswith(prefix) for prefix in ['sure,', 'here,', "i'll translate", 'certainly,', 'okay,'] ): # Check if the first line contains actual translation content after the prefix first_line = lines[0].strip() # Look for a colon or period that might separate prefix from content for sep in [':', '.', ',']: if sep in first_line: parts = first_line.split(sep, 1) if len(parts) > 1 and parts[1].strip(): # There's content after the separator, keep it lines[0] = parts[1].strip() response = '\n'.join(lines).strip() break else: # No separator found with content, remove the whole first line response = '\n'.join(lines[1:]).strip() # Log if we removed significant content cleaned_length = len(response) if cleaned_length == 0 and original_length > 0: print(f" โš ๏ธ WARNING: Cleaning removed all content! Original: {original_length} chars") print(f" โš ๏ธ First 200 chars were: {response[:200]}") elif cleaned_length < original_length * 0.5: print(f" โš ๏ธ WARNING: Cleaning removed >50% of content! {original_length} โ†’ {cleaned_length}") return response def _save_translation_debug(self, image_path, translated_text): """Save translation to file for debugging""" trans_filename = f"translated_{os.path.basename(image_path)}.txt" trans_filepath = os.path.join(self.translated_images_dir, trans_filename) try: with open(trans_filepath, 'w', encoding='utf-8') as f: f.write(translated_text) print(f" ๐Ÿ’พ Saved translation to: {trans_filename}") except Exception as e: print(f" โš ๏ธ Could not save translation file: {e}") def _remove_http_links(self, text: str) -> str: """Remove HTTP/HTTPS URLs from text while preserving other content""" # Pattern to match URLs url_pattern = r'https?://[^\s<>"{}|\\^`\[\]]+(?:\.[^\s<>"{}|\\^`\[\]]+)*' # Replace URLs with empty string cleaned_text = re.sub(url_pattern, '', text) # Clean up extra whitespace that may result from URL removal cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip() return cleaned_text def _normalize_unicode_width(self, text: str) -> str: """Normalize Unicode width and compatibility forms using NFKC""" if not text: return text try: import unicodedata original = text text = unicodedata.normalize('NFKC', text) if text != original: try: if self.log_callback: self.log_callback(f"๐Ÿ”ค Normalized width/compat: '{original[:30]}...' โ†’ '{text[:30]}...'") except Exception: pass return text except Exception: return text def _sanitize_unicode_characters(self, text: str) -> str: """Remove invalid Unicode characters and common fallback boxes""" if not text: return text import re original = text # Replacement character and common geometric fallbacks text = text.replace('\ufffd', '') for ch in ['โ–ก','โ—‡','โ—†','โ– ','โ–ข','โ–ฃ','โ–ค','โ–ฅ','โ–ฆ','โ–ง','โ–จ','โ–ฉ']: text = text.replace(ch, '') text = re.sub(r'[\u200b-\u200f\u2028-\u202f\u205f-\u206f\ufeff]', '', text) text = re.sub(r'[\x00-\x08\x0B-\x0C\x0E-\x1F\x7F-\x9F]', '', text) try: text = text.encode('utf-8', errors='ignore').decode('utf-8') except UnicodeError: pass # Normalize whitespace text = re.sub(r'\s+', ' ', text).strip() return text def _create_html_output(self, img_rel_path, translated_text, is_long_text, hide_label, was_stopped): print(f" ๐Ÿ” DEBUG: Creating HTML output") print(f" Total translation length: {len(translated_text)} chars") if len(translated_text) > 50000: print(f" โš ๏ธ WARNING: Translation suspiciously large!") """Create the final HTML output""" # Check if the translation is primarily a URL (only a URL and nothing else) url_pattern = r'https?://[^\s<>"{}|\\^`\[\]]+(?:\.[^\s<>"{}|\\^`\[\]]+)*' # Check if the entire content is just a URL url_match = re.match(r'^\s*' + url_pattern + r'\s*$', translated_text.strip()) is_only_url = bool(url_match) # Build the label HTML if needed if hide_label: label_html = "" # Remove URLs from the text, but keep other content cleaned_text = self._remove_http_links(translated_text) # If after removing URLs there's no content left, and original was only URL if not cleaned_text and is_only_url: translated_text = "[Image contains only URL]" else: # Use the cleaned text (URLs removed, other content preserved) translated_text = cleaned_text else: if was_stopped: label_html = f'

(partial)

\n' else: label_html = "" # Build the image HTML based on type - or skip it entirely if hide_label is enabled if hide_label: # Don't include the image at all when hide_label is enabled image_html = "" css_class = "translated-text-only" elif is_long_text: image_html = f"""
๐Ÿ“– View Original Image Original image
""" css_class = "image-with-translation webnovel-image" else: image_html = f'Original image' css_class = "image-with-translation" # Combine everything return f"""
{image_html}
{label_html}{self._format_translation_as_html(translated_text)}
""" def _api_delay_with_stop_check(self, check_stop_fn): """API delay with stop checking""" # Check for stop during delay (split into 0.1s intervals) for i in range(int(self.api_delay * 10)): if check_stop_fn and check_stop_fn(): return True time.sleep(0.1) return False def _format_translation_as_html(self, text: str) -> str: """Format translated text as HTML paragraphs""" # Convert to string and strip whitespace text = str(text).strip() # Remove various tuple wrapping patterns # Handle complete tuple wrapping if text.startswith('("') and text.endswith('")'): text = text[2:-2] elif text.startswith("('") and text.endswith("')"): text = text[2:-2] # Handle incomplete tuple wrapping (like just (" at the start) elif text.startswith('("'): text = text[2:] elif text.startswith("('"): text = text[2:] elif text.startswith('('): # Check if it looks like a tuple representation if len(text) > 1 and text[1] in ['"', "'"]: text = text[2:] # Remove (" or (' else: text = text[1:] # Just remove the ( # Remove trailing tuple markers if present if text.endswith('")'): text = text[:-2] elif text.endswith("')"): text = text[:-2] elif text.endswith(')') and len(text) > 1 and text[-2] in ['"', "'"]: text = text[:-2] # Ensure we have actual newlines, not escaped ones if '\\n' in text: print(f" ๐Ÿ”ง Found literal \\n in text, converting to actual newlines") text = text.replace('\\n', '\n') # Split by double newlines for paragraphs paragraphs = text.split('\n\n') html_parts = [] for para in paragraphs: para = para.strip() if para: # Check if it's dialogue (starts with quotes) if para.startswith(('"', '"', 'ใ€Œ', 'ใ€Ž', '"')): html_parts.append(f'

{para}

') else: html_parts.append(f'

{para}

') # If no paragraphs were created (single line), wrap it if not html_parts and text.strip(): html_parts.append(f'

{text.strip()}

') result = '\n'.join(html_parts) # Debug output print(f" ๐Ÿ“ Created {len(html_parts)} paragraphs from text") return result def _unescape_response_text(self, text): """Unescape text that comes back with literal \n characters""" if not text: return text # Convert to string if needed text = str(text) # Remove tuple wrapping if present (e.g., ('text') or ("text")) if text.startswith('("') and text.endswith('")'): text = text[2:-2] elif text.startswith("('") and text.endswith("')"): text = text[2:-2] elif text.startswith('(') and text.endswith(')') and len(text) > 2: # Check if it's a single-item tuple representation inner = text[1:-1].strip() if (inner.startswith('"') and inner.endswith('"')) or (inner.startswith("'") and inner.endswith("'")): text = inner[1:-1] # Handle escaped characters - convert literal \n to actual newlines text = text.replace('\\n', '\n') text = text.replace('\\t', '\t') text = text.replace('\\"', '"') text = text.replace("\\'", "'") text = text.replace('\\\\', '\\') return text def update_chapter_with_translated_images(self, chapter_html: str, image_translations: Dict[str, str]) -> str: """ Update chapter HTML to include image translations Args: chapter_html: Original chapter HTML image_translations: Dict mapping original image paths to translation HTML Returns: Updated HTML """ soup = BeautifulSoup(chapter_html, 'html.parser') for img in soup.find_all('img'): src = img.get('src', '') if src in image_translations: # Replace the img tag with the translation HTML translation_html = image_translations[src] new_element = BeautifulSoup(translation_html, 'html.parser') img.replace_with(new_element) return str(soup) def save_translation_log(self, chapter_num: int, translations: Dict[str, str]): """ Save a log of all translations for a chapter Args: chapter_num: Chapter number translations: Dict of image path to translated text """ if not translations: return log_dir = os.path.join(self.translated_images_dir, 'logs') os.makedirs(log_dir, exist_ok=True) log_file = os.path.join(log_dir, f'chapter_{chapter_num}_translations.json') log_data = { 'chapter': chapter_num, 'timestamp': os.environ.get('TZ', 'UTC'), 'translations': {} } for img_path, translation in translations.items(): # Extract just the text from HTML if needed if '
' in translation: soup = BeautifulSoup(translation, 'html.parser') text_div = soup.find('div', class_='image-translation') if text_div: # Remove the header paragraph header = text_div.find('p') if header and ('(partial)' in header.text or '[Image text translation' in header.text): header.decompose() text = text_div.get_text(separator='\n').strip() else: text = translation else: text = translation log_data['translations'][os.path.basename(img_path)] = text with open(log_file, 'w', encoding='utf-8') as f: json.dump(log_data, f, ensure_ascii=False, indent=2) print(f" ๐Ÿ“ Saved translation log: {os.path.basename(log_file)}")