# ocr_manager.py """ OCR Manager for handling multiple OCR providers Handles installation, model downloading, and OCR processing Updated with HuggingFace donut model and proper bubble detection integration """ import os import sys import cv2 import json import subprocess import threading import traceback from typing import List, Dict, Optional, Tuple, Any import numpy as np from dataclasses import dataclass from PIL import Image import logging import time import random import base64 import io import requests try: import gptqmodel HAS_GPTQ = True except ImportError: try: import auto_gptq HAS_GPTQ = True except ImportError: HAS_GPTQ = False try: import optimum HAS_OPTIMUM = True except ImportError: HAS_OPTIMUM = False try: import accelerate HAS_ACCELERATE = True except ImportError: HAS_ACCELERATE = False logger = logging.getLogger(__name__) @dataclass class OCRResult: """Unified OCR result format with built-in sanitization to prevent data corruption.""" text: str bbox: Tuple[int, int, int, int] # x, y, w, h confidence: float vertices: Optional[List[Tuple[int, int]]] = None def __post_init__(self): """ This special method is called automatically after the object is created. It acts as a final safeguard to ensure the 'text' attribute is ALWAYS a clean string. """ # --- THIS IS THE DEFINITIVE FIX --- # If the text we received is a tuple, we extract the first element. # This makes it impossible for a tuple to exist in a finished object. if isinstance(self.text, tuple): # Log that we are fixing a critical data error. print(f"CRITICAL WARNING: Corrupted tuple detected in OCRResult. Sanitizing '{self.text}' to '{self.text[0]}'.") self.text = self.text[0] # Ensure the final result is always a stripped string. self.text = str(self.text).strip() class OCRProvider: """Base class for OCR providers""" def __init__(self, log_callback=None): # Set thread limits early if environment indicates single-threaded mode try: if os.environ.get('OMP_NUM_THREADS') == '1': # Already in single-threaded mode, ensure it's applied to this process try: import sys if 'torch' in sys.modules: import torch torch.set_num_threads(1) except (ImportError, RuntimeError, AttributeError): pass try: import cv2 cv2.setNumThreads(1) except (ImportError, AttributeError): pass except Exception: pass self.log_callback = log_callback self.is_installed = False self.is_loaded = False self.model = None self.stop_flag = None self._stopped = False def _log(self, message: str, level: str = "info"): """Log message with stop suppression""" # Suppress logs when stopped (allow only essential stop confirmation messages) if self._check_stop(): essential_stop_keywords = [ "⏹️ Translation stopped by user", "⏹️ OCR processing stopped", "cleanup", "🧹" ] if not any(keyword in message for keyword in essential_stop_keywords): return if self.log_callback: self.log_callback(message, level) else: print(f"[{level.upper()}] {message}") def set_stop_flag(self, stop_flag): """Set the stop flag for checking interruptions""" self.stop_flag = stop_flag self._stopped = False def _check_stop(self) -> bool: """Check if stop has been requested""" if self._stopped: return True if self.stop_flag and self.stop_flag.is_set(): self._stopped = True return True # Check global manga translator cancellation try: from manga_translator import MangaTranslator if MangaTranslator.is_globally_cancelled(): self._stopped = True return True except Exception: pass return False def reset_stop_flags(self): """Reset stop flags when starting new processing""" self._stopped = False def check_installation(self) -> bool: """Check if provider is installed""" raise NotImplementedError def install(self, progress_callback=None) -> bool: """Install the provider""" raise NotImplementedError def load_model(self, **kwargs) -> bool: """Load the OCR model""" raise NotImplementedError def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]: """Detect text in image""" raise NotImplementedError class CustomAPIProvider(OCRProvider): """Custom API OCR provider that uses existing GUI variables""" def __init__(self, log_callback=None): super().__init__(log_callback) # Use EXISTING environment variables from TranslatorGUI self.api_url = os.environ.get('OPENAI_CUSTOM_BASE_URL', '') self.api_key = os.environ.get('API_KEY', '') or os.environ.get('OPENAI_API_KEY', '') self.model_name = os.environ.get('MODEL', 'gpt-4o-mini') # OCR prompt - use system prompt or a dedicated OCR prompt variable self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT', os.environ.get('SYSTEM_PROMPT', "YOU ARE A TEXT EXTRACTION MACHINE. EXTRACT EXACTLY WHAT YOU SEE.\n\n" "ABSOLUTE RULES:\n" "1. OUTPUT ONLY THE VISIBLE TEXT/SYMBOLS - NOTHING ELSE\n" "2. NEVER TRANSLATE OR MODIFY\n" "3. NEVER EXPLAIN, DESCRIBE, OR COMMENT\n" "4. NEVER SAY \"I can't\" or \"I cannot\" or \"no text\" or \"blank image\"\n" "5. IF YOU SEE DOTS, OUTPUT THE DOTS: .\n" "6. IF YOU SEE PUNCTUATION, OUTPUT THE PUNCTUATION\n" "7. IF YOU SEE A SINGLE CHARACTER, OUTPUT THAT CHARACTER\n" "8. IF YOU SEE NOTHING, OUTPUT NOTHING (empty response)\n\n" "LANGUAGE PRESERVATION:\n" "- Korean text β†’ Output in Korean\n" "- Japanese text β†’ Output in Japanese\n" "- Chinese text β†’ Output in Chinese\n" "- English text β†’ Output in English\n" "- CJK quotation marks (γ€Œγ€γ€Žγ€γ€γ€‘γ€Šγ€‹γ€ˆγ€‰) β†’ Preserve exactly as shown\n\n" "FORMATTING:\n" "- OUTPUT ALL TEXT ON A SINGLE LINE WITH NO LINE BREAKS\n" "- NEVER use \\n or line breaks in your output\n\n" "FORBIDDEN RESPONSES:\n" "- \"I can see this appears to be...\"\n" "- \"I cannot make out any clear text...\"\n" "- \"This appears to be blank...\"\n" "- \"If there is text present...\"\n" "- ANY explanatory text\n\n" "YOUR ONLY OUTPUT: The exact visible text. Nothing more. Nothing less.\n" "If image has a dot β†’ Output: .\n" "If image has two dots β†’ Output: . .\n" "If image has text β†’ Output: [that text]\n" "If image is truly blank β†’ Output: [empty/no response]" )) # Use existing temperature and token settings self.temperature = float(os.environ.get('TRANSLATION_TEMPERATURE', '0.01')) # NOTE: max_tokens is NOT cached here - it's read fresh from environment in detect_text() # to ensure we always get the latest value from the GUI # Image settings from existing compression variables self.image_format = 'jpeg' if os.environ.get('IMAGE_COMPRESSION_FORMAT', 'auto') != 'png' else 'png' self.image_quality = int(os.environ.get('JPEG_QUALITY', '100')) # Simple defaults self.api_format = 'openai' # Most custom endpoints are OpenAI-compatible self.timeout = int(os.environ.get('CHUNK_TIMEOUT', '30')) self.api_headers = {} # Additional custom headers # Retry configuration for Custom API OCR calls self.max_retries = int(os.environ.get('CUSTOM_OCR_MAX_RETRIES', '3')) self.retry_initial_delay = float(os.environ.get('CUSTOM_OCR_RETRY_INITIAL_DELAY', '0.8')) self.retry_backoff = float(os.environ.get('CUSTOM_OCR_RETRY_BACKOFF', '1.8')) self.retry_jitter = float(os.environ.get('CUSTOM_OCR_RETRY_JITTER', '0.4')) self.retry_on_empty = os.environ.get('CUSTOM_OCR_RETRY_ON_EMPTY', '1') == '1' def check_installation(self) -> bool: """Always installed - uses UnifiedClient""" self.is_installed = True return True def install(self, progress_callback=None) -> bool: """No installation needed for API-based provider""" return self.check_installation() def load_model(self, **kwargs) -> bool: """Initialize UnifiedClient with current settings""" try: from unified_api_client import UnifiedClient # Support passing API key from GUI if available if 'api_key' in kwargs: api_key = kwargs['api_key'] else: api_key = os.environ.get('API_KEY', '') or os.environ.get('OPENAI_API_KEY', '') if 'model' in kwargs: model = kwargs['model'] else: model = os.environ.get('MODEL', 'gpt-4o-mini') if not api_key: self._log("❌ No API key configured", "error") return False # Create UnifiedClient just like translations do self.client = UnifiedClient(model=model, api_key=api_key) #self._log(f"βœ… Using {model} for OCR via UnifiedClient") self.is_loaded = True return True except Exception as e: self._log(f"❌ Failed to initialize UnifiedClient: {str(e)}", "error") return False def _test_connection(self) -> bool: """Test API connection with a simple request""" try: # Create a small test image test_image = np.ones((100, 100, 3), dtype=np.uint8) * 255 cv2.putText(test_image, "TEST", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) # Encode image image_base64 = self._encode_image(test_image) # Prepare test request based on API format if self.api_format == 'openai': test_payload = { "model": self.model_name, "messages": [ { "role": "user", "content": [ {"type": "text", "text": "What text do you see?"}, {"type": "image_url", "image_url": {"url": f"data:image/{self.image_format};base64,{image_base64}"}} ] } ], "max_tokens": 50 } else: # For other formats, just try a basic health check return True headers = self._prepare_headers() response = requests.post( self.api_url, headers=headers, json=test_payload, timeout=10 ) return response.status_code == 200 except Exception: return False def _encode_image(self, image: np.ndarray) -> str: """Encode numpy array to base64 string""" # Convert BGR to RGB if needed if len(image.shape) == 3 and image.shape[2] == 3: image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) else: image_rgb = image # Convert to PIL Image pil_image = Image.fromarray(image_rgb) # Save to bytes buffer buffer = io.BytesIO() if self.image_format.lower() == 'png': pil_image.save(buffer, format='PNG') else: pil_image.save(buffer, format='JPEG', quality=self.image_quality) # Encode to base64 buffer.seek(0) image_base64 = base64.b64encode(buffer.read()).decode('utf-8') return image_base64 def _prepare_headers(self) -> dict: """Prepare request headers""" headers = { "Content-Type": "application/json" } # Add API key if configured if self.api_key: if self.api_format == 'anthropic': headers["x-api-key"] = self.api_key else: headers["Authorization"] = f"Bearer {self.api_key}" # Add any custom headers headers.update(self.api_headers) return headers def _prepare_request_payload(self, image_base64: str) -> dict: """Prepare request payload based on API format""" if self.api_format == 'openai': return { "model": self.model_name, "messages": [ { "role": "user", "content": [ {"type": "text", "text": self.ocr_prompt}, { "type": "image_url", "image_url": { "url": f"data:image/{self.image_format};base64,{image_base64}" } } ] } ], "max_tokens": self.max_tokens, "temperature": self.temperature } elif self.api_format == 'anthropic': return { "model": self.model_name, "max_tokens": self.max_tokens, "temperature": self.temperature, "messages": [ { "role": "user", "content": [ { "type": "text", "text": self.ocr_prompt }, { "type": "image", "source": { "type": "base64", "media_type": f"image/{self.image_format}", "data": image_base64 } } ] } ] } else: # Custom format - use environment variable for template template = os.environ.get('CUSTOM_OCR_REQUEST_TEMPLATE', '{}') payload = json.loads(template) # Replace placeholders payload_str = json.dumps(payload) payload_str = payload_str.replace('{{IMAGE_BASE64}}', image_base64) payload_str = payload_str.replace('{{PROMPT}}', self.ocr_prompt) payload_str = payload_str.replace('{{MODEL}}', self.model_name) payload_str = payload_str.replace('{{MAX_TOKENS}}', str(self.max_tokens)) payload_str = payload_str.replace('{{TEMPERATURE}}', str(self.temperature)) return json.loads(payload_str) def _extract_text_from_response(self, response_data: dict) -> str: """Extract text from API response based on format""" try: if self.api_format == 'openai': # OpenAI format: response.choices[0].message.content return response_data.get('choices', [{}])[0].get('message', {}).get('content', '') elif self.api_format == 'anthropic': # Anthropic format: response.content[0].text content = response_data.get('content', []) if content and isinstance(content, list): return content[0].get('text', '') return '' else: # Custom format - use environment variable for path response_path = os.environ.get('CUSTOM_OCR_RESPONSE_PATH', 'text') # Navigate through the response using the path result = response_data for key in response_path.split('.'): if isinstance(result, dict): result = result.get(key, '') elif isinstance(result, list) and key.isdigit(): idx = int(key) result = result[idx] if idx < len(result) else '' else: result = '' break return str(result) except Exception as e: self._log(f"Failed to extract text from response: {e}", "error") return '' def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]: """Process image using UnifiedClient.send_image()""" results = [] try: # CRITICAL: Reload OCR prompt from environment before each detection # This ensures we use the latest prompt set by manga_integration.py self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT', self.ocr_prompt) # Get fresh max_tokens from environment - GUI will have set this max_tokens = int(os.environ.get('MAX_OUTPUT_TOKENS', '8192')) if not self.is_loaded: if not self.load_model(): return results import cv2 from PIL import Image import base64 import io # Validate and resize image if too small (consistent with Google/Azure logic) h, w = image.shape[:2] MIN_SIZE = 50 # Minimum dimension for good OCR quality MIN_AREA = 2500 # Minimum area (50x50) # Skip completely invalid/corrupted images (0 or negative dimensions) if h <= 0 or w <= 0: self._log(f"⚠️ Invalid image dimensions ({w}x{h}px), skipping", "warning") return results if h < MIN_SIZE or w < MIN_SIZE or h * w < MIN_AREA: # Image too small - resize it scale_w = MIN_SIZE / w if w < MIN_SIZE else 1.0 scale_h = MIN_SIZE / h if h < MIN_SIZE else 1.0 scale = max(scale_w, scale_h) if scale > 1.0: new_w = int(w * scale) new_h = int(h * scale) image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC) self._log(f"πŸ” Image resized from {w}x{h}px to {new_w}x{new_h}px for Custom API OCR", "debug") h, w = new_h, new_w # Convert numpy array to PIL Image image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(image_rgb) # Convert PIL Image to base64 string buffer = io.BytesIO() # Use the image format from settings if self.image_format.lower() == 'png': pil_image.save(buffer, format='PNG') else: pil_image.save(buffer, format='JPEG', quality=self.image_quality) buffer.seek(0) image_base64 = base64.b64encode(buffer.read()).decode('utf-8') # For OpenAI vision models, we need BOTH: # 1. System prompt with instructions # 2. User message that includes the image messages = [ { "role": "system", "content": self.ocr_prompt # The OCR instruction as system prompt }, { "role": "user", "content": [ { "type": "text", "text": "Image:" # Minimal text, just to have something }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{image_base64}" } } ] } ] # Now send this properly formatted message # The UnifiedClient should handle this correctly # But we're NOT using send_image, we're using regular send # Retry-aware call from unified_api_client import UnifiedClientError # local import to avoid hard dependency at module import time max_attempts = max(1, self.max_retries) attempt = 0 last_error = None # Common refusal/error phrases that indicate a non-OCR response (expanded list) refusal_phrases = [ "I can't extract", "I cannot extract", "I'm sorry", "I am sorry", "I'm unable", "I am unable", "cannot process images", "I can't help with that", "cannot view images", "no text in the image", "I can see this appears", "I cannot make out", "appears to be blank", "appears to be a mostly blank", "mostly blank or white image", "If there is text present", "too small, faint, or unclear", "cannot accurately extract", "may be too", "However, I cannot", "I don't see any", "no clear text", "no visible text", "does not contain", "doesn't contain", "I do not see" ] while attempt < max_attempts: # Check for stop before each attempt if self._check_stop(): self._log("⏹️ OCR processing stopped by user", "warning") return results try: response = self.client.send( messages=messages, temperature=self.temperature, max_tokens=max_tokens ) # Extract content from response object content, finish_reason = response # Validate content has_content = bool(content and str(content).strip()) refused = False if has_content: # Filter out explicit failure markers if "[" in content and "FAILED]" in content: refused = True elif any(phrase.lower() in content.lower() for phrase in refusal_phrases): refused = True # Decide success or retry if has_content and not refused: text = str(content).strip() results.append(OCRResult( text=text, bbox=(0, 0, w, h), confidence=kwargs.get('confidence', 0.85), vertices=[(0, 0), (w, 0), (w, h), (0, h)] )) self._log(f"βœ… Detected: {text[:50]}...") break # success else: reason = "empty result" if not has_content else "refusal/non-OCR response" last_error = f"{reason} (finish_reason: {finish_reason})" # Check if we should retry on empty or refusal should_retry = (not has_content and self.retry_on_empty) or refused attempt += 1 if attempt >= max_attempts or not should_retry: # No more retries or shouldn't retry if not has_content: self._log(f"⚠️ No text detected (finish_reason: {finish_reason})") else: self._log(f"❌ Model returned non-OCR response: {str(content)[:120]}", "warning") break # Backoff before retrying delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter) self._log(f"πŸ”„ Retry {attempt}/{max_attempts - 1} after {delay:.1f}s due to {reason}...", "warning") time.sleep(delay) time.sleep(0.1) # Brief pause for stability self._log("πŸ’€ OCR retry pausing briefly for stability", "debug") continue except UnifiedClientError as ue: msg = str(ue) last_error = msg # Do not retry on explicit user cancellation if 'cancelled' in msg.lower() or 'stopped by user' in msg.lower(): self._log(f"❌ OCR cancelled: {msg}", "error") break attempt += 1 if attempt >= max_attempts: self._log(f"❌ OCR failed after {attempt} attempts: {msg}", "error") break delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter) self._log(f"πŸ”„ API error, retry {attempt}/{max_attempts - 1} after {delay:.1f}s: {msg}", "warning") time.sleep(delay) time.sleep(0.1) # Brief pause for stability self._log("πŸ’€ OCR API error retry pausing briefly for stability", "debug") continue except Exception as e_inner: last_error = str(e_inner) attempt += 1 if attempt >= max_attempts: self._log(f"❌ OCR exception after {attempt} attempts: {last_error}", "error") break delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter) self._log(f"πŸ”„ Exception, retry {attempt}/{max_attempts - 1} after {delay:.1f}s: {last_error}", "warning") time.sleep(delay) time.sleep(0.1) # Brief pause for stability self._log("πŸ’€ OCR exception retry pausing briefly for stability", "debug") continue except Exception as e: self._log(f"❌ Error: {str(e)}", "error") import traceback self._log(traceback.format_exc(), "debug") return results class MangaOCRProvider(OCRProvider): """Manga OCR provider using HuggingFace model directly""" def __init__(self, log_callback=None): super().__init__(log_callback) self.processor = None self.model = None self.tokenizer = None def check_installation(self) -> bool: """Check if transformers is installed""" try: import transformers import torch self.is_installed = True return True except ImportError: return False def install(self, progress_callback=None) -> bool: """Install transformers and torch""" pass def _is_valid_local_model_dir(self, path: str) -> bool: """Check that a local HF model directory has required files.""" try: if not path or not os.path.isdir(path): return False needed_any_weights = any( os.path.exists(os.path.join(path, name)) for name in ( 'pytorch_model.bin', 'model.safetensors' ) ) has_config = os.path.exists(os.path.join(path, 'config.json')) has_processor = ( os.path.exists(os.path.join(path, 'preprocessor_config.json')) or os.path.exists(os.path.join(path, 'processor_config.json')) ) has_tokenizer = ( os.path.exists(os.path.join(path, 'tokenizer.json')) or os.path.exists(os.path.join(path, 'tokenizer_config.json')) ) return has_config and needed_any_weights and has_processor and has_tokenizer except Exception: return False def load_model(self, **kwargs) -> bool: """Load the manga-ocr model, preferring a local directory to avoid re-downloading""" print("\n>>> MangaOCRProvider.load_model() called") try: if not self.is_installed and not self.check_installation(): print("ERROR: Transformers not installed") self._log("❌ Transformers not installed", "error") return False # Always disable progress bars to avoid tqdm issues in some environments import os os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1") from transformers import VisionEncoderDecoderModel, AutoTokenizer, AutoImageProcessor import torch # Prefer a local model directory if present to avoid any Hub access candidates = [] env_local = os.environ.get("MANGA_OCR_LOCAL_DIR") if env_local: candidates.append(env_local) # Project root one level up from this file root_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) candidates.append(os.path.join(root_dir, 'models', 'manga-ocr-base')) candidates.append(os.path.join(root_dir, 'models', 'kha-white', 'manga-ocr-base')) model_source = None local_only = False # Find a valid local dir for cand in candidates: if self._is_valid_local_model_dir(cand): model_source = cand local_only = True break # If no valid local dir, use Hub if not model_source: model_source = "kha-white/manga-ocr-base" # Make sure we are not forcing offline mode if os.environ.get("HF_HUB_OFFLINE") == "1": try: del os.environ["HF_HUB_OFFLINE"] except Exception: pass self._log("πŸ”₯ Loading manga-ocr model from Hugging Face Hub") self._log(f" Repo: {model_source}") else: # Only set offline when local dir is fully valid os.environ.setdefault("HF_HUB_OFFLINE", "1") self._log("πŸ”₯ Loading manga-ocr model from local directory") self._log(f" Local path: {model_source}") # Decide target device once; we will move after full CPU load to avoid meta tensors use_cuda = torch.cuda.is_available() # Try loading components, falling back to Hub if local-only fails def _load_components(source: str, local_flag: bool): self._log(" Loading tokenizer...") tok = AutoTokenizer.from_pretrained(source, local_files_only=local_flag) self._log(" Loading image processor...") try: from transformers import AutoProcessor except Exception: AutoProcessor = None try: proc = AutoImageProcessor.from_pretrained(source, local_files_only=local_flag) except Exception as e_proc: if AutoProcessor is not None: self._log(f" ⚠️ AutoImageProcessor failed: {e_proc}. Trying AutoProcessor...", "warning") proc = AutoProcessor.from_pretrained(source, local_files_only=local_flag) else: raise self._log(" Loading model...") # Prevent meta tensors by forcing full materialization on CPU at load time os.environ.setdefault('TORCHDYNAMO_DISABLE', '1') mdl = VisionEncoderDecoderModel.from_pretrained( source, local_files_only=local_flag, low_cpu_mem_usage=False, device_map=None, torch_dtype=torch.float32 # Use torch_dtype instead of dtype ) return tok, proc, mdl try: self.tokenizer, self.processor, self.model = _load_components(model_source, local_only) except Exception as e_local: if local_only: # Fallback to Hub once if local fails self._log(f" ⚠️ Local model load failed: {e_local}", "warning") try: if os.environ.get("HF_HUB_OFFLINE") == "1": del os.environ["HF_HUB_OFFLINE"] except Exception: pass model_source = "kha-white/manga-ocr-base" local_only = False self._log(" Retrying from Hugging Face Hub...") self.tokenizer, self.processor, self.model = _load_components(model_source, local_only) else: raise # Move to CUDA only after full CPU materialization target_device = 'cpu' if use_cuda: try: self.model = self.model.to('cuda') target_device = 'cuda' except Exception as move_err: self._log(f" ⚠️ Could not move model to CUDA: {move_err}", "warning") target_device = 'cpu' # Finalize eval mode self.model.eval() # Sanity-check: ensure no parameter remains on 'meta' device try: for n, p in self.model.named_parameters(): dev = getattr(p, 'device', None) if dev is not None and getattr(dev, 'type', '') == 'meta': raise RuntimeError(f"Parameter {n} is on 'meta' after load") except Exception as sanity_err: self._log(f"❌ Manga-OCR model load sanity check failed: {sanity_err}", "error") return False print(f"SUCCESS: Model loaded on {target_device.upper()}") self._log(f" βœ… Model loaded on {target_device.upper()}") self.is_loaded = True self._log("βœ… Manga OCR model ready") print(">>> Returning True from load_model()") return True except Exception as e: print(f"\nEXCEPTION in load_model: {e}") import traceback print(traceback.format_exc()) self._log(f"❌ Failed to load manga-ocr model: {str(e)}", "error") self._log(traceback.format_exc(), "error") try: if 'local_only' in locals() and local_only: self._log("Hint: Local load failed. Ensure your models/manga-ocr-base contains required files (config.json, preprocessor_config.json, tokenizer.json or tokenizer_config.json, and model weights).", "warning") except Exception: pass return False def _run_ocr(self, pil_image): """Run OCR on a PIL image using the HuggingFace model""" import torch # Process image (keyword arg for broader compatibility across transformers versions) inputs = self.processor(images=pil_image, return_tensors="pt") pixel_values = inputs["pixel_values"] # Move to same device as model try: model_device = next(self.model.parameters()).device except StopIteration: model_device = torch.device('cpu') pixel_values = pixel_values.to(model_device) # Generate text with torch.no_grad(): generated_ids = self.model.generate(pixel_values) # Decode generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]: """ Process the image region passed to it. This could be a bubble region or the full image. """ results = [] # Check for stop at start if self._check_stop(): self._log("⏹️ Manga-OCR processing stopped by user", "warning") return results try: if not self.is_loaded: if not self.load_model(): return results import cv2 from PIL import Image # Get confidence from kwargs confidence = kwargs.get('confidence', 0.7) # Convert numpy array to PIL image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(image_rgb) h, w = image.shape[:2] self._log("πŸ” Processing region with manga-ocr...") # Check for stop before inference if self._check_stop(): self._log("⏹️ Manga-OCR inference stopped by user", "warning") return results # Run OCR on the image region text = self._run_ocr(pil_image) if text and text.strip(): # Return result for this region with its actual bbox results.append(OCRResult( text=text.strip(), bbox=(0, 0, w, h), # Relative to the region passed in confidence=confidence, vertices=[(0, 0), (w, 0), (w, h), (0, h)] )) self._log(f"βœ… Detected text: {text[:50]}...") except Exception as e: self._log(f"❌ Error in manga-ocr: {str(e)}", "error") return results class Qwen2VL(OCRProvider): """OCR using Qwen2-VL - Vision Language Model that can read Korean text""" def __init__(self, log_callback=None): super().__init__(log_callback) self.processor = None self.model = None self.tokenizer = None # Get OCR prompt from environment or use default (UPDATED: Improved prompt) self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT', "YOU ARE A TEXT EXTRACTION MACHINE. EXTRACT EXACTLY WHAT YOU SEE.\n\n" "ABSOLUTE RULES:\n" "1. OUTPUT ONLY THE VISIBLE TEXT/SYMBOLS - NOTHING ELSE\n" "2. NEVER TRANSLATE OR MODIFY\n" "3. NEVER EXPLAIN, DESCRIBE, OR COMMENT\n" "4. NEVER SAY \"I can't\" or \"I cannot\" or \"no text\" or \"blank image\"\n" "5. IF YOU SEE DOTS, OUTPUT THE DOTS: .\n" "6. IF YOU SEE PUNCTUATION, OUTPUT THE PUNCTUATION\n" "7. IF YOU SEE A SINGLE CHARACTER, OUTPUT THAT CHARACTER\n" "8. IF YOU SEE NOTHING, OUTPUT NOTHING (empty response)\n\n" "LANGUAGE PRESERVATION:\n" "- Korean text β†’ Output in Korean\n" "- Japanese text β†’ Output in Japanese\n" "- Chinese text β†’ Output in Chinese\n" "- English text β†’ Output in English\n" "- CJK quotation marks (γ€Œγ€γ€Žγ€γ€γ€‘γ€Šγ€‹γ€ˆγ€‰) β†’ Preserve exactly as shown\n\n" "FORMATTING:\n" "- OUTPUT ALL TEXT ON A SINGLE LINE WITH NO LINE BREAKS\n" "- NEVER use \\n or line breaks in your output\n\n" "FORBIDDEN RESPONSES:\n" "- \"I can see this appears to be...\"\n" "- \"I cannot make out any clear text...\"\n" "- \"This appears to be blank...\"\n" "- \"If there is text present...\"\n" "- ANY explanatory text\n\n" "YOUR ONLY OUTPUT: The exact visible text. Nothing more. Nothing less.\n" "If image has a dot β†’ Output: .\n" "If image has two dots β†’ Output: . .\n" "If image has text β†’ Output: [that text]\n" "If image is truly blank β†’ Output: [empty/no response]" ) def set_ocr_prompt(self, prompt: str): """Allow setting the OCR prompt dynamically""" self.ocr_prompt = prompt def check_installation(self) -> bool: """Check if required packages are installed""" try: import transformers import torch self.is_installed = True return True except ImportError: return False def install(self, progress_callback=None) -> bool: """Install requirements for Qwen2-VL""" pass def load_model(self, model_size=None, **kwargs) -> bool: """Load Qwen2-VL model with size selection""" self._log(f"DEBUG: load_model called with model_size={model_size}") try: if not self.is_installed and not self.check_installation(): self._log("❌ Not installed", "error") return False self._log("πŸ”₯ Loading Qwen2-VL for Advanced OCR...") from transformers import AutoProcessor, AutoTokenizer import torch # Model options model_options = { "1": "Qwen/Qwen2-VL-2B-Instruct", "2": "Qwen/Qwen2-VL-7B-Instruct", "3": "Qwen/Qwen2-VL-72B-Instruct", "4": "custom" } # CHANGE: Default to 7B instead of 2B # Check for saved preference first if model_size is None: # Try to get from environment or config import os model_size = os.environ.get('QWEN2VL_MODEL_SIZE', '1') # Determine which model to load if model_size and str(model_size).startswith("custom:"): # Custom model passed with ID model_id = str(model_size).replace("custom:", "") self.loaded_model_size = "Custom" self.model_id = model_id self._log(f"Loading custom model: {model_id}") elif model_size == "4": # Custom option selected but no ID - shouldn't happen self._log("❌ Custom model selected but no ID provided", "error") return False elif model_size and str(model_size) in model_options: # Standard model option option = model_options[str(model_size)] if option == "custom": self._log("❌ Custom model needs an ID", "error") return False model_id = option # Set loaded_model_size for status display if model_size == "1": self.loaded_model_size = "2B" elif model_size == "2": self.loaded_model_size = "7B" elif model_size == "3": self.loaded_model_size = "72B" else: # CHANGE: Default to 7B (option "2") instead of 2B model_id = model_options["1"] # Changed from "1" to "2" self.loaded_model_size = "2B" # Changed from "2B" to "7B" self._log("No model size specified, defaulting to 2B") # Changed message self._log(f"Loading model: {model_id}") # Load processor and tokenizer self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) self.tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) # Load the model - let it figure out the class dynamically if torch.cuda.is_available(): self._log(f"GPU: {torch.cuda.get_device_name(0)}") # Use auto model class from transformers import AutoModelForVision2Seq self.model = AutoModelForVision2Seq.from_pretrained( model_id, dtype=torch.float16, device_map="auto", trust_remote_code=True ) self._log("βœ… Model loaded on GPU") else: self._log("Loading on CPU...") from transformers import AutoModelForVision2Seq self.model = AutoModelForVision2Seq.from_pretrained( model_id, dtype=torch.float32, trust_remote_code=True ) self._log("βœ… Model loaded on CPU") self.model.eval() self.is_loaded = True self._log("βœ… Qwen2-VL ready for Advanced OCR!") return True except Exception as e: self._log(f"❌ Failed to load: {str(e)}", "error") import traceback self._log(traceback.format_exc(), "debug") return False def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]: """Process image with Qwen2-VL for Korean text extraction""" results = [] if hasattr(self, 'model_id'): self._log(f"DEBUG: Using model: {self.model_id}", "debug") # Check if OCR prompt was passed in kwargs (for dynamic updates) if 'ocr_prompt' in kwargs: self.ocr_prompt = kwargs['ocr_prompt'] try: if not self.is_loaded: if not self.load_model(): return results import cv2 from PIL import Image import torch # Convert to PIL image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(image_rgb) h, w = image.shape[:2] self._log(f"πŸ” Processing with Qwen2-VL ({w}x{h} pixels)...") # Use the configurable OCR prompt messages = [ { "role": "user", "content": [ { "type": "image", "image": pil_image, }, { "type": "text", "text": self.ocr_prompt # Use the configurable prompt } ] } ] # Alternative simpler prompt if the above still causes issues: # "text": "OCR: Extract text as-is" # Process with Qwen2-VL text = self.processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.processor( text=[text], images=[pil_image], padding=True, return_tensors="pt" ) # Get the device and dtype the model is currently on model_device = next(self.model.parameters()).device model_dtype = next(self.model.parameters()).dtype # Move inputs to the same device as the model and cast float tensors to model dtype try: # Move first inputs = inputs.to(model_device) # Then align dtypes only for floating tensors (e.g., pixel_values) for k, v in inputs.items(): if isinstance(v, torch.Tensor) and torch.is_floating_point(v): inputs[k] = v.to(model_dtype) except Exception: # Fallback: ensure at least pixel_values is correct if present try: if isinstance(inputs, dict) and "pixel_values" in inputs: pv = inputs["pixel_values"].to(model_device) if torch.is_floating_point(pv): inputs["pixel_values"] = pv.to(model_dtype) except Exception: pass # Ensure pixel_values explicitly matches model dtype if present try: if isinstance(inputs, dict) and "pixel_values" in inputs: inputs["pixel_values"] = inputs["pixel_values"].to(device=model_device, dtype=model_dtype) except Exception: pass # Generate text with stricter parameters to avoid creative responses use_amp = (hasattr(torch, 'cuda') and model_device.type == 'cuda' and model_dtype in (torch.float16, torch.bfloat16)) autocast_dev = 'cuda' if model_device.type == 'cuda' else 'cpu' autocast_dtype = model_dtype if model_dtype in (torch.float16, torch.bfloat16) else None with torch.no_grad(): if use_amp and autocast_dtype is not None: with torch.autocast(autocast_dev, dtype=autocast_dtype): generated_ids = self.model.generate( **inputs, max_new_tokens=128, # Reduced from 512 - manga bubbles are typically short do_sample=False, # Keep deterministic temperature=0.01, # Keep your very low temperature top_p=1.0, # Keep no nucleus sampling repetition_penalty=1.0, # Keep no repetition penalty num_beams=1, # Ensure greedy decoding (faster than beam search) use_cache=True, # Enable KV cache for speed early_stopping=True, # Stop at EOS token pad_token_id=self.tokenizer.pad_token_id, # Proper padding eos_token_id=self.tokenizer.eos_token_id, # Proper stopping ) else: generated_ids = self.model.generate( **inputs, max_new_tokens=128, # Reduced from 512 - manga bubbles are typically short do_sample=False, # Keep deterministic temperature=0.01, # Keep your very low temperature top_p=1.0, # Keep no nucleus sampling repetition_penalty=1.0, # Keep no repetition penalty num_beams=1, # Ensure greedy decoding (faster than beam search) use_cache=True, # Enable KV cache for speed early_stopping=True, # Stop at EOS token pad_token_id=self.tokenizer.pad_token_id, # Proper padding eos_token_id=self.tokenizer.eos_token_id, # Proper stopping ) # Decode the output generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = self.processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] if output_text and output_text.strip(): text = output_text.strip() # ADDED: Filter out any response that looks like an explanation or apology # Common patterns that indicate the model is being "helpful" instead of just extracting unwanted_patterns = [ "μ£„μ†‘ν•©λ‹ˆλ‹€", # "I apologize" "sorry", "apologize", "μ΄λ―Έμ§€μ—λŠ”", # "in this image" "ν…μŠ€νŠΈκ°€ μ—†μŠ΅λ‹ˆλ‹€", # "there is no text" "I cannot", "I don't see", "There is no", "질문이 μžˆμœΌμ‹œλ©΄", # "if you have questions" ] # Check if response contains unwanted patterns text_lower = text.lower() is_explanation = any(pattern.lower() in text_lower for pattern in unwanted_patterns) # Also check if the response is suspiciously long for a bubble # Most manga bubbles are short, if we get 50+ chars it might be an explanation is_too_long = len(text) > 100 and ('.' in text or ',' in text or '!' in text) if is_explanation or is_too_long: self._log(f"⚠️ Model returned explanation instead of text, ignoring", "warning") # Return empty result or just skip this region return results # Check language has_korean = any('\uAC00' <= c <= '\uD7AF' for c in text) has_japanese = any('\u3040' <= c <= '\u309F' or '\u30A0' <= c <= '\u30FF' for c in text) has_chinese = any('\u4E00' <= c <= '\u9FFF' for c in text) if has_korean: self._log(f"βœ… Korean detected: {text[:50]}...") elif has_japanese: self._log(f"βœ… Japanese detected: {text[:50]}...") elif has_chinese: self._log(f"βœ… Chinese detected: {text[:50]}...") else: self._log(f"βœ… Text: {text[:50]}...") results.append(OCRResult( text=text, bbox=(0, 0, w, h), confidence=0.9, vertices=[(0, 0), (w, 0), (w, h), (0, h)] )) else: self._log("⚠️ No text detected", "warning") except Exception as e: self._log(f"❌ Error: {str(e)}", "error") import traceback self._log(traceback.format_exc(), "debug") return results class EasyOCRProvider(OCRProvider): """EasyOCR provider for multiple languages""" def __init__(self, log_callback=None, languages=None): super().__init__(log_callback) # Default to safe language combination self.languages = languages or ['ja', 'en'] # Safe default self._validate_language_combination() def _validate_language_combination(self): """Validate and fix EasyOCR language combinations""" # EasyOCR language compatibility rules incompatible_pairs = [ (['ja', 'ko'], 'Japanese and Korean cannot be used together'), (['ja', 'zh'], 'Japanese and Chinese cannot be used together'), (['ko', 'zh'], 'Korean and Chinese cannot be used together') ] for incompatible, reason in incompatible_pairs: if all(lang in self.languages for lang in incompatible): self._log(f"⚠️ EasyOCR: {reason}", "warning") # Keep first language + English self.languages = [self.languages[0], 'en'] self._log(f"πŸ”§ Auto-adjusted to: {self.languages}", "info") break def check_installation(self) -> bool: """Check if easyocr is installed""" try: import easyocr self.is_installed = True return True except ImportError: return False def install(self, progress_callback=None) -> bool: """Install easyocr""" pass def load_model(self, **kwargs) -> bool: """Load easyocr model""" try: if not self.is_installed and not self.check_installation(): self._log("❌ easyocr not installed", "error") return False self._log(f"πŸ”₯ Loading easyocr model for languages: {self.languages}...") import easyocr # This will download models on first run self.model = easyocr.Reader(self.languages, gpu=True) self.is_loaded = True self._log("βœ… easyocr model loaded successfully") return True except Exception as e: self._log(f"❌ Failed to load easyocr: {str(e)}", "error") # Try CPU mode if GPU fails try: import easyocr self.model = easyocr.Reader(self.languages, gpu=False) self.is_loaded = True self._log("βœ… easyocr loaded in CPU mode") return True except: return False def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]: """Detect text using easyocr""" results = [] try: if not self.is_loaded: if not self.load_model(): return results # EasyOCR can work directly with numpy arrays ocr_results = self.model.readtext(image, detail=1) # Parse results for (bbox, text, confidence) in ocr_results: # bbox is a list of 4 points xs = [point[0] for point in bbox] ys = [point[1] for point in bbox] x_min, x_max = min(xs), max(xs) y_min, y_max = min(ys), max(ys) results.append(OCRResult( text=text, bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)), confidence=confidence, vertices=[(int(p[0]), int(p[1])) for p in bbox] )) self._log(f"βœ… Detected {len(results)} text regions") except Exception as e: self._log(f"❌ Error in easyocr detection: {str(e)}", "error") return results class PaddleOCRProvider(OCRProvider): """PaddleOCR provider with memory safety measures""" def check_installation(self) -> bool: """Check if paddleocr is installed""" try: from paddleocr import PaddleOCR self.is_installed = True return True except ImportError: return False def install(self, progress_callback=None) -> bool: """Install paddleocr""" pass def load_model(self, **kwargs) -> bool: """Load paddleocr model with memory-safe configurations""" try: if not self.is_installed and not self.check_installation(): self._log("❌ paddleocr not installed", "error") return False self._log("πŸ”₯ Loading PaddleOCR model...") # Set memory-safe environment variables BEFORE importing import os os.environ['OMP_NUM_THREADS'] = '1' # Prevent OpenMP conflicts os.environ['MKL_NUM_THREADS'] = '1' # Prevent MKL conflicts os.environ['OPENBLAS_NUM_THREADS'] = '1' # Prevent OpenBLAS conflicts os.environ['FLAGS_use_mkldnn'] = '0' # Disable MKL-DNN from paddleocr import PaddleOCR # Try memory-safe configurations configs_to_try = [ # Config 1: Most memory-safe configuration { 'use_angle_cls': False, # Disable angle to save memory 'lang': 'ch', 'rec_batch_num': 1, # Process one at a time 'max_text_length': 100, # Limit text length 'drop_score': 0.5, # Higher threshold to reduce detections 'cpu_threads': 1, # Single thread to avoid conflicts }, # Config 2: Minimal memory footprint { 'lang': 'ch', 'rec_batch_num': 1, 'cpu_threads': 1, }, # Config 3: Absolute minimal { 'lang': 'ch' }, # Config 4: Empty config {} ] for i, config in enumerate(configs_to_try): try: self._log(f" Trying configuration {i+1}/{len(configs_to_try)}: {config}") # Force garbage collection before loading import gc gc.collect() self.model = PaddleOCR(**config) self.is_loaded = True self.current_config = config self._log(f"βœ… PaddleOCR loaded successfully with config: {config}") return True except Exception as e: error_str = str(e) self._log(f" Config {i+1} failed: {error_str}", "debug") # Clean up on failure if hasattr(self, 'model'): del self.model gc.collect() continue self._log(f"❌ PaddleOCR failed to load with any configuration", "error") return False except Exception as e: self._log(f"❌ Failed to load paddleocr: {str(e)}", "error") import traceback self._log(traceback.format_exc(), "debug") return False def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]: """Detect text with memory safety measures""" results = [] try: if not self.is_loaded: if not self.load_model(): return results import cv2 import numpy as np import gc # Memory safety: Ensure image isn't too large h, w = image.shape[:2] if len(image.shape) >= 2 else (0, 0) # Limit image size to prevent memory issues MAX_DIMENSION = 1500 if h > MAX_DIMENSION or w > MAX_DIMENSION: scale = min(MAX_DIMENSION/h, MAX_DIMENSION/w) new_h, new_w = int(h*scale), int(w*scale) self._log(f"⚠️ Resizing large image from {w}x{h} to {new_w}x{new_h} for memory safety", "warning") image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA) scale_factor = 1/scale else: scale_factor = 1.0 # Ensure correct format if len(image.shape) == 2: # Grayscale image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) elif len(image.shape) == 4: # Batch image = image[0] # Ensure uint8 type if image.dtype != np.uint8: if image.max() <= 1.0: image = (image * 255).astype(np.uint8) else: image = image.astype(np.uint8) # Make a copy to avoid memory corruption image_copy = image.copy() # Force garbage collection before OCR gc.collect() # Process with timeout protection import signal import threading ocr_results = None ocr_error = None def run_ocr(): nonlocal ocr_results, ocr_error try: ocr_results = self.model.ocr(image_copy) except Exception as e: ocr_error = e # Run OCR in a separate thread with timeout ocr_thread = threading.Thread(target=run_ocr) ocr_thread.daemon = True ocr_thread.start() ocr_thread.join(timeout=30) # 30 second timeout if ocr_thread.is_alive(): self._log("❌ PaddleOCR timeout - taking too long", "error") return results if ocr_error: raise ocr_error # Parse results results = self._parse_ocr_results(ocr_results) # Scale coordinates back if image was resized if scale_factor != 1.0 and results: for r in results: x, y, width, height = r.bbox r.bbox = (int(x*scale_factor), int(y*scale_factor), int(width*scale_factor), int(height*scale_factor)) r.vertices = [(int(v[0]*scale_factor), int(v[1]*scale_factor)) for v in r.vertices] if results: self._log(f"βœ… Detected {len(results)} text regions", "info") else: self._log("No text regions found", "debug") # Clean up del image_copy gc.collect() except Exception as e: error_msg = str(e) if str(e) else type(e).__name__ if "memory" in error_msg.lower() or "0x" in error_msg: self._log("❌ Memory access violation in PaddleOCR", "error") self._log(" This is a known Windows issue with PaddleOCR", "info") self._log(" Please switch to EasyOCR or manga-ocr instead", "warning") elif "trace_order.size()" in error_msg: self._log("❌ PaddleOCR internal error", "error") self._log(" Please switch to EasyOCR or manga-ocr", "warning") else: self._log(f"❌ Error in paddleocr detection: {error_msg}", "error") import traceback self._log(traceback.format_exc(), "debug") return results def _parse_ocr_results(self, ocr_results) -> List[OCRResult]: """Parse OCR results safely""" results = [] if isinstance(ocr_results, bool) and ocr_results == False: return results if ocr_results is None or not isinstance(ocr_results, list): return results if len(ocr_results) == 0: return results # Handle batch format if isinstance(ocr_results[0], list) and len(ocr_results[0]) > 0: first_item = ocr_results[0][0] if isinstance(first_item, list) and len(first_item) > 0: if isinstance(first_item[0], (list, tuple)) and len(first_item[0]) == 2: ocr_results = ocr_results[0] # Parse detections for detection in ocr_results: if not detection or isinstance(detection, bool): continue if not isinstance(detection, (list, tuple)) or len(detection) < 2: continue try: bbox_points = detection[0] text_data = detection[1] if not isinstance(bbox_points, (list, tuple)) or len(bbox_points) != 4: continue if not isinstance(text_data, (tuple, list)) or len(text_data) < 2: continue text = str(text_data[0]).strip() confidence = float(text_data[1]) if not text or confidence < 0.3: continue xs = [float(p[0]) for p in bbox_points] ys = [float(p[1]) for p in bbox_points] x_min, x_max = min(xs), max(xs) y_min, y_max = min(ys), max(ys) if (x_max - x_min) < 5 or (y_max - y_min) < 5: continue results.append(OCRResult( text=text, bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)), confidence=confidence, vertices=[(int(p[0]), int(p[1])) for p in bbox_points] )) except Exception: continue return results class DocTROCRProvider(OCRProvider): """DocTR OCR provider""" def check_installation(self) -> bool: """Check if doctr is installed""" try: from doctr.models import ocr_predictor self.is_installed = True return True except ImportError: return False def install(self, progress_callback=None) -> bool: """Install doctr""" pass def load_model(self, **kwargs) -> bool: """Load doctr model""" try: if not self.is_installed and not self.check_installation(): self._log("❌ doctr not installed", "error") return False self._log("πŸ”₯ Loading DocTR model...") from doctr.models import ocr_predictor # Load pretrained model self.model = ocr_predictor(pretrained=True) self.is_loaded = True self._log("βœ… DocTR model loaded successfully") return True except Exception as e: self._log(f"❌ Failed to load doctr: {str(e)}", "error") return False def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]: """Detect text using doctr""" results = [] try: if not self.is_loaded: if not self.load_model(): return results from doctr.io import DocumentFile # DocTR expects document format # Convert numpy array to PIL and save temporarily import tempfile import cv2 with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp: cv2.imwrite(tmp.name, image) doc = DocumentFile.from_images(tmp.name) # Run OCR result = self.model(doc) # Parse results h, w = image.shape[:2] for page in result.pages: for block in page.blocks: for line in block.lines: for word in line.words: # Handle different geometry formats geometry = word.geometry if len(geometry) == 4: # Standard format: (x1, y1, x2, y2) x1, y1, x2, y2 = geometry elif len(geometry) == 2: # Alternative format: ((x1, y1), (x2, y2)) (x1, y1), (x2, y2) = geometry else: self._log(f"Unexpected geometry format: {geometry}", "warning") continue # Convert relative coordinates to absolute x1, x2 = int(x1 * w), int(x2 * w) y1, y2 = int(y1 * h), int(y2 * h) results.append(OCRResult( text=word.value, bbox=(x1, y1, x2 - x1, y2 - y1), confidence=word.confidence, vertices=[(x1, y1), (x2, y1), (x2, y2), (x1, y2)] )) # Clean up temp file try: os.unlink(tmp.name) except: pass self._log(f"DocTR detected {len(results)} text regions") except Exception as e: self._log(f"Error in doctr detection: {str(e)}", "error") import traceback self._log(traceback.format_exc(), "error") return results class RapidOCRProvider(OCRProvider): """RapidOCR provider for fast local OCR""" def check_installation(self) -> bool: """Check if rapidocr is installed""" try: import rapidocr_onnxruntime self.is_installed = True return True except ImportError: return False def install(self, progress_callback=None) -> bool: """Install rapidocr (requires manual pip install)""" # RapidOCR requires manual installation if progress_callback: progress_callback("RapidOCR requires manual pip installation") self._log("Run: pip install rapidocr-onnxruntime", "info") return False # Always return False since we can't auto-install def load_model(self, **kwargs) -> bool: """Load RapidOCR model""" try: if not self.is_installed and not self.check_installation(): self._log("RapidOCR not installed", "error") return False self._log("Loading RapidOCR...") from rapidocr_onnxruntime import RapidOCR self.model = RapidOCR() self.is_loaded = True self._log("RapidOCR model loaded successfully") return True except Exception as e: self._log(f"Failed to load RapidOCR: {str(e)}", "error") return False def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]: """Detect text using RapidOCR""" if not self.is_loaded: self._log("RapidOCR model not loaded", "error") return [] results = [] try: # Convert numpy array to PIL Image for RapidOCR if len(image.shape) == 3: # BGR to RGB image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) else: image_rgb = image # RapidOCR expects PIL Image or numpy array ocr_results, _ = self.model(image_rgb) if ocr_results: for result in ocr_results: # RapidOCR returns [bbox, text, confidence] bbox_points = result[0] # 4 corner points text = result[1] confidence = float(result[2]) if not text or not text.strip(): continue # Convert 4-point bbox to x,y,w,h format xs = [point[0] for point in bbox_points] ys = [point[1] for point in bbox_points] x_min, x_max = min(xs), max(xs) y_min, y_max = min(ys), max(ys) results.append(OCRResult( text=text.strip(), bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)), confidence=confidence, vertices=[(int(p[0]), int(p[1])) for p in bbox_points] )) self._log(f"Detected {len(results)} text regions") except Exception as e: self._log(f"Error in RapidOCR detection: {str(e)}", "error") return results class OCRManager: """Manager for multiple OCR providers""" def __init__(self, log_callback=None): self.log_callback = log_callback self.providers = { 'custom-api': CustomAPIProvider(log_callback) , 'manga-ocr': MangaOCRProvider(log_callback), 'easyocr': EasyOCRProvider(log_callback), 'paddleocr': PaddleOCRProvider(log_callback), 'doctr': DocTROCRProvider(log_callback), 'rapidocr': RapidOCRProvider(log_callback), 'Qwen2-VL': Qwen2VL(log_callback) } self.current_provider = None self.stop_flag = None def get_provider(self, name: str) -> Optional[OCRProvider]: """Get OCR provider by name""" return self.providers.get(name) def set_current_provider(self, name: str): """Set current active provider""" if name in self.providers: self.current_provider = name return True return False def check_provider_status(self, name: str) -> Dict[str, bool]: """Check installation and loading status of provider""" provider = self.providers.get(name) if not provider: return {'installed': False, 'loaded': False} result = { 'installed': provider.check_installation(), 'loaded': provider.is_loaded } if self.log_callback: self.log_callback(f"DEBUG: check_provider_status({name}) returning loaded={result['loaded']}", "debug") return result def install_provider(self, name: str, progress_callback=None) -> bool: """Install a provider""" provider = self.providers.get(name) if not provider: return False return provider.install(progress_callback) def load_provider(self, name: str, **kwargs) -> bool: """Load a provider's model with optional parameters""" provider = self.providers.get(name) if not provider: return False return provider.load_model(**kwargs) # <-- Passes model_size and any other kwargs def shutdown(self): """Release models/processors/tokenizers for all providers and clear caches.""" try: import gc for name, provider in list(self.providers.items()): try: if hasattr(provider, 'model'): provider.model = None if hasattr(provider, 'processor'): provider.processor = None if hasattr(provider, 'tokenizer'): provider.tokenizer = None if hasattr(provider, 'reader'): provider.reader = None if hasattr(provider, 'is_loaded'): provider.is_loaded = False except Exception: pass gc.collect() try: import torch torch.cuda.empty_cache() except Exception: pass except Exception: pass def detect_text(self, image: np.ndarray, provider_name: str = None, **kwargs) -> List[OCRResult]: """Detect text using specified or current provider""" provider_name = provider_name or self.current_provider if not provider_name: return [] provider = self.providers.get(provider_name) if not provider: return [] return provider.detect_text(image, **kwargs) def set_stop_flag(self, stop_flag): """Set stop flag for all providers""" self.stop_flag = stop_flag for provider in self.providers.values(): if hasattr(provider, 'set_stop_flag'): provider.set_stop_flag(stop_flag) def reset_stop_flags(self): """Reset stop flags for all providers""" for provider in self.providers.values(): if hasattr(provider, 'reset_stop_flags'): provider.reset_stop_flags()