""" Enhanced QA Scanner for HTML Translation Files This module provides comprehensive quality assurance scanning for translated HTML files, including duplicate detection, foreign character detection, and translation artifact detection. PERFORMANCE IMPROVEMENTS: - Added detailed progress indicators for all slow operations - Shows estimated time remaining for long operations - Displays current file being scanned - Provides progress updates every 5-10% - Added timing information for each phase - MinHash optimization status messages - Debug output for stop functionality OPTIMIZATION TIPS: - For datasets > 100 files, avoid AI Hunter mode (use aggressive instead) - Install 'datasketch' package for 2-10x faster duplicate detection: pip install datasketch - Use 'summary' report format for faster completion - Disable checks you don't need in QA Scanner Settings """ import os import hashlib import json import zipfile import csv from bs4 import BeautifulSoup from langdetect import detect, LangDetectException from difflib import SequenceMatcher from collections import Counter, defaultdict from tqdm import tqdm import tkinter as tk from tkinter import filedialog, messagebox import threading import re import unicodedata import time import html as html_lib from typing import Dict, List, Tuple, Set, Optional import warnings from functools import lru_cache import concurrent.futures import multiprocessing from threading import Lock # Add a global lock for thread-safe operations merge_lock = Lock() # Global variable for text samples mapping _global_text_samples = {} warnings.filterwarnings('ignore') # Try to import optional dependencies try: from datasketch import MinHash, MinHashLSH MINHASH_AVAILABLE = True except ImportError: MINHASH_AVAILABLE = False #"Note: Install 'datasketch' package for faster duplicate detection on large datasets if running it as a script # Global flag to allow stopping the scan externally _stop_flag = False def stop_scan(): """Set the stop flag to True This function should be called by the GUI to stop a running scan. The GUI code needs to: 1. Import this function: from scan_html_folder import stop_scan 2. Call it in the stop_qa_scan method: stop_scan() 3. Update the QA button to show "Stop Scan" when scan is running """ global _stop_flag _stop_flag = True print("π STOP SCAN CALLED - Global flag set to True") # More visible debug return True # Return True to confirm it was called # Configuration class for duplicate detection class DuplicateDetectionConfig: def __init__(self, mode='quick-scan', custom_settings=None): self.mode = mode self.custom_settings = custom_settings self.thresholds = { 'aggressive': { 'similarity': 0.75, 'semantic': 0.70, 'structural': 0.80, 'consecutive_chapters': 3, 'word_overlap': 0.65, 'minhash_threshold': 0.70 }, 'quick-scan': { # Optimized for speed 'similarity': 0.85, 'semantic': 0.80, 'structural': 0.90, 'consecutive_chapters': 1, # Only check adjacent chapters 'word_overlap': 0.75, 'minhash_threshold': 0.80, 'skip_semantic': True, # Skip expensive calculations 'skip_structural': True, 'skip_minhash': True, 'sample_size': 1000, # Smaller sample 'check_all_pairs': False # Never check all pairs }, 'custom': { 'similarity': 0.85, 'semantic': 0.80, 'structural': 0.90, 'consecutive_chapters': 2, 'word_overlap': 0.75, 'minhash_threshold': 0.80, 'check_all_pairs': False, 'sample_size': 3000, 'min_text_length': 500 }, 'ai-hunter': { 'similarity': 0.30, 'semantic': 0.85, 'structural': 0.85, 'consecutive_chapters': 5, 'word_overlap': 0.50, 'minhash_threshold': 0.60, 'check_all_pairs': True } } # Override with custom settings if mode is 'custom' if mode == 'custom' and custom_settings: self.thresholds['custom'].update(custom_settings.get('thresholds', {})) for key in ['consecutive_chapters', 'check_all_pairs', 'sample_size', 'min_text_length']: if key in custom_settings: self.thresholds['custom'][key] = custom_settings[key] def get_threshold(self, key): return self.thresholds[self.mode].get(key, 0.8) # Constants DASH_CHARS = { '-', 'β', 'β', 'β', 'βΈΊ', 'βΈ»', 'οΉ', 'οΉ£', 'οΌ', 'β', 'β', 'β', 'β', '_', 'β', 'β', 'β', 'β', 'β', 'β', 'β ', 'β', 'β', 'β―', 'β€', 'οΌΏ', 'οΌ', '*', '~', 'ο½', 'βΌ', 'γ', 'γ ‘' # Added Korean dash character } COMMON_WORDS = { 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'through', 'after', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'should', 'could', 'may', 'might', 'chapter', 'each', 'person', 'persons', 'he', 'she', 'it', 'they', 'them', 'his', 'her', 'their', 'this', 'that', 'these', 'those', 'which', 'who', 'what', 'where', 'when', 'why', 'how', 'all', 'some', 'any', 'no', 'not' } # Korean dash patterns to EXCLUDE from detection KOREAN_DASH_PATTERNS = [ r'[γ ‘βββ\-]+', # Korean dashes and similar r'[\u2014\u2015\u2500-\u257F]+', # Box drawing characters often used in Korean text r'[\u3161\u3163\u3164]+', # Korean filler characters ] # Extended Korean separator characters to exclude from non-English detection KOREAN_SEPARATOR_CHARS = { 'γ ‘', # Korean dash/separator (U+3161) 'β', # Horizontal bar (U+2015) 'β', # Em dash (U+2014) 'β', # En dash (U+2013) 'οΌ»', 'οΌ½', # Full-width brackets 'γ', 'γ', # Black lenticular brackets 'γ', 'γ', # Tortoise shell brackets 'γ', 'γ', # Double angle brackets 'γ', 'γ', # Corner brackets 'γ', 'γ', # White corner brackets } # Translation artifacts patterns TRANSLATION_ARTIFACTS = { 'machine_translation': re.compile(r'(MTL note|TN:|Translator:|T/N:|TL note:|Translator\'s note:)', re.IGNORECASE), 'encoding_issues': re.compile(r'[οΏ½β‘β]{2,}'), 'repeated_watermarks': re.compile(r'(\[[\w\s]+\.(?:com|net|org)\])\s*\1{2,}', re.IGNORECASE), 'chapter_continuation': re.compile(r'(to be continued|continued from|continuation of|cont\.)', re.IGNORECASE), 'split_indicators': re.compile(r'(part \d+|section \d+|\(\d+/\d+\))', re.IGNORECASE), 'api_response_unavailable': re.compile(r'\[AI RESPONSE UNAVAILABLE\]|\[TRANSLATION FAILED - ORIGINAL TEXT PRESERVED\]|\[IMAGE TRANSLATION FAILED\]', re.IGNORECASE), 'glossary_leakage_csv': re.compile( r'(?:type|raw_name|translated_name|gender|description)\s*,\s*(?:type|raw_name|translated_name|gender|description)', re.IGNORECASE ), 'glossary_leakage_json': re.compile( r'"(?:type|raw_name|translated_name|gender|description)"\s*:\s*"[^"]+"\s*,?\s*"(?:type|raw_name|translated_name|gender|description)"', re.IGNORECASE ) } # Cache configuration - will be updated by configure_qa_cache() _cache_config = { "enabled": True, "sizes": { "normalize_text": 10000, "similarity_ratio": 20000, "content_hashes": 5000, "semantic_fingerprint": 2000, "structural_signature": 2000, "semantic_similarity": 5000, "structural_similarity": 5000, "file_extraction": 200 } } def configure_qa_cache(config): """Update cache configuration""" global _cache_config _cache_config.update(config) # Clear existing caches after configuration clear_qa_caches() # Re-apply caches with new sizes _apply_caches() def get_cache_size(func_name): """Get configured cache size for a function""" if not _cache_config.get("enabled", True): return 0 # Disable cache size = _cache_config.get("sizes", {}).get(func_name, 1000) return None if size == -1 else size # Define functions WITHOUT decorators first def extract_semantic_fingerprint_impl(text): """Extract semantic fingerprint and signature from text""" # For cache efficiency with long texts cache_text = text[:50000] if len(text) > 50000 else text # Extract features for semantic analysis words = cache_text.lower().split() # Character names (words starting with capital letters, appearing multiple times) potential_names = re.findall(r'\b[A-Z][a-z]+\b', cache_text) name_freq = Counter(potential_names) characters = [name for name, count in name_freq.items() if count >= 3 and name not in COMMON_WORDS] # Dialogue analysis dialogue_matches = re.findall(r'["\"\'""''γγγγ]([^"\"\'""''γγγγ]+)["\"\'""''γγγγ]', cache_text) dialogue_count = len(dialogue_matches) dialogue_density = dialogue_count / max(1, len(words)) if words else 0 dialogue_lengths = [len(d) for d in dialogue_matches[:30]] # First 30 dialogue lengths # Character frequencies (sorted list) character_frequencies = [count for _, count in name_freq.most_common()] # Speaker sequence extraction speaker_patterns = re.findall(r'(\w+)\s+(?:said|asked|replied|shouted|whispered|spoke)', cache_text.lower()) speaker_sequence = speaker_patterns[:50] # First 50 speakers # Paragraph structure (lengths of each paragraph) paragraphs = [p for p in cache_text.split('\n\n') if p.strip()] paragraph_structure = [len(p) for p in paragraphs[:50]] # First 50 paragraph lengths # Action words density action_words = len(re.findall(r'\b(\w+ed|spoke|says?|asks?|replies?|shouts?|screams?|whispers?)\b', cache_text)) action_density = action_words / max(1, len(words)) if words else 0 # Numbers in text numbers = re.findall(r'\b\d+\b', cache_text) # Create fingerprint string fingerprint = f"chars:{len(characters)}_dial:{dialogue_density:.2f}_act:{action_density:.2f}_nums:{len(numbers)}_words:{len(words)}" # Create signature dict signature = { 'characters': characters[:20], # Top 20 characters 'dialogue_density': dialogue_density, 'dialogue_count': dialogue_count, 'dialogue_lengths': dialogue_lengths, 'character_frequencies': character_frequencies, 'speaker_sequence': speaker_sequence, 'paragraph_structure': paragraph_structure, 'total_words': len(words), 'action_density': action_density, 'numbers': numbers[:50], # First 50 numbers 'text_length': len(cache_text) } return fingerprint, signature def extract_structural_signature_impl(text): """Extract structural patterns from text""" # For cache efficiency with long texts cache_text = text[:50000] if len(text) > 50000 else text lines = cache_text.split('\n') # Count different types of lines para_count = len([l for l in lines if len(l.strip()) > 50]) short_lines = len([l for l in lines if 0 < len(l.strip()) < 20]) empty_lines = len([l for l in lines if not l.strip()]) # Dialogue patterns dialogue_lines = len(re.findall(r'["\"\'""''γγγγ].*?["\"\'""''γγγγ]', cache_text)) # Create pattern string (first letter of each line type) pattern = '' for line in lines[:100]: # First 100 lines if not line.strip(): pattern += 'E' # Empty elif len(line.strip()) < 20: pattern += 'S' # Short elif re.search(r'["\"\'""''γγγγ]', line): pattern += 'D' # Dialogue else: pattern += 'P' # Paragraph # Calculate average paragraph length paragraphs = [l for l in lines if len(l.strip()) > 50] avg_para_length = sum(len(p) for p in paragraphs) / max(1, len(paragraphs)) if paragraphs else 0 # Dialogue ratio dialogue_ratio = dialogue_lines / max(1, len(lines)) signature = { 'pattern': pattern, 'paragraph_count': para_count, 'avg_paragraph_length': avg_para_length, 'dialogue_ratio': dialogue_ratio, 'short_lines': short_lines, 'empty_lines': empty_lines } return signature def extract_content_fingerprint_impl(text): """Extract key sentences that can identify duplicate content""" lines = [line.strip() for line in text.split('\n') if len(line.strip()) > 50 and not is_dash_separator_line(line)] if len(lines) < 5: return "" # Take first, middle, and last substantial sentences fingerprint_lines = [] if len(lines) >= 3: fingerprint_lines = [lines[0], lines[len(lines)//2], lines[-1]] else: fingerprint_lines = lines[:3] return ' '.join(fingerprint_lines).lower() # Initialize cached versions extract_semantic_fingerprint = None extract_structural_signature = None extract_content_fingerprint = None def _apply_caches(): """Apply LRU cache to functions with current configuration""" global extract_semantic_fingerprint, extract_structural_signature, extract_content_fingerprint # Apply caching with current sizes extract_semantic_fingerprint = lru_cache(maxsize=get_cache_size("semantic_fingerprint") or 2000)(extract_semantic_fingerprint_impl) extract_structural_signature = lru_cache(maxsize=get_cache_size("structural_signature") or 2000)(extract_structural_signature_impl) extract_content_fingerprint = lru_cache(maxsize=get_cache_size("content_fingerprint") or 2000)(extract_content_fingerprint_impl) # Apply initial caches _apply_caches() def clear_qa_caches(): """Clear all QA scanner caches""" # Clear directly cached functions if hasattr(normalize_text, 'cache_clear'): normalize_text.cache_clear() if hasattr(generate_content_hashes, 'cache_clear'): generate_content_hashes.cache_clear() if hasattr(calculate_similarity_ratio, 'cache_clear'): calculate_similarity_ratio.cache_clear() # Clear the actual cached implementations if hasattr(_calculate_semantic_similarity_cached, 'cache_clear'): _calculate_semantic_similarity_cached.cache_clear() if hasattr(_calculate_structural_similarity_cached, 'cache_clear'): _calculate_structural_similarity_cached.cache_clear() if hasattr(calculate_semantic_fingerprint_similarity, 'cache_clear'): calculate_semantic_fingerprint_similarity.cache_clear() if hasattr(extract_semantic_fingerprint, 'cache_clear'): extract_semantic_fingerprint.cache_clear() if hasattr(extract_structural_signature, 'cache_clear'): extract_structural_signature.cache_clear() if hasattr(extract_content_fingerprint, 'cache_clear'): extract_content_fingerprint.cache_clear() if hasattr(_extract_text_from_html_cached, 'cache_clear'): _extract_text_from_html_cached.cache_clear() def get_cache_info(): """Get cache statistics for all cached functions""" cache_info = {} # For functions that are directly cached if hasattr(normalize_text, 'cache_info'): cache_info['normalize_text'] = normalize_text.cache_info() if hasattr(generate_content_hashes, 'cache_info'): cache_info['content_hashes'] = generate_content_hashes.cache_info() if hasattr(calculate_similarity_ratio, 'cache_info'): cache_info['similarity_ratio'] = calculate_similarity_ratio.cache_info() # For wrapper functions, use the actual cached implementation if hasattr(_calculate_semantic_similarity_cached, 'cache_info'): cache_info['semantic_similarity'] = _calculate_semantic_similarity_cached.cache_info() if hasattr(_calculate_structural_similarity_cached, 'cache_info'): cache_info['structural_similarity'] = _calculate_structural_similarity_cached.cache_info() if hasattr(calculate_semantic_fingerprint_similarity, 'cache_info'): cache_info['semantic_fingerprint_similarity'] = calculate_semantic_fingerprint_similarity.cache_info() if hasattr(extract_semantic_fingerprint, 'cache_info'): cache_info['semantic_fingerprint'] = extract_semantic_fingerprint.cache_info() if hasattr(extract_structural_signature, 'cache_info'): cache_info['structural_signature'] = extract_structural_signature.cache_info() if hasattr(extract_content_fingerprint, 'cache_info'): cache_info['content_fingerprint'] = extract_content_fingerprint.cache_info() if hasattr(_extract_text_from_html_cached, 'cache_info'): cache_info['file_extraction'] = _extract_text_from_html_cached.cache_info() return cache_info # For very long texts, we'll use a hash as cache key def _get_cache_key(text, max_length=10000): """Generate a cache key for text, using hash for long texts""" if len(text) > max_length: return hashlib.md5(text.encode('utf-8')).hexdigest() return text def extract_text_from_html(file_path): """Extract text from HTML or TXT file Returns: str OR tuple: - For backwards compatibility: just the text (if not checking HTML structure) - For new functionality: (text_content, has_html_tag) tuple """ # Get file modification time as part of cache key try: mtime = os.path.getmtime(file_path) cache_key = f"{file_path}:{mtime}" except OSError: cache_key = file_path return _extract_text_from_html_cached(cache_key, file_path) def _extract_text_from_html_cached(cache_key, file_path): """Cached implementation of extract_text_from_html""" with open(file_path, "r", encoding="utf-8", errors="ignore") as f: content = f.read() # Check if it's a .txt file if file_path.lower().endswith('.txt'): # For .txt files, just return the content directly return content # For HTML files, parse with BeautifulSoup soup = BeautifulSoup(content, "html.parser") text = soup.get_text(separator='\n', strip=True) # For backwards compatibility, we'll handle the HTML tag check separately # in the scan function rather than always returning a tuple return text # Configure cache size dynamically _extract_text_from_html_cached = lru_cache(maxsize=get_cache_size("file_extraction") or 200)(_extract_text_from_html_cached) import re def check_html_structure(file_path): """Check if an HTML file has proper HTML tags""" if not file_path.lower().endswith(('.html', '.xhtml', '.htm')): return True with open(file_path, "r", encoding="utf-8", errors="ignore") as f: content = f.read() html_tags = [ '', '
20] if len(sentences) < min_repeats: return False counter = Counter(sentences) for sent, count in counter.items(): if count >= min_repeats and len(sent) > 50: if not any(pattern in sent.lower() for pattern in ['said', 'asked', 'replied', 'thought']): return True return False def is_korean_separator_pattern(text, excluded_chars=None): """Check if text is a Korean separator pattern like [γ ‘γ ‘γ ‘γ ‘γ ‘]""" if excluded_chars is None: excluded_chars = KOREAN_SEPARATOR_CHARS # Remove brackets and spaces cleaned = text.strip().strip('[]').strip() if not cleaned: return False # Check if all characters are separators or excluded characters return all(c in excluded_chars or c.isspace() for c in cleaned) def detect_non_english_content(text, qa_settings=None): """Detect ONLY non-Latin script characters (not romanized text), excluding Korean separators""" if qa_settings is None: qa_settings = {'foreign_char_threshold': 10, 'excluded_characters': ''} # Get threshold and excluded characters threshold = qa_settings.get('foreign_char_threshold', 10) excluded_chars = set() if qa_settings.get('excluded_characters'): excluded_chars = set(qa_settings['excluded_characters'].split()) # Combine with existing separator chars all_excluded_chars = KOREAN_SEPARATOR_CHARS.copy() all_excluded_chars.update(excluded_chars) issues = [] filtered_text = filter_dash_lines(text) # Define non-Latin script ranges non_latin_ranges = [ (0xAC00, 0xD7AF, 'Korean'), (0x1100, 0x11FF, 'Korean'), (0x3130, 0x318F, 'Korean'), (0xA960, 0xA97F, 'Korean'), (0xD7B0, 0xD7FF, 'Korean'), (0x3040, 0x309F, 'Japanese'), (0x30A0, 0x30FF, 'Japanese'), (0x31F0, 0x31FF, 'Japanese'), (0xFF65, 0xFF9F, 'Japanese'), (0x4E00, 0x9FFF, 'Chinese'), (0x3400, 0x4DBF, 'Chinese'), (0x20000, 0x2A6DF, 'Chinese'), (0x2A700, 0x2B73F, 'Chinese'), (0x0590, 0x05FF, 'Hebrew'), (0x0600, 0x06FF, 'Arabic'), (0x0700, 0x074F, 'Syriac'), (0x0750, 0x077F, 'Arabic'), (0x0E00, 0x0E7F, 'Thai'), (0x0400, 0x04FF, 'Cyrillic'), (0x0500, 0x052F, 'Cyrillic'), ] script_chars = {} total_non_latin = 0 # Split text into potential separator patterns and other content separator_pattern = r'\[[γ ‘\sβββ\-οΌ»οΌ½γγγγγγγγγγ]+\]' parts = re.split(f'({separator_pattern})', filtered_text) for part in parts: # Skip if this part is a Korean separator pattern if is_korean_separator_pattern(part, all_excluded_chars): continue # Check characters in this part for char in part: # Skip characters in excluded set if char in all_excluded_chars: continue # Skip whitespace and common punctuation if char.isspace() or char in '[](){}.,;:!?\'"-': continue code_point = ord(char) for start, end, script_name in non_latin_ranges: if start <= code_point <= end: total_non_latin += 1 if script_name not in script_chars: script_chars[script_name] = {'count': 0, 'examples': []} script_chars[script_name]['count'] += 1 if len(script_chars[script_name]['examples']) < 10: script_chars[script_name]['examples'].append(char) break # Check against threshold if total_non_latin > threshold: for script, data in script_chars.items(): examples = ''.join(data['examples'][:5]) count = data['count'] issues.append(f"{script}_text_found_{count}_chars_[{examples}]") return len(issues) > 0, issues def detect_translation_artifacts(text): """Detect common translation/OCR artifacts""" artifacts_found = [] for artifact_type, pattern in TRANSLATION_ARTIFACTS.items(): matches = pattern.findall(text) if matches: artifacts_found.append({ 'type': artifact_type, 'count': len(matches), 'examples': list(set(matches))[:3] }) return artifacts_found def detect_glossary_leakage(text, threshold=2): """ Detect if translated text contains raw glossary entries. Args: text: The translated text to check threshold: Minimum number of glossary-like patterns to flag as leakage Returns: tuple: (has_leakage, details) """ import re issues_found = [] # Check for CSV-style glossary headers csv_header_pattern = re.compile( r'type\s*,\s*raw_name\s*,\s*translated_name\s*,\s*gender\s*,\s*description', re.IGNORECASE ) if csv_header_pattern.search(text): issues_found.append({ 'type': 'csv_header', 'severity': 'critical', 'description': 'Found CSV glossary header in translation' }) # Check for multiple structured entries entry_patterns = [ # JSON-like entries (r'\{\s*"type"\s*:\s*"[^"]+"\s*,\s*"raw_name"\s*:\s*"[^"]+"\s*,', 'json_entry'), # CSV-like entries with Korean/Chinese characters (r'(?:character|term)\s*,\s*[κ°-ν£\u4e00-\u9fff]+\s*,\s*[A-Za-z\s]+\s*,', 'csv_entry'), # Tab-separated entries (r'(?:character|term)\t[κ°-ν£\u4e00-\u9fff]+\t[A-Za-z\s]+\t', 'tsv_entry'), ] for pattern_str, pattern_type in entry_patterns: pattern = re.compile(pattern_str, re.IGNORECASE) matches = pattern.findall(text) if len(matches) >= threshold: issues_found.append({ 'type': pattern_type, 'severity': 'high', 'count': len(matches), 'examples': matches[:3], 'description': f'Found {len(matches)} {pattern_type} glossary entries' }) # Check for repeated glossary field names field_names = ['type', 'raw_name', 'translated_name', 'gender', 'description'] field_count = sum(1 for field in field_names if text.lower().count(field) >= 3) if field_count >= 3: issues_found.append({ 'type': 'repeated_field_names', 'severity': 'medium', 'description': f'Found {field_count} repeated glossary field names' }) # Check for specific character/term patterns char_term_pattern = re.compile( r'(?:^|\n)\s*(?:character|term)\s*[,:\t]\s*[^\n]+(?:Male|Female|A\s+historical|Former\s+mayor|Character\s+from)', re.IGNORECASE | re.MULTILINE ) char_matches = char_term_pattern.findall(text) if len(char_matches) >= 2: issues_found.append({ 'type': 'character_definitions', 'severity': 'high', 'count': len(char_matches), 'examples': char_matches[:2], 'description': f'Found {len(char_matches)} character/term definitions' }) has_leakage = len(issues_found) > 0 return has_leakage, issues_found def extract_semantic_fingerprint(text): """Extract semantic fingerprint and signature from text - CACHED VERSION""" # For cache efficiency with long texts cache_text = text[:50000] if len(text) > 50000 else text # Extract features for semantic analysis words = cache_text.lower().split() # Character names (words starting with capital letters, appearing multiple times) potential_names = re.findall(r'\b[A-Z][a-z]+\b', cache_text) name_freq = Counter(potential_names) characters = [name for name, count in name_freq.items() if count >= 3 and name not in COMMON_WORDS] # Dialogue analysis dialogue_matches = re.findall(r'["\"\'""''γγγγ]([^"\"\'""''γγγγ]+)["\"\'""''γγγγ]', cache_text) dialogue_count = len(dialogue_matches) dialogue_density = dialogue_count / max(1, len(words)) if words else 0 dialogue_lengths = [len(d) for d in dialogue_matches[:30]] # First 30 dialogue lengths # Character frequencies (sorted list) character_frequencies = [count for _, count in name_freq.most_common()] # Speaker sequence extraction speaker_patterns = re.findall(r'(\w+)\s+(?:said|asked|replied|shouted|whispered|spoke)', cache_text.lower()) speaker_sequence = speaker_patterns[:50] # First 50 speakers # Paragraph structure (lengths of each paragraph) paragraphs = [p for p in cache_text.split('\n\n') if p.strip()] paragraph_structure = [len(p) for p in paragraphs[:50]] # First 50 paragraph lengths # Action words density action_words = len(re.findall(r'\b(\w+ed|spoke|says?|asks?|replies?|shouts?|screams?|whispers?)\b', cache_text)) action_density = action_words / max(1, len(words)) if words else 0 # Numbers in text numbers = re.findall(r'\b\d+\b', cache_text) # Create fingerprint string fingerprint = f"chars:{len(characters)}_dial:{dialogue_density:.2f}_act:{action_density:.2f}_nums:{len(numbers)}_words:{len(words)}" # Create signature dict signature = { 'characters': characters[:20], # Top 20 characters 'dialogue_density': dialogue_density, 'dialogue_count': dialogue_count, 'dialogue_lengths': dialogue_lengths, 'character_frequencies': character_frequencies, 'speaker_sequence': speaker_sequence, 'paragraph_structure': paragraph_structure, 'total_words': len(words), 'action_density': action_density, 'numbers': numbers[:50], # First 50 numbers 'text_length': len(cache_text) } return fingerprint, signature # Apply dynamic caching extract_semantic_fingerprint = lru_cache(maxsize=get_cache_size("semantic_fingerprint") or 2000)(extract_semantic_fingerprint) def extract_structural_signature(text): """Extract structural patterns from text - CACHED VERSION""" # For cache efficiency with long texts cache_text = text[:50000] if len(text) > 50000 else text lines = cache_text.split('\n') # Count different types of lines para_count = len([l for l in lines if len(l.strip()) > 50]) short_lines = len([l for l in lines if 0 < len(l.strip()) < 20]) empty_lines = len([l for l in lines if not l.strip()]) # Dialogue patterns dialogue_lines = len(re.findall(r'["\"\'""''γγγγ].*?["\"\'""''γγγγ]', cache_text)) # Create pattern string (first letter of each line type) pattern = '' for line in lines[:100]: # First 100 lines if not line.strip(): pattern += 'E' # Empty elif len(line.strip()) < 20: pattern += 'S' # Short elif re.search(r'["\"\'""''γγγγ]', line): pattern += 'D' # Dialogue else: pattern += 'P' # Paragraph # Calculate average paragraph length paragraphs = [l for l in lines if len(l.strip()) > 50] avg_para_length = sum(len(p) for p in paragraphs) / max(1, len(paragraphs)) if paragraphs else 0 # Dialogue ratio dialogue_ratio = dialogue_lines / max(1, len(lines)) signature = { 'pattern': pattern, 'paragraph_count': para_count, 'avg_paragraph_length': avg_para_length, 'dialogue_ratio': dialogue_ratio, 'short_lines': short_lines, 'empty_lines': empty_lines } return signature def extract_content_fingerprint(text): """Extract key sentences that can identify duplicate content - CACHED VERSION""" # For cache efficiency with very long texts, limit to first 100KB cache_text = text[:100000] if len(text) > 100000 else text lines = [line.strip() for line in cache_text.split('\n') if len(line.strip()) > 50 and not is_dash_separator_line(line)] if len(lines) < 5: return "" # Take first, middle, and last substantial sentences fingerprint_lines = [] if len(lines) >= 3: fingerprint_lines = [lines[0], lines[len(lines)//2], lines[-1]] else: fingerprint_lines = lines[:3] return ' '.join(fingerprint_lines).lower() # Configure cache size dynamically extract_content_fingerprint = lru_cache(maxsize=get_cache_size("content_fingerprint"))(extract_content_fingerprint) def roman_to_int(s): """Convert Roman numerals to integer""" try: values = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} result = 0 for i in range(len(s)): if i + 1 < len(s) and values[s[i]] < values[s[i + 1]]: result -= values[s[i]] else: result += values[s[i]] return result except: return None def extract_chapter_info(filename, text): """Extract chapter number and title from filename and content - ENHANCED VERSION""" chapter_num = None chapter_title = "" # Enhanced filename patterns - try multiple approaches filename_patterns = [ # Original patterns (r"response_(\d+)_(.+?)\.html", 1, 2), (r"response_chapter(\d+)\.html", 1, None), (r"chapter[\s_-]*(\d+)", 1, None), # New patterns to catch more cases (r"response_(\d{3,4})_", 1, None), # Catches response_003_ (r"response_chapter(\d{4})\.html", 1, None), # Catches response_chapter0002 (r"(\d{3,4})[_\.]", 1, None), # General 3-4 digit pattern (r"No(\d+)Chapter", 1, None), (r"ch[\s_-]*(\d+)", 1, None), (r"_(\d+)_", 1, None), (r"第(\d+)[η« θ―ε]", 1, None), # Chinese chapter markers (r"μ (\d+)[μ₯νν]", 1, None), # Korean chapter markers ] # Try each pattern for pattern, num_group, title_group in filename_patterns: m = re.search(pattern, filename, re.IGNORECASE) if m: try: # Extract chapter number, removing leading zeros chapter_num = int(m.group(num_group).lstrip('0') or '0') if title_group and len(m.groups()) >= title_group: chapter_title = m.group(title_group) break except (ValueError, IndexError): continue # If still no chapter number, try content-based extraction if chapter_num is None and text: content_patterns = [ r'Chapter\s+(\d+)', r'第\s*(\d+)\s*η« ', r'μ \s*(\d+)\s*μ₯', r'Chapter\s+([IVXLCDM]+)', # Roman numerals r'\bCh\.?\s*(\d+)', r'Episode\s+(\d+)', r'Part\s+(\d+)', ] for pattern in content_patterns: m = re.search(pattern, text[:1000], re.IGNORECASE) if m: if m.group(1).isdigit(): chapter_num = int(m.group(1)) else: # Try to convert Roman numerals num = roman_to_int(m.group(1)) if num is not None: chapter_num = num if chapter_num is not None: break return chapter_num, chapter_title def normalize_chapter_numbers(results): """Normalize chapter numbers to handle different formats""" for result in results: # If we have a chapter number, ensure it's normalized if result.get('chapter_num') is not None: # This helps match chapter 2 with 002, etc. result['normalized_chapter_num'] = int(result['chapter_num']) def fuzzy_match_chapter_numbers(text1, text2, num1, num2): """Check if chapter numbers might be the same despite OCR errors""" if num1 == num2: return True # Check if numbers are close (OCR might misread) if abs(num1 - num2) <= 1: # Look for chapter declarations in text pattern = r'Chapter\s*(\d+|[IVXLCDM]+)' matches1 = re.findall(pattern, text1[:500], re.IGNORECASE) matches2 = re.findall(pattern, text2[:500], re.IGNORECASE) if matches1 and matches2: # Try to normalize roman numerals def roman_to_int(s): try: values = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} result = 0 for i in range(len(s)): if i + 1 < len(s) and values[s[i]] < values[s[i + 1]]: result -= values[s[i]] else: result += values[s[i]] return result except: return None for m1 in matches1: for m2 in matches2: if m1.isdigit() and m2.isdigit(): if abs(int(m1) - int(m2)) <= 1: return True elif not m1.isdigit() and not m2.isdigit(): r1 = roman_to_int(m1.upper()) r2 = roman_to_int(m2.upper()) if r1 and r2 and abs(r1 - r2) <= 1: return True return False def detect_split_chapters(results): """Detect chapters that might have been split into multiple files Now with better detection to avoid false positives from intentional author formatting """ split_candidates = [] # Common scene break patterns that authors use intentionally scene_break_patterns = [ r'[\*\s]{3,}', # *** or * * * r'[ββοΌβ\-]{3,}', # Various dashes/lines r'[_]{3,}', # ___ r'[~ο½]{3,}', # ~~~ r'[=]{3,}', # === r'[\#]{3,}', # ### r'[\.]{3,}', # ... r'(?:Chapter|Scene|Part)\s+Break', # Explicit break text r'(?:Meanwhile|Later|Earlier)', # Time transition words r'\d+\s*(?:hours?|days?|weeks?|months?|years?)\s+(?:later|earlier|ago)', # Time skips ] for i, result in enumerate(results): text = result.get('raw_text', '') filename = result.get('filename', '') # Skip if empty if not text.strip(): continue # Check for continuation indicators from AI artifacts = detect_translation_artifacts(text) has_continuation = any(a['type'] in ['chapter_continuation', 'split_indicators'] for a in artifacts) # Check file naming patterns that suggest systematic splits is_systematic_split = False split_patterns = [ r'chunk[\-_]?\d+', # chunk1, chunk_2 r'part[\-_]?\d+[\-_]?\d+', # part1_2 (part 1 of chapter 2) r'response_\d+_\d+', # response_42_3 r'_\d+of\d+', # _1of3 r'_split\d+', # _split1 r'_continuation', # _continuation ] for pattern in split_patterns: if re.search(pattern, filename, re.IGNORECASE): is_systematic_split = True break # Check if file is unusually short is_short = len(text) < 2000 # Check for scene break indicators at start or end text_start = text[:500].strip() text_end = text[-500:].strip() has_scene_break_start = False has_scene_break_end = False for pattern in scene_break_patterns: if re.search(pattern, text_start[:100], re.IGNORECASE): has_scene_break_start = True if re.search(pattern, text_end[-100:], re.IGNORECASE): has_scene_break_end = True # Check if starts mid-sentence (but not after scene break) starts_mid = False if text.strip() and not has_scene_break_start: first_line = text.strip().split('\n')[0].strip() # Skip if line starts with dialogue quotes or chapter markers if first_line and not re.match(r'^["γγ\(\[]', first_line): # Check if starts with lowercase (excluding certain words that commonly start sections) first_word = first_line.split()[0] if first_line.split() else '' transition_words = ['meanwhile', 'however', 'suddenly', 'later', 'earlier', 'elsewhere', 'afterward', 'afterwards', 'then'] if first_word.lower() not in transition_words: starts_mid = first_line[0].islower() # Check if ends mid-sentence (but not with scene break) ends_mid = False if text.strip() and not has_scene_break_end: last_line = text.strip().split('\n')[-1].strip() if last_line: # Check last character, ignoring quotes last_char = last_line.rstrip('γγ"\'').rstrip() if last_char: ends_mid = last_char[-1] not in '.!?γοΌοΌβ¦' # Determine if this is likely a real split vs intentional formatting is_likely_real_split = False if is_systematic_split: # File naming strongly suggests a split is_likely_real_split = True elif has_continuation: # AI detected continuation markers is_likely_real_split = True elif is_short and starts_mid and ends_mid and not (has_scene_break_start or has_scene_break_end): # Short, starts and ends mid-sentence, no scene breaks is_likely_real_split = True elif is_short and ends_mid and not has_scene_break_end: # Might be a split if it's short and ends abruptly # Check if it ends with incomplete dialogue or mid-word if text.strip(): # Check for incomplete quotes or mid-word breaks if (text.count('"') % 2 != 0 or text.count('γ') != text.count('γ') or re.search(r'[a-zA-Z]-$', text.strip())): # Ends with hyphen (mid-word) is_likely_real_split = True if is_likely_real_split: split_candidates.append({ 'index': i, 'filename': filename, 'indicators': { 'has_continuation': has_continuation, 'is_systematic_split': is_systematic_split, 'is_short': is_short, 'starts_mid': starts_mid, 'ends_mid': ends_mid, 'has_scene_break_start': has_scene_break_start, 'has_scene_break_end': has_scene_break_end } }) return split_candidates def create_minhash_index(results, config): """Create LSH index for fast similarity lookups""" if not MINHASH_AVAILABLE: return None, None threshold = config.get_threshold('minhash_threshold') lsh = MinHashLSH(threshold=threshold, num_perm=128) minhashes = {} total = len(results) for idx, result in enumerate(results): if idx % 50 == 0 and idx > 0: print(f" Building MinHash index: {idx}/{total} files processed...") text = result.get('normalized_text', '') if not text: continue # Create MinHash m = MinHash(num_perm=128) for word in text.split(): m.update(word.encode('utf8')) minhashes[result['filename']] = m lsh.insert(result['filename'], m) return lsh, minhashes def _normalize_text_cached(cache_key): """Cached implementation of normalize_text""" # This will be called with the actual text return cache_key def normalize_text(text): """Normalize text for comparison - CACHED VERSION""" normalized = text.lower().strip() # Remove chapter indicators patterns = [ r'chapter\s*\d+\s*:?\s*', r'第\s*\d+\s*η« ', r'μ \s*\d+\s*μ₯', r'chapter\s+[ivxlcdm]+\s*:?\s*', r'\bch\.?\s*\d+\s*:?\s*', r'^\s*\d+\s*\.?\s*', r'response_\d+_.*?\.html', r'\d{4}-\d{2}-\d{2}', r'\d{2}:\d{2}:\d{2}', r'<[^>]+>' ] for pattern in patterns: normalized = re.sub(pattern, '', normalized, flags=re.IGNORECASE | re.MULTILINE) # Normalize whitespace and punctuation normalized = re.sub(r'\s+', ' ', normalized) normalized = re.sub(r'[^\w\s]', '', normalized) return normalized # Configure cache size dynamically normalize_text = lru_cache(maxsize=get_cache_size("normalize_text"))(normalize_text) @lru_cache(maxsize=5000) def _generate_content_hashes_cached(text_hash): """Cached helper for generate_content_hashes""" # This is just a placeholder - actual implementation is in the main function return text_hash @lru_cache(maxsize=5000) def generate_content_hashes(text): """Generate multiple hashes for better duplicate detection - CACHED VERSION""" # For very long texts, use first 50KB for cache key cache_key = _get_cache_key(text, 50000) normalized = normalize_text(text) # 1. Raw hash raw_hash = hashlib.md5(text.encode('utf-8')).hexdigest() # 2. Normalized hash normalized_hash = hashlib.md5(normalized.encode('utf-8')).hexdigest() # 3. Content fingerprint fingerprint = extract_content_fingerprint(text) fingerprint_hash = hashlib.md5(fingerprint.encode('utf-8')).hexdigest() if fingerprint else None # 4. Word frequency hash words = re.findall(r'\w+', normalized.lower()) word_freq = Counter(words) significant_words = [(w, c) for w, c in word_freq.most_common(100) if w not in COMMON_WORDS][:50] word_sig = ' '.join([f"{w}:{c}" for w, c in significant_words]) word_hash = hashlib.md5(word_sig.encode('utf-8')).hexdigest() if word_sig else None # 5. First chunk hash first_chunk = normalized[:1000] if len(normalized) > 1000 else normalized first_chunk_hash = hashlib.md5(first_chunk.encode('utf-8')).hexdigest() # 6. Semantic fingerprint hash - FIXED semantic_result = extract_semantic_fingerprint(text) if semantic_result and isinstance(semantic_result, tuple) and len(semantic_result) >= 2: semantic_str = semantic_result[0] semantic_hash = hashlib.md5(semantic_str.encode('utf-8')).hexdigest() else: # Fallback if function returns unexpected value semantic_hash = hashlib.md5(text[:1000].encode('utf-8')).hexdigest() # 7. Structural signature hash structural_sig = extract_structural_signature(text) if structural_sig: structural_str = json.dumps(structural_sig, sort_keys=True) structural_hash = hashlib.md5(structural_str.encode('utf-8')).hexdigest() else: # Fallback structural_hash = hashlib.md5(text[:500].encode('utf-8')).hexdigest() return { 'raw': raw_hash, 'normalized': normalized_hash, 'fingerprint': fingerprint_hash, 'word_freq': word_hash, 'first_chunk': first_chunk_hash, 'semantic': semantic_hash, 'structural': structural_hash } @lru_cache(maxsize=20000) def _calculate_similarity_ratio_cached(text1_hash, text2_hash): """Cached helper for similarity ratio""" return (text1_hash, text2_hash) @lru_cache(maxsize=20000) def calculate_similarity_ratio(text1, text2): """Calculate similarity with optimizations for large texts - CACHED VERSION""" # Ensure consistent ordering for cache if text1 > text2: text1, text2 = text2, text1 len_ratio = len(text1) / max(1, len(text2)) if len_ratio < 0.7 or len_ratio > 1.3: return 0.0 if len(text1) > 10000: sample_size = 3000 samples1 = [ text1[:sample_size], text1[len(text1)//2 - sample_size//2:len(text1)//2 + sample_size//2], text1[-sample_size:] ] samples2 = [ text2[:sample_size], text2[len(text2)//2 - sample_size//2:len(text2)//2 + sample_size//2], text2[-sample_size:] ] similarities = [SequenceMatcher(None, s1, s2).ratio() for s1, s2 in zip(samples1, samples2)] return sum(similarities) / len(similarities) else: return SequenceMatcher(None, text1, text2).ratio() # Configure cache size dynamically calculate_similarity_ratio = lru_cache(maxsize=get_cache_size("similarity_ratio"))(calculate_similarity_ratio) # This function should NOT be cached directly def calculate_semantic_similarity(sig1, sig2): """Calculate similarity between two semantic signatures This wrapper handles dict inputs and calls the cached implementation """ # Convert dicts to JSON strings if isinstance(sig1, dict): sig1_json = json.dumps(sig1, sort_keys=True) else: sig1_json = sig1 if isinstance(sig2, dict): sig2_json = json.dumps(sig2, sort_keys=True) else: sig2_json = sig2 # Call the cached implementation with JSON strings return _calculate_semantic_similarity_cached(sig1_json, sig2_json) # This function IS cached because it only receives JSON strings def _calculate_semantic_similarity_cached(sig1_json, sig2_json): """Cached implementation that works with JSON strings""" sig1 = json.loads(sig1_json) sig2 = json.loads(sig2_json) # Character overlap chars1 = set(sig1.get('characters', [])) chars2 = set(sig2.get('characters', [])) char_overlap = len(chars1 & chars2) / max(1, len(chars1 | chars2)) # Dialogue density similarity dial_sim = 1 - abs(sig1.get('dialogue_density', 0) - sig2.get('dialogue_density', 0)) # Action density similarity act_sim = 1 - abs(sig1.get('action_density', 0) - sig2.get('action_density', 0)) # Number overlap nums1 = set(sig1.get('numbers', [])) nums2 = set(sig2.get('numbers', [])) num_overlap = len(nums1 & nums2) / max(1, len(nums1 | nums2)) if nums1 or nums2 else 1 # Length similarity len_ratio = min(sig1.get('text_length', 1), sig2.get('text_length', 1)) / max(1, max(sig1.get('text_length', 1), sig2.get('text_length', 1))) # Weighted average return (char_overlap * 0.4 + dial_sim * 0.2 + act_sim * 0.2 + num_overlap * 0.1 + len_ratio * 0.1) # Apply caching ONLY to the implementation function, NOT the wrapper _calculate_semantic_similarity_cached = lru_cache(maxsize=get_cache_size("semantic_similarity") or 5000)(_calculate_semantic_similarity_cached) # Make sure calculate_semantic_similarity is NOT cached # If there's any line like this, REMOVE IT: # calculate_semantic_similarity = lru_cache(...)(calculate_semantic_similarity) def calculate_semantic_fingerprint_similarity(text1, text2): """Calculate similarity based on semantic structure rather than exact wording - CACHED VERSION""" # For very long texts, truncate for cache efficiency cache_text1 = text1[:100000] if len(text1) > 100000 else text1 cache_text2 = text2[:100000] if len(text2) > 100000 else text2 fingerprint1, sig1 = extract_semantic_fingerprint(cache_text1) fingerprint2, sig2 = extract_semantic_fingerprint(cache_text2) similarities = [] # Compare dialogue structure (very reliable indicator) if sig1['dialogue_count'] > 0 and sig2['dialogue_count'] > 0: dialogue_ratio = min(sig1['dialogue_count'], sig2['dialogue_count']) / max(sig1['dialogue_count'], sig2['dialogue_count']) similarities.append(dialogue_ratio) # Compare dialogue length patterns if sig1['dialogue_lengths'] and sig2['dialogue_lengths']: len_similarity = SequenceMatcher(None, sig1['dialogue_lengths'][:30], sig2['dialogue_lengths'][:30]).ratio() similarities.append(len_similarity) # Compare character lists (names should mostly match) if sig1['characters'] and sig2['characters']: char_set1 = set(sig1['characters']) char_set2 = set(sig2['characters']) char_overlap = len(char_set1 & char_set2) / max(len(char_set1), len(char_set2)) similarities.append(char_overlap) # Compare character frequency patterns freq_similarity = SequenceMatcher(None, sig1['character_frequencies'], sig2['character_frequencies']).ratio() similarities.append(freq_similarity * 0.8) # Slightly less weight # Compare numbers (very reliable - numbers rarely change) if sig1['numbers'] and sig2['numbers']: num_set1 = set(sig1['numbers']) num_set2 = set(sig2['numbers']) num_overlap = len(num_set1 & num_set2) / max(len(num_set1), len(num_set2)) similarities.append(num_overlap) # Compare speaker sequences if len(sig1['speaker_sequence']) >= 5 and len(sig2['speaker_sequence']) >= 5: seq_similarity = SequenceMatcher(None, sig1['speaker_sequence'], sig2['speaker_sequence']).ratio() similarities.append(seq_similarity) # Compare paragraph structure if len(sig1['paragraph_structure']) >= 10 and len(sig2['paragraph_structure']) >= 10: # Allow for some variation in lengths (Β±20%) para_similarities = [] for i in range(min(len(sig1['paragraph_structure']), len(sig2['paragraph_structure']))): len1 = sig1['paragraph_structure'][i] len2 = sig2['paragraph_structure'][i] if len1 > 0 and len2 > 0: ratio = min(len1, len2) / max(len1, len2) para_similarities.append(1.0 if ratio > 0.8 else ratio) if para_similarities: similarities.append(sum(para_similarities) / len(para_similarities)) # Word count ratio (should be similar) word_ratio = min(sig1['total_words'], sig2['total_words']) / max(sig1['total_words'], sig2['total_words']) similarities.append(word_ratio * 0.5) # Less weight # Calculate weighted average if similarities: return sum(similarities) / len(similarities) else: return 0.0 # Configure cache size dynamically calculate_semantic_fingerprint_similarity = lru_cache(maxsize=get_cache_size("semantic_fingerprint"))(calculate_semantic_fingerprint_similarity) # This function should NOT be cached directly - it's the wrapper def calculate_structural_similarity(struct1, struct2): """Calculate similarity between two structural signatures This wrapper handles dict inputs and calls the cached implementation """ # Convert dicts to JSON strings if isinstance(struct1, dict): struct1_json = json.dumps(struct1, sort_keys=True) else: struct1_json = struct1 if isinstance(struct2, dict): struct2_json = json.dumps(struct2, sort_keys=True) else: struct2_json = struct2 # Call the cached implementation with JSON strings return _calculate_structural_similarity_cached(struct1_json, struct2_json) # This function IS cached because it only receives JSON strings def _calculate_structural_similarity_cached(struct1_json, struct2_json): """Cached implementation that works with JSON strings""" # Convert JSON strings back to dictionaries struct1 = json.loads(struct1_json) struct2 = json.loads(struct2_json) # Pattern similarity pattern_sim = SequenceMatcher(None, struct1.get('pattern', ''), struct2.get('pattern', '')).ratio() # Paragraph count similarity para_ratio = min(struct1.get('paragraph_count', 1), struct2.get('paragraph_count', 1)) / \ max(1, max(struct1.get('paragraph_count', 1), struct2.get('paragraph_count', 1))) # Average paragraph length similarity len_ratio = min(struct1.get('avg_paragraph_length', 1), struct2.get('avg_paragraph_length', 1)) / \ max(1, max(struct1.get('avg_paragraph_length', 1), struct2.get('avg_paragraph_length', 1))) # Dialogue ratio similarity dial_sim = 1 - abs(struct1.get('dialogue_ratio', 0) - struct2.get('dialogue_ratio', 0)) # Weighted average return (pattern_sim * 0.5 + para_ratio * 0.2 + len_ratio * 0.15 + dial_sim * 0.15) # Apply caching ONLY to the implementation function, NOT the wrapper _calculate_structural_similarity_cached = lru_cache(maxsize=get_cache_size("structural_similarity") or 5000)(_calculate_structural_similarity_cached) # Note: cache configurations are already applied earlier in the file def extract_chapter_title(text): """Extract chapter title from text""" patterns = [ r'Chapter\s+\d+\s*:\s*([^\n\r]+)', r'Chapter\s+\d+\s+([^\n\r]+)', r'第\s*\d+\s*η« \s*[:οΌ]?\s*([^\n\r]+)', r'μ \s*\d+\s*μ₯\s*[:οΌ]?\s*([^\n\r]+)', ] for pattern in patterns: match = re.search(pattern, text[:500], re.IGNORECASE) if match: title = match.group(1).strip() title = re.sub(r'\s+', ' ', title) title = title.split('.')[0].split('The')[0].strip() return title[:100] if len(title) > 100 else title return None def merge_duplicate_groups(duplicate_groups, filename1, filename2): """Intelligently merge duplicate groups when new connections are found Note: When called from parallel processing, should be wrapped with a lock """ group1 = duplicate_groups.get(filename1) group2 = duplicate_groups.get(filename2) if group1 is None and group2 is None: # Create new group new_group = max(duplicate_groups.values(), default=-1) + 1 duplicate_groups[filename1] = new_group duplicate_groups[filename2] = new_group elif group1 is not None and group2 is None: # Add to existing group duplicate_groups[filename2] = group1 elif group1 is None and group2 is not None: # Add to existing group duplicate_groups[filename1] = group2 elif group1 != group2: # Merge two groups min_group = min(group1, group2) max_group = max(group1, group2) for filename, group in duplicate_groups.items(): if group == max_group: duplicate_groups[filename] = min_group def process_enhance_duplicate_batch(args): """Process a batch of enhanced duplicate detection - MUST BE AT MODULE LEVEL""" batch_type, batch_data, worker_data = args batch_results = [] # Import what we need from difflib import SequenceMatcher import hashlib # Local caches for this worker similarity_cache = {} preview_cache = {} if batch_type == 'chapter_comparison': # Process chapter number group comparisons comparisons = batch_data text_data = worker_data['text_data'] threshold = worker_data['similarity_threshold'] for idx1, idx2, file1, file2, chapter_num in comparisons: # Get text data data1 = text_data[idx1] data2 = text_data[idx2] # Create cache key (handle None hashes) if data1['hash'] is None or data2['hash'] is None: continue # Skip if either file is empty cache_key = (min(data1['hash'], data2['hash']), max(data1['hash'], data2['hash'])) if cache_key in similarity_cache: similarity = similarity_cache[cache_key] else: # Check if hashes are identical if data1['hash'] == data2['hash']: similarity = 1.0 else: # Calculate similarity similarity = calculate_similarity_ratio(data1['text'], data2['text']) similarity_cache[cache_key] = similarity if similarity >= threshold: batch_results.append({ 'type': 'chapter_duplicate', 'file1': file1, 'file2': file2, 'chapter': chapter_num, 'similarity': similarity, 'preview1': data1['text'][:100], 'preview2': data2['text'][:100] }) elif batch_type == 'preview_comparison': # Process preview-based comparisons comparisons = batch_data text_data = worker_data['text_data'] preview_data = worker_data['preview_data'] threshold = worker_data['similarity_threshold'] preview_threshold = worker_data['preview_threshold'] for idx1, idx2, file1, file2 in comparisons: # First check preview similarity preview1 = preview_data[idx1] preview2 = preview_data[idx2] # Normalize previews (first 50 words) norm_preview1 = ' '.join(preview1['text'].split()[:50]) norm_preview2 = ' '.join(preview2['text'].split()[:50]) # Check preview similarity (handle None hashes) if preview1['hash'] is None or preview2['hash'] is None: continue # Skip if either preview is empty preview_cache_key = (min(preview1['hash'], preview2['hash']), max(preview1['hash'], preview2['hash'])) if preview_cache_key in preview_cache: preview_sim = preview_cache[preview_cache_key] else: preview_sim = calculate_similarity_ratio(norm_preview1[:500], norm_preview2[:500]) preview_cache[preview_cache_key] = preview_sim # If previews are similar enough, check full text if preview_sim >= preview_threshold: # Get full text data data1 = text_data[idx1] data2 = text_data[idx2] # Check full text similarity (handle None hashes) if data1['hash'] is None or data2['hash'] is None: continue # Skip if either file is empty cache_key = (min(data1['hash'], data2['hash']), max(data1['hash'], data2['hash'])) if cache_key in similarity_cache: similarity = similarity_cache[cache_key] else: if data1['hash'] == data2['hash']: similarity = 1.0 else: similarity = calculate_similarity_ratio(data1['text'], data2['text']) similarity_cache[cache_key] = similarity if similarity >= threshold: batch_results.append({ 'type': 'misnamed_duplicate', 'file1': file1, 'file2': file2, 'chapter': f"misnamed_{data1.get('chapter_num', '?')}_vs_{data2.get('chapter_num', '?')}", 'similarity': similarity, 'preview_similarity': preview_sim }) return batch_results def enhance_duplicate_detection(results, duplicate_groups, duplicate_confidence, config, log, should_stop=None): """Additional duplicate detection - PROCESSPOOLEXECUTOR VERSION""" log("π Enhanced duplicate detection (different naming formats)...") log("β‘ PROCESSPOOLEXECUTOR ENABLED - MAXIMUM PERFORMANCE!") # Determine number of workers cpu_count = multiprocessing.cpu_count() max_workers_config = 0 try: config_path = os.path.join(os.path.dirname(__file__), 'config.json') if os.path.exists(config_path): with open(config_path, 'r', encoding='utf-8') as f: full_config = json.load(f) # Check multiple possible config locations qa_config = full_config.get('qa_scanner_config', {}) ai_hunter_config = full_config.get('ai_hunter_config', {}) # Priority: qa_scanner_config > ai_hunter_config max_workers_config = qa_config.get('max_workers', ai_hunter_config.get('ai_hunter_max_workers', 1)) except: max_workers_config = 0 if max_workers_config > 0: max_workers = min(max_workers_config, cpu_count) log(f" π₯οΈ Using {max_workers} parallel processes (configured limit)") else: max_workers = cpu_count log(f" π Using ALL {max_workers} CPU cores for enhanced detection") if cpu_count > 8: log(f" π‘ Tip: You can limit CPU cores in QA scanner settings") # Pre-compute all data log(" π Pre-computing text and preview data...") text_data = {} preview_data = {} for i, result in enumerate(results): # Text data (first 5000 chars) text = result.get('raw_text', '')[:5000] text_data[i] = { 'text': text, 'hash': hashlib.md5(text.encode()).hexdigest() if text else None, 'length': len(text), 'chapter_num': result.get('chapter_num') } # Preview data (first 1000 chars) preview = result.get('raw_text', '')[:1000].strip() preview_data[i] = { 'text': preview, 'hash': hashlib.md5(preview.encode()).hexdigest() if preview else None } # First, normalize all chapter numbers normalize_chapter_numbers(results) # PART 1: Group by normalized chapter number log(" π Checking files with same chapter numbers...") chapter_groups = {} for i, result in enumerate(results): if result.get('normalized_chapter_num') is not None: num = result['normalized_chapter_num'] if num not in chapter_groups: chapter_groups[num] = [] chapter_groups[num].append((i, result)) # Create comparison tasks for chapter groups chapter_comparisons = [] for chapter_num, group in chapter_groups.items(): if len(group) > 1: log(f" ββ Found {len(group)} files for chapter {chapter_num}") # Create all pair comparisons for this group for i in range(len(group)): for j in range(i + 1, len(group)): idx1, result1 = group[i] idx2, result2 = group[j] chapter_comparisons.append(( idx1, idx2, result1['filename'], result2['filename'], chapter_num )) # Process chapter comparisons in batches duplicates_found = [] if chapter_comparisons: log(f" π Processing {len(chapter_comparisons)} chapter comparisons...") # Prepare worker data worker_data = { 'text_data': text_data, 'similarity_threshold': config.get_threshold('similarity') } # Create batches batch_size = max(100, len(chapter_comparisons) // max_workers) batches = [] for i in range(0, len(chapter_comparisons), batch_size): batch = chapter_comparisons[i:i + batch_size] batches.append(('chapter_comparison', batch, worker_data)) # Process with ProcessPoolExecutor with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor: futures = [] for batch_args in batches: if should_stop and should_stop(): log("β Enhanced detection interrupted by user.") executor.shutdown(wait=True) return duplicates_found future = executor.submit(process_enhance_duplicate_batch, batch_args) futures.append(future) # Collect results for future in concurrent.futures.as_completed(futures): batch_results = future.result() # Process results for result in batch_results: if result['type'] == 'chapter_duplicate': # Update duplicate groups with merge_lock: merge_duplicate_groups(duplicate_groups, result['file1'], result['file2']) pair = tuple(sorted([result['file1'], result['file2']])) duplicate_confidence[pair] = max( duplicate_confidence.get(pair, 0), result['similarity'] ) duplicates_found.append(result) log(f" β DUPLICATE: {result['file1']} β {result['file2']} " f"({int(result['similarity']*100)}%)") log(f" Preview 1: {result['preview1']}...") log(f" Preview 2: {result['preview2']}...") # PART 2: Check for misnamed files log("π Checking for misnamed chapters (content vs filename mismatch)...") # Create preview-based comparison tasks preview_comparisons = [] total_files = len(results) # We need to check all pairs, but we can filter some obvious non-matches for i in range(total_files): if i % 100 == 0 and i > 0: log(f" π Creating preview comparisons: {i}/{total_files} files...") for j in range(i + 1, total_files): # Skip if: # 1. Already in same duplicate group if (results[i]['filename'] in duplicate_groups and results[j]['filename'] in duplicate_groups and duplicate_groups[results[i]['filename']] == duplicate_groups[results[j]['filename']]): continue # 2. Both have same chapter number (already checked above) if (results[i].get('normalized_chapter_num') is not None and results[j].get('normalized_chapter_num') is not None and results[i]['normalized_chapter_num'] == results[j]['normalized_chapter_num']): continue # 3. Text lengths are very different (handle None/empty texts) len1 = text_data[i]['length'] len2 = text_data[j]['length'] if len1 == 0 or len2 == 0: continue # Skip empty files len_ratio = min(len1, len2) / max(len1, len2) if len_ratio < 0.7: # Skip if lengths differ by more than 30% continue preview_comparisons.append((i, j, results[i]['filename'], results[j]['filename'])) if preview_comparisons: log(f" π Processing {len(preview_comparisons)} preview comparisons...") # Prepare worker data worker_data = { 'text_data': text_data, 'preview_data': preview_data, 'similarity_threshold': config.get_threshold('similarity'), 'preview_threshold': 0.9 # High threshold for preview matching } # Create batches batch_size = max(500, len(preview_comparisons) // (max_workers * 10)) batches = [] for i in range(0, len(preview_comparisons), batch_size): batch = preview_comparisons[i:i + batch_size] batches.append(('preview_comparison', batch, worker_data)) # Process with ProcessPoolExecutor with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor: futures = [] for batch_args in batches: if should_stop and should_stop(): log("β Enhanced detection interrupted by user.") executor.shutdown(wait=True) return duplicates_found future = executor.submit(process_enhance_duplicate_batch, batch_args) futures.append(future) # Collect results with progress completed = 0 for future in concurrent.futures.as_completed(futures): completed += 1 if completed % 10 == 0: log(f" π Preview comparison progress: {completed}/{len(futures)} batches") batch_results = future.result() # Process results for result in batch_results: if result['type'] == 'misnamed_duplicate': # Update duplicate groups with merge_lock: merge_duplicate_groups(duplicate_groups, result['file1'], result['file2']) pair = tuple(sorted([result['file1'], result['file2']])) duplicate_confidence[pair] = max( duplicate_confidence.get(pair, 0), result['similarity'] ) duplicates_found.append(result) log(f" β Found misnamed duplicate: {result['file1']} β {result['file2']} " f"({int(result['similarity']*100)}%)") log(f"β Enhanced detection complete! Found {len(duplicates_found)} duplicates") return duplicates_found def detect_duplicates(results, log, should_stop, config): """Detect duplicates using multiple strategies with enhanced methods - PERFORMANCE OPTIMIZED""" duplicate_groups = {} near_duplicate_groups = {} duplicate_confidence = defaultdict(float) total_files = len(results) dup_start_time = time.time() # Track timing for progress estimates # Initialize comparisons_done at the function level comparisons_done = 0 # Create local cached functions for this detection run @lru_cache(maxsize=10000) def compare_texts_cached(text1_hash, text2_hash, max_length=2000): """Cached text comparison""" # Find texts by hash text1, text2 = None, None for result in results: text = result.get('raw_text', '')[:max_length] text_hash = hashlib.md5(text.encode()).hexdigest() if text_hash == text1_hash: text1 = text if text_hash == text2_hash: text2 = text if text1 and text2: return calculate_similarity_ratio(text1, text2) return 0.0 # Pre-compute text hashes for caching text_hashes = {} for idx, result in enumerate(results): text = result.get('raw_text', '') text_hashes[idx] = { 'hash_2k': hashlib.md5(text[:2000].encode()).hexdigest() if len(text) >= 2000 else None, 'hash_5k': hashlib.md5(text[:5000].encode()).hexdigest() if len(text) >= 5000 else None, 'full_text': text } # Extract additional signatures for all results log("π Extracting semantic and structural signatures...") for idx, result in enumerate(results): if should_stop(): log("β Signature extraction interrupted by user.") return duplicate_groups, near_duplicate_groups, duplicate_confidence if idx % 10 == 0: progress = int((idx / total_files) * 100) log(f" π Progress: {idx}/{total_files} files ({progress}%)") text = result.get('raw_text', '') _, semantic_sig = extract_semantic_fingerprint(text) structural_sig = extract_structural_signature(text) result['semantic_sig'] = semantic_sig result['structural_sig'] = structural_sig result['normalized_text'] = normalize_text(text) # Create MinHash index if available lsh, minhashes = None, None if MINHASH_AVAILABLE and len(results) > 50: # Use MinHash for larger datasets log("π Building MinHash index for fast similarity detection...") lsh, minhashes = create_minhash_index(results, config) # 1. Hash-based detection (exact and near-exact matches) content_hashes = defaultdict(lambda: defaultdict(list)) for idx, result in enumerate(results): hashes = result['hashes'] file_info = { 'filename': result['filename'], 'idx': idx, 'chapter_num': result['chapter_num'], 'result': result } for hash_type, hash_value in hashes.items(): if hash_value: content_hashes[hash_type][hash_value].append(file_info) # Multiple levels of duplicate detection duplicate_detection_levels = [ ("exact content", 'raw', 1.0), ("normalized content", 'normalized', 0.95), ("semantic fingerprint", 'semantic', 0.85), ("structural pattern", 'structural', 0.80), ("first 1000 characters", 'first_chunk', 0.90), ("content fingerprints", 'fingerprint', 0.85), ("word frequency patterns", 'word_freq', 0.75) ] for level_name, hash_type, confidence in duplicate_detection_levels: log(f"π Checking {level_name}...") for hash_value, files in content_hashes[hash_type].items(): if len(files) > 1: for i in range(len(files)): for j in range(i + 1, len(files)): merge_duplicate_groups(duplicate_groups, files[i]['filename'], files[j]['filename']) duplicate_confidence[(files[i]['filename'], files[j]['filename'])] = max( duplicate_confidence[(files[i]['filename'], files[j]['filename'])], confidence ) log(f" ββ Found {len(files)} files with identical {level_name}") # 2. Enhanced duplicate detection for different naming formats log("π Checking for same chapters with different naming...") enhance_duplicate_detection(results, duplicate_groups, duplicate_confidence, config, log, should_stop) # 3. MinHash-based detection (if available) if lsh: log("π Performing MinHash similarity detection...") for result in results: if result['filename'] in minhashes: candidates = lsh.query(minhashes[result['filename']]) for candidate in candidates: if candidate != result['filename']: # Calculate exact Jaccard similarity jaccard = minhashes[result['filename']].jaccard(minhashes[candidate]) if jaccard >= config.get_threshold('minhash_threshold'): merge_duplicate_groups(duplicate_groups, result['filename'], candidate) duplicate_confidence[(result['filename'], candidate)] = jaccard # 4. Semantic similarity check - OPTIMIZED log("π Checking semantic similarity...") semantic_threshold = config.get_threshold('semantic') # Use MinHash candidates for semantic checking if available if lsh and config.mode != 'ai-hunter': log("π Using MinHash optimization for faster semantic checking...") checked_count = 0 # For non-AI Hunter modes, use MinHash to limit comparisons for result in results: if should_stop(): log("β Semantic check interrupted by user.") break checked_count += 1 if checked_count % 10 == 0: log(f" π MinHash semantic check: {checked_count}/{len(results)} files processed...") if result['filename'] in minhashes: candidates = lsh.query(minhashes[result['filename']]) for candidate_filename in candidates: if candidate_filename == result['filename']: continue # Find the candidate result candidate_result = next((r for r in results if r['filename'] == candidate_filename), None) if not candidate_result: continue # Skip if already in same group if (result['filename'] in duplicate_groups and candidate_filename in duplicate_groups and duplicate_groups[result['filename']] == duplicate_groups[candidate_filename]): continue sem_sim = calculate_semantic_similarity(result['semantic_sig'], candidate_result['semantic_sig']) if sem_sim >= semantic_threshold: struct_sim = calculate_structural_similarity(result['structural_sig'], candidate_result['structural_sig']) if struct_sim >= config.get_threshold('structural'): merge_duplicate_groups(duplicate_groups, result['filename'], candidate_filename) confidence = (sem_sim + struct_sim) / 2 duplicate_confidence[(result['filename'], candidate_filename)] = confidence log(f" ββ Semantic match: {result['filename']} β {candidate_filename} " f"(sem: {int(sem_sim*100)}%, struct: {int(struct_sim*100)}%)") # AI Hunter mode or fallback: check all pairs # Skip AI Hunter in quick scan mode if config.mode == 'quick-scan': log(" β‘ Skipping AI Hunter checks for quick scan mode") else: # AI Hunter mode or fallback: check all pairs if config.mode == 'ai-hunter' or not lsh: if config.mode == 'ai-hunter': log("π€ AI Hunter mode: Enhanced semantic and structural checking active") log(" β οΈ This will check ALL file pairs - may take several minutes for large datasets") total_comparisons = (len(results) * (len(results) - 1)) // 2 log(f" [DEBUG] Total comparisons to perform: {total_comparisons:,}") ai_start_time = time.time() # Use local timer for AI Hunter # Initialize last_progress HERE for AI Hunter mode last_progress = 0 # ADD THIS LINE # Use parallel processing for AI Hunter comparisons_done = parallel_ai_hunter_check(results, duplicate_groups, duplicate_confidence, config, log, should_stop) # Log AI Hunter completion stats ai_time = time.time() - ai_start_time log(f" [DEBUG] AI Hunter took {ai_time:.2f} seconds") if comparisons_done and comparisons_done > 0: log(f" [DEBUG] Comparisons/second: {int(comparisons_done/max(ai_time, 1)):,}") # AI HUNTER IS DONE - DO NOT CONTINUE TO SEQUENTIAL CODE else: # Keep the original sequential code for when there's no LSH and not in AI Hunter mode log("β οΈ No MinHash index available - checking all pairs (slower)") total_comparisons = (len(results) * (len(results) - 1)) // 2 comparisons_done = 0 last_progress = 0 # This is already here for sequential mode ai_start_time = time.time() # Use local timer # MOVE ALL THE SEQUENTIAL CODE HERE - INDENTED UNDER THIS ELSE BLOCK # Create cached AI Hunter comparison @lru_cache(maxsize=10000) def ai_hunter_check_cached(idx1, idx2): """Cached AI Hunter check""" sem_sim = calculate_semantic_similarity(results[idx1]['semantic_sig'], results[idx2]['semantic_sig']) struct_sim = calculate_structural_similarity(results[idx1]['structural_sig'], results[idx2]['structural_sig']) # Quick text check hash1 = text_hashes[idx1]['hash_2k'] hash2 = text_hashes[idx2]['hash_2k'] if hash1 and hash2: if hash1 > hash2: hash1, hash2 = hash2, hash1 text_sim = compare_texts_cached(hash1, hash2, 2000) else: text_sim = 0.0 return sem_sim, struct_sim, text_sim # Check EVERY pair of files for i in range(len(results)): if should_stop(): log("β Semantic check interrupted by user.") break for j in range(i + 1, len(results)): comparisons_done += 1 # Show progress every 5% progress = int((comparisons_done / total_comparisons) * 100) if progress >= last_progress + 5: elapsed = time.time() - ai_start_time if elapsed > 0 and comparisons_done > 0: rate = comparisons_done / elapsed remaining = (total_comparisons - comparisons_done) / rate log(f" π AI Hunter progress: {comparisons_done}/{total_comparisons} ({progress}%) - ~{int(remaining)}s remaining") else: log(f" π AI Hunter progress: {comparisons_done}/{total_comparisons} ({progress}%)") last_progress = progress # Skip if already in same group if (results[i]['filename'] in duplicate_groups and results[j]['filename'] in duplicate_groups and duplicate_groups[results[i]['filename']] == duplicate_groups[results[j]['filename']]): continue # Get cached comparison results sem_sim, struct_sim, text_sim = ai_hunter_check_cached(i, j) # For AI Hunter, use a combination approach if config.mode == 'ai-hunter': # High semantic + high structural = likely same content if sem_sim >= semantic_threshold and struct_sim >= config.get_threshold('structural'): # If text similarity is low but semantic/structural is high, it's likely a retranslation if text_sim < 0.6: # Different enough text log(f" π― AI Hunter: Found potential retranslation") log(f" Files: {results[i]['filename']} β {results[j]['filename']}") log(f" Text similarity: {int(text_sim*100)}% (low)") log(f" Semantic similarity: {int(sem_sim*100)}% (high)") log(f" Structural similarity: {int(struct_sim*100)}% (high)") merge_duplicate_groups(duplicate_groups, results[i]['filename'], results[j]['filename']) confidence = (sem_sim + struct_sim) / 2 duplicate_confidence[(results[i]['filename'], results[j]['filename'])] = confidence log(f" ββ π€ Flagged as AI retranslation variant (confidence: {int(confidence*100)}%)") else: # Normal semantic checking if sem_sim >= semantic_threshold and struct_sim >= config.get_threshold('structural'): merge_duplicate_groups(duplicate_groups, results[i]['filename'], results[j]['filename']) confidence = (sem_sim + struct_sim) / 2 duplicate_confidence[(results[i]['filename'], results[j]['filename'])] = confidence log(f" ββ Semantic match: {results[i]['filename']} β {results[j]['filename']} " f"(sem: {int(sem_sim*100)}%, struct: {int(struct_sim*100)}%)") # Clear local cache ai_hunter_check_cached.cache_clear() # THIS CODE SHOULD BE OUTSIDE ALL THE IF/ELSE BLOCKS - IT RUNS AFTER DUPLICATE DETECTION # 5. Deep similarity check (content-based) - Now uses cached function if config.mode != 'quick-scan': perform_deep_similarity_check(results, duplicate_groups, duplicate_confidence, config.get_threshold('similarity'), log, should_stop) else: log(" β‘ Skipping deep similarity check for quick scan mode") # 6. Consecutive chapter check with fuzzy matching - SKIP IN QUICK SCAN if config.mode != 'quick-scan': check_consecutive_chapters(results, duplicate_groups, duplicate_confidence, config, log, should_stop) # 7. Split chapter detection split_candidates = detect_split_chapters(results) if split_candidates: log(f"π Found {len(split_candidates)} potential split chapters") check_split_chapters(split_candidates, results, duplicate_groups, duplicate_confidence, log, should_stop) # 8. Specific pattern detection check_specific_patterns(results, duplicate_groups, duplicate_confidence, log, should_stop) # Clear local caches compare_texts_cached.cache_clear() # Summary of findings unique_groups = len(set(duplicate_groups.values())) if duplicate_groups else 0 files_with_duplicates = len(duplicate_groups) if files_with_duplicates > 0: log(f"\nπ Duplicate Detection Summary:") log(f" Found {files_with_duplicates} files with duplicates") log(f" Grouped into {unique_groups} duplicate groups") else: log(f"\nβ No duplicates found among {len(results)} files") return duplicate_groups, near_duplicate_groups, duplicate_confidence def process_deep_similarity_batch(args): """Process a batch of deep similarity comparisons with enhanced error handling""" try: batch, data = args batch_results = [] text_samples = data['text_samples'] threshold = data['threshold'] # Import what we need inside the worker with error handling try: from difflib import SequenceMatcher except ImportError as e: return [{'error': f'Import error in worker: {e}'}] # Local cache for this worker process similarity_cache = {} semantic_cache = {} for i, j, filename_i, filename_j in batch: try: # Get text samples sample_i = text_samples.get(i) sample_j = text_samples.get(j) if not sample_i or not sample_j: continue # Use hashes for similarity check with caching hash1 = sample_i['hash_5k'] hash2 = sample_j['hash_5k'] # Create cache key (ensure consistent ordering) cache_key = (min(hash1, hash2), max(hash1, hash2)) # Check cache first if cache_key in similarity_cache: similarity = similarity_cache[cache_key] else: # Check if hashes are identical if hash1 == hash2: similarity = 1.0 else: # Calculate text similarity text1 = sample_i['sample_5k'] text2 = sample_j['sample_5k'] similarity = calculate_similarity_ratio(text1, text2) # Cache the result similarity_cache[cache_key] = similarity if similarity >= threshold: batch_results.append({ 'filename1': filename_i, 'filename2': filename_j, 'similarity': similarity, 'is_variant': False, 'semantic_sim': None }) # Check for translation variants if similarity is moderate elif 0.5 <= similarity < threshold: # Check semantic similarity with caching hash1_10k = sample_i['hash_10k'] hash2_10k = sample_j['hash_10k'] # Create semantic cache key sem_cache_key = (min(hash1_10k, hash2_10k), max(hash1_10k, hash2_10k)) if sem_cache_key in semantic_cache: semantic_sim = semantic_cache[sem_cache_key] else: if hash1_10k == hash2_10k: semantic_sim = 1.0 else: text1_10k = sample_i['sample_10k'] text2_10k = sample_j['sample_10k'] semantic_sim = calculate_semantic_fingerprint_similarity(text1_10k, text2_10k) # Cache the result semantic_cache[sem_cache_key] = semantic_sim if semantic_sim >= 0.75: # High semantic similarity threshold combined_score = (similarity * 0.4 + semantic_sim * 0.6) if combined_score >= threshold: batch_results.append({ 'filename1': filename_i, 'filename2': filename_j, 'similarity': combined_score, 'is_variant': True, 'semantic_sim': semantic_sim, 'base_sim': similarity }) except Exception as e: # Log individual comparison error but continue processing import traceback batch_results.append({ 'error': f'Error comparing {filename_i} vs {filename_j}: {str(e)}\n{traceback.format_exc()[:500]}' }) continue return batch_results except Exception as e: # Return error information for debugging import traceback return [{'error': f'{type(e).__name__}: {str(e)}\nTraceback:\n{traceback.format_exc()}'}] def perform_deep_similarity_check(results, duplicate_groups, duplicate_confidence, threshold, log, should_stop): """Perform deep similarity analysis - PROCESSPOOLEXECUTOR VERSION with fallback""" log(f"π Deep content similarity analysis (threshold: {int(threshold*100)}%)...") # Pre-cache text samples for all results text_samples = {} for idx, result in enumerate(results): text = result.get('raw_text', '') if len(text) >= 500: text_samples[idx] = { 'sample_5k': text[:5000], 'sample_10k': text[:10000], 'hash_5k': hashlib.md5(text[:5000].encode()).hexdigest(), 'hash_10k': hashlib.md5(text[:10000].encode()).hexdigest() } # Determine number of workers cpu_count = multiprocessing.cpu_count() max_workers_config = 0 try: config_path = os.path.join(os.path.dirname(__file__), 'config.json') if os.path.exists(config_path): with open(config_path, 'r', encoding='utf-8') as f: full_config = json.load(f) # Check multiple possible config locations qa_config = full_config.get('qa_scanner_config', {}) deep_check_config = full_config.get('deep_check_config', {}) ai_hunter_config = full_config.get('ai_hunter_config', {}) # Priority: deep_check_config > qa_scanner_config > ai_hunter_config max_workers_config = deep_check_config.get('max_workers', qa_config.get('max_workers', ai_hunter_config.get('ai_hunter_max_workers', 1))) except: max_workers_config = 0 # Determine if we should use parallel processing use_parallel = True parallel_error = None if max_workers_config == 1: use_parallel = False log(" π Using sequential processing (configured for 1 worker)") elif max_workers_config > 0: max_workers = min(max_workers_config, cpu_count) else: max_workers = cpu_count # Create comparison tasks with smart filtering comparison_tasks = [] checked_pairs = set() for i in range(len(results)): for j in range(i + 1, len(results)): # Skip if not in text_samples (too short) if i not in text_samples or j not in text_samples: continue pair = tuple(sorted([results[i]['filename'], results[j]['filename']])) if pair in checked_pairs: continue checked_pairs.add(pair) # Skip if already in same group if (results[i]['filename'] in duplicate_groups and results[j]['filename'] in duplicate_groups and duplicate_groups[results[i]['filename']] == duplicate_groups[results[j]['filename']]): continue comparison_tasks.append((i, j, results[i]['filename'], results[j]['filename'])) total_comparisons = len(comparison_tasks) log(f" π Created {total_comparisons:,} comparison tasks") if total_comparisons == 0: log(" β No comparisons needed!") return # Try parallel processing first if use_parallel: log("β‘ PROCESSPOOLEXECUTOR ENABLED - MAXIMUM PERFORMANCE!") if max_workers_config > 0: log(f" π₯οΈ Using {max_workers} parallel processes (configured limit)") else: log(f" π Using ALL {max_workers} CPU cores - MAXIMUM PERFORMANCE!") if cpu_count > 8: log(f" π‘ Tip: You can limit CPU cores in QA scanner settings") # Progress tracking comparisons_done = 0 last_progress = 0 start_time = time.time() found_duplicates = [] # Prepare data for workers worker_data = { 'text_samples': text_samples, 'threshold': threshold } # Optimal batch size for ProcessPoolExecutor optimal_batch_size = max(1000, total_comparisons // (max_workers * 5)) optimal_batch_size = min(optimal_batch_size, 10000) batches = [] for i in range(0, len(comparison_tasks), optimal_batch_size): batch = comparison_tasks[i:i + optimal_batch_size] batches.append(batch) log(f" π¦ Split into {len(batches)} batches of ~{optimal_batch_size} comparisons each") # Prepare batch arguments batch_args = [(batch, worker_data) for batch in batches] try: # Process with ProcessPoolExecutor with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor: # Submit all batches futures = [] for args in batch_args: if should_stop(): log("β Deep similarity check interrupted by user.") executor.shutdown(wait=True) return future = executor.submit(process_deep_similarity_batch, args) futures.append(future) # Process results as they complete for completed_future in concurrent.futures.as_completed(futures): if should_stop(): log("β Deep similarity check interrupted by user.") executor.shutdown(wait=True) return try: # NO TIMEOUT - let it run as long as needed batch_results = completed_future.result() # Check for worker errors in results if batch_results and isinstance(batch_results, list): # Check if first result contains an error if batch_results and isinstance(batch_results[0], dict) and 'error' in batch_results[0]: error_msg = batch_results[0]['error'] log(f" β οΈ Worker error detected: {error_msg}") raise Exception(f"Worker error: {error_msg}") # Batch all updates updates = [] for result in batch_results: if 'error' not in result: # Skip error entries updates.append(( result['filename1'], result['filename2'], result )) # Apply all updates in one lock if updates: with merge_lock: for file1, file2, result in updates: pair = tuple(sorted([file1, file2])) merge_duplicate_groups(duplicate_groups, file1, file2) duplicate_confidence[pair] = max( duplicate_confidence.get(pair, 0), result['similarity'] ) # Store messages for logging if result.get('is_variant', False): msg = (f" ββ Translation variant detected: {file1} β {file2} " f"(base: {int(result.get('base_sim', 0)*100)}%, " f"semantic: {int(result['semantic_sim']*100)}%, " f"combined: {int(result['similarity']*100)}%)") else: msg = (f" ββ Content similarity: {file1} β {file2} " f"({int(result['similarity']*100)}%)") found_duplicates.append(msg) # Update progress comparisons_done += optimal_batch_size if comparisons_done > total_comparisons: comparisons_done = total_comparisons progress = int((comparisons_done / total_comparisons) * 100) # Update every 10% for less overhead if progress >= last_progress + 10 or progress == 100: elapsed = time.time() - start_time rate = comparisons_done / elapsed if elapsed > 0 else 0 remaining = (total_comparisons - comparisons_done) / rate if rate > 0 else 0 log(f" π Deep check progress: {comparisons_done:,}/{total_comparisons:,} " f"({progress}%) - ~{int(remaining)}s remaining - " f"Speed: {int(rate):,} comparisons/sec") # Log some found duplicates for dup_msg in found_duplicates[:5]: log(dup_msg) found_duplicates = found_duplicates[5:] last_progress = progress except Exception as e: log(f" β οΈ Error processing batch: {type(e).__name__}: {str(e)[:200]}") import traceback log(f" Debug trace: {traceback.format_exc()[:500]}") parallel_error = f"{type(e).__name__}: {str(e)[:100]}" use_parallel = False executor.shutdown(wait=False) break # If we completed successfully if use_parallel: # Final summary elapsed = time.time() - start_time log(f"β Deep similarity check complete! Processed {total_comparisons:,} comparisons in {elapsed:.1f}s") log(f" β‘ Speed: {int(total_comparisons/elapsed):,} comparisons/sec") log(f" π ProcessPoolExecutor: ENABLED") # Log remaining duplicates for dup_msg in found_duplicates[-10:]: log(dup_msg) return # Success - exit function except Exception as e: log(f" β οΈ Parallel processing failed: {type(e).__name__}: {str(e)[:200]}") parallel_error = f"{type(e).__name__}: {str(e)[:100]}" use_parallel = False # Fallback to sequential processing if not use_parallel: log(f"\n π FALLBACK: Using sequential processing") if parallel_error: log(f" Reason: {parallel_error}") log(f" This will be slower but more reliable") # Reset progress tracking for sequential mode comparisons_done = 0 last_progress = 0 start_time = time.time() found_duplicates = [] # Import what we need for sequential processing from difflib import SequenceMatcher for idx, task in enumerate(comparison_tasks): if should_stop(): log("β Deep similarity check interrupted by user.") return i, j, filename_i, filename_j = task comparisons_done += 1 # Show progress every 5% or every 100 comparisons (whichever is less frequent) progress = int((comparisons_done / total_comparisons) * 100) if (comparisons_done % max(100, total_comparisons // 20) == 0 or comparisons_done == total_comparisons): if progress >= last_progress + 5 or progress == 100: elapsed = time.time() - start_time rate = comparisons_done / elapsed if elapsed > 0 else 0 remaining = (total_comparisons - comparisons_done) / rate if rate > 0 else 0 log(f" π Sequential progress: {comparisons_done:,}/{total_comparisons:,} " f"({progress}%) - ~{int(remaining)}s remaining - " f"Speed: {int(rate):,} comparisons/sec") # Log found duplicates for dup_msg in found_duplicates[:3]: log(dup_msg) found_duplicates = found_duplicates[3:] last_progress = progress # Get text samples sample_i = text_samples.get(i) sample_j = text_samples.get(j) if not sample_i or not sample_j: continue # Calculate similarity if sample_i['hash_5k'] == sample_j['hash_5k']: similarity = 1.0 else: text1 = sample_i['sample_5k'] text2 = sample_j['sample_5k'] similarity = calculate_similarity_ratio(text1, text2) if similarity >= threshold: merge_duplicate_groups(duplicate_groups, filename_i, filename_j) pair = tuple(sorted([filename_i, filename_j])) duplicate_confidence[pair] = max( duplicate_confidence.get(pair, 0), similarity ) msg = f" ββ Content similarity: {filename_i} β {filename_j} ({int(similarity*100)}%)" found_duplicates.append(msg) elif 0.5 <= similarity < threshold: # Check semantic similarity for translation variants text1_10k = sample_i['sample_10k'] text2_10k = sample_j['sample_10k'] if sample_i['hash_10k'] == sample_j['hash_10k']: semantic_sim = 1.0 else: semantic_sim = calculate_semantic_fingerprint_similarity(text1_10k, text2_10k) if semantic_sim >= 0.75: combined_score = (similarity * 0.4 + semantic_sim * 0.6) if combined_score >= threshold: merge_duplicate_groups(duplicate_groups, filename_i, filename_j) pair = tuple(sorted([filename_i, filename_j])) duplicate_confidence[pair] = max( duplicate_confidence.get(pair, 0), combined_score ) msg = (f" ββ Translation variant detected: {filename_i} β {filename_j} " f"(base: {int(similarity*100)}%, semantic: {int(semantic_sim*100)}%, " f"combined: {int(combined_score*100)}%)") found_duplicates.append(msg) # Final summary for sequential mode elapsed = time.time() - start_time log(f"β Deep similarity check complete! Processed {total_comparisons:,} comparisons in {elapsed:.1f}s") if elapsed > 0: log(f" Speed: {int(total_comparisons/elapsed):,} comparisons/sec") log(f" Mode: Sequential (fallback)") # Log remaining duplicates for dup_msg in found_duplicates[-10:]: log(dup_msg) def check_consecutive_chapters(results, duplicate_groups, duplicate_confidence, config, log, should_stop=None): """Check for consecutive chapters with same title using fuzzy matching""" log("π Checking consecutive same-titled chapters...") # Check for stop early if should_stop and should_stop(): log("β Consecutive chapter check interrupted by user.") return # Extract chapter titles for result in results: result['chapter_title'] = extract_chapter_title(result['raw_text']) # Sort by chapter number chapter_sorted = [r for r in results if r['chapter_num'] is not None] chapter_sorted.sort(key=lambda x: x['chapter_num']) consecutive_threshold = config.get_threshold('consecutive_chapters') for i in range(len(chapter_sorted) - 1): if should_stop and should_stop(): log("β Consecutive chapter check interrupted by user.") return current = chapter_sorted[i] for j in range(i + 1, min(i + consecutive_threshold + 1, len(chapter_sorted))): next_chapter = chapter_sorted[j] # Check if chapter numbers might be the same (fuzzy match) if fuzzy_match_chapter_numbers(current['raw_text'], next_chapter['raw_text'], current['chapter_num'], next_chapter['chapter_num']): # Compare content similarity = calculate_similarity_ratio(current['raw_text'], next_chapter['raw_text']) if similarity >= config.get_threshold('similarity'): merge_duplicate_groups(duplicate_groups, current['filename'], next_chapter['filename']) pair = tuple(sorted([current['filename'], next_chapter['filename']])) duplicate_confidence[pair] = similarity log(f" ββ Fuzzy chapter match: {current['filename']} β {next_chapter['filename']} ({int(similarity*100)}%)") continue # Check same title if (current.get('chapter_title') and current['chapter_title'] == next_chapter.get('chapter_title') and abs(current['chapter_num'] - next_chapter['chapter_num']) <= consecutive_threshold): # Compare content without chapter headers text1 = re.sub(r'Chapter\s+\d+\s*:?\s*', '', current['raw_text'][:2000], flags=re.IGNORECASE) text2 = re.sub(r'Chapter\s+\d+\s*:?\s*', '', next_chapter['raw_text'][:2000], flags=re.IGNORECASE) similarity = calculate_similarity_ratio(text1, text2) if similarity >= config.get_threshold('similarity') * 0.9: # Slightly lower threshold for same title merge_duplicate_groups(duplicate_groups, current['filename'], next_chapter['filename']) pair = tuple(sorted([current['filename'], next_chapter['filename']])) duplicate_confidence[pair] = similarity log(f" ββ Same-titled chapters {current['chapter_num']} & {next_chapter['chapter_num']} " f"({int(similarity*100)}% similar)") def check_split_chapters(split_candidates, results, duplicate_groups, duplicate_confidence, log, should_stop=None): """Check if split chapters are parts of the same content Enhanced to reduce false positives from intentional author formatting """ for i, candidate in enumerate(split_candidates): if should_stop and should_stop(): log("β Split chapter check interrupted by user.") return idx = candidate['index'] indicators = candidate['indicators'] # Check next few files for j in range(1, 4): # Check up to 3 files ahead if idx + j < len(results): next_result = results[idx + j] next_text = next_result.get('raw_text', '') # Skip if next file is empty if not next_text.strip(): continue # Extract chapter numbers if present current_chapter_num = results[idx].get('chapter_num') next_chapter_num = next_result.get('chapter_num') # Strong indicator: same chapter number same_chapter_number = (current_chapter_num is not None and next_chapter_num is not None and current_chapter_num == next_chapter_num) # Check file naming pattern similarity current_filename = results[idx]['filename'] next_filename = next_result['filename'] # Look for systematic naming (e.g., file_1.html, file_2.html) naming_pattern_match = False if re.sub(r'\d+', 'X', current_filename) == re.sub(r'\d+', 'X', next_filename): # Files have same pattern with different numbers naming_pattern_match = True # Check if content flows naturally should_check_flow = False confidence_score = 0.0 if indicators['is_systematic_split'] or naming_pattern_match: # Strong file naming evidence should_check_flow = True confidence_score = 0.85 elif same_chapter_number: # Same chapter number is strong evidence should_check_flow = True confidence_score = 0.9 elif indicators['ends_mid']: # Only check flow if current ends mid-sentence next_text_stripped = next_text.strip() if next_text_stripped: # Check if next starts without capital (excluding common transition words) first_line = next_text_stripped.split('\n')[0].strip() if first_line and not re.match(r'^["γγ\(\[]', first_line): first_word = first_line.split()[0] if first_line.split() else '' transition_words = ['meanwhile', 'however', 'suddenly', 'later', 'earlier', 'elsewhere', 'afterward', 'afterwards', 'then'] if (first_word.lower() not in transition_words and first_line[0].islower()): should_check_flow = True confidence_score = 0.75 if should_check_flow: # Get text samples for flow checking text1_end = results[idx].get('raw_text', '')[-500:] text2_start = next_text[:500] # Remove any scene break markers for flow check scene_breaks = [r'[\*\s]{3,}', r'[ββοΌβ\-]{3,}', r'[_]{3,}', r'[~ο½]{3,}', r'[=]{3,}', r'[\#]{3,}'] for pattern in scene_breaks: text1_end = re.sub(pattern, '', text1_end) text2_start = re.sub(pattern, '', text2_start) # Check if content flows combined = text1_end.strip() + " " + text2_start.strip() # Count sentence endings in combined text sentence_endings = len(re.findall(r'[.!?γοΌοΌ]', combined)) # Check for incomplete dialogue incomplete_dialogue = (text1_end.count('"') + text2_start.count('"')) % 2 != 0 incomplete_dialogue_jp = (text1_end.count('γ') + text2_start.count('γ') != text1_end.count('γ') + text2_start.count('γ')) # Determine if this is a real split is_real_split = False if sentence_endings < 2: # Very few sentence endings suggests continuous text is_real_split = True confidence_score = max(confidence_score, 0.85) elif incomplete_dialogue or incomplete_dialogue_jp: is_real_split = True confidence_score = max(confidence_score, 0.8) elif same_chapter_number or indicators['is_systematic_split']: # With strong other evidence, be more lenient is_real_split = True if is_real_split: merge_duplicate_groups(duplicate_groups, current_filename, next_filename) pair = tuple(sorted([current_filename, next_filename])) duplicate_confidence[pair] = confidence_score reason = [] if same_chapter_number: reason.append(f"same chapter #{current_chapter_num}") if indicators['is_systematic_split']: reason.append("systematic file naming") if naming_pattern_match: reason.append("matching name pattern") if sentence_endings < 2: reason.append("continuous text flow") if incomplete_dialogue or incomplete_dialogue_jp: reason.append("incomplete dialogue") reason_str = ", ".join(reason) if reason else "content flow analysis" log(f" ββ Split chapter detected ({reason_str}): {current_filename} β {next_filename} " f"(confidence: {int(confidence_score*100)}%)") def check_specific_patterns(results, duplicate_groups, duplicate_confidence, log, should_stop=None): """Check for specific known duplicate patterns""" log("π Checking for known duplicate patterns...") if should_stop and should_stop(): log("β Pattern check interrupted by user.") return # Known patterns that indicate duplicates patterns = { 'chapel_scene': r"under the pretense of offering a prayer.*?visited the chapel.*?hiding while holding.*?breath.*?watching the scene", 'battle_scene': r"sword.*?clash.*?sparks.*?flew.*?metal.*?rang", 'magic_spell': r"mana.*?gathered.*?spell.*?formation.*?glowed", } pattern_matches = defaultdict(list) for i, result in enumerate(results): text_sample = result.get('preview', '') + result.get('raw_text', '')[:2000] for pattern_name, pattern in patterns.items(): if re.search(pattern, text_sample, re.IGNORECASE | re.DOTALL): pattern_matches[pattern_name].append(i) # Group files with same patterns for pattern_name, indices in pattern_matches.items(): if should_stop and should_stop(): log("β Pattern check interrupted by user.") return if len(indices) > 1: log(f" ββ Found {len(indices)} files with '{pattern_name}' pattern") for i in range(len(indices)): for j in range(i + 1, len(indices)): idx1, idx2 = indices[i], indices[j] # Verify with content similarity similarity = calculate_similarity_ratio( results[idx1].get('raw_text', '')[:3000], results[idx2].get('raw_text', '')[:3000] ) if similarity > 0.7: # Lower threshold for known patterns merge_duplicate_groups(duplicate_groups, results[idx1]['filename'], results[idx2]['filename']) pair = tuple(sorted([results[idx1]['filename'], results[idx2]['filename']])) duplicate_confidence[pair] = similarity log(f" Pattern match confirmed: {results[idx1]['filename']} β {results[idx2]['filename']}") def generate_reports(results, folder_path, duplicate_confidence, log=print, qa_settings=None): """Generate output reports with enhanced duplicate information based on settings""" if qa_settings is None: qa_settings = {'report_format': 'detailed', 'auto_save_report': True} report_format = qa_settings.get('report_format', 'detailed') auto_save = qa_settings.get('auto_save_report', True) # Create output directory output_dir = os.path.basename(folder_path.rstrip('/\\')) + "_Scan Report" output_path = os.path.join(folder_path, output_dir) os.makedirs(output_path, exist_ok=True) # Prepare confidence scores for report for result in results: result['duplicate_confidence'] = 0 for pair, confidence in duplicate_confidence.items(): if result['filename'] in pair: result['duplicate_confidence'] = max(result['duplicate_confidence'], confidence) # Common function to save all reports def save_all_reports(): # Save JSON report with open(os.path.join(output_path, "validation_results.json"), "w", encoding="utf-8") as jf: json.dump(results, jf, indent=2, ensure_ascii=False) # Save CSV report with open(os.path.join(output_path, "validation_results.csv"), "w", encoding="utf-8", newline="") as cf: writer = csv.DictWriter(cf, fieldnames=["file_index", "filename", "score", "issues", "duplicate_confidence"]) writer.writeheader() for row in results: writer.writerow({ "file_index": row["file_index"], "filename": row["filename"], "score": row["score"], "issues": "; ".join(row["issues"]), "duplicate_confidence": f"{row.get('duplicate_confidence', 0):.2f}" }) # Generate HTML report generate_html_report(results, output_path, duplicate_confidence) # Generate duplicate groups summary generate_duplicate_summary(results, output_path, duplicate_confidence) # Generate reports based on format setting if report_format == 'summary': # Summary format - only key statistics log(f"\nπ QA Scan Summary:") log(f" Total files scanned: {len(results)}") issue_count = sum(1 for r in results if r['issues']) log(f" Files with issues: {issue_count}") # Count by issue type issue_types = {} for result in results: for issue in result['issues']: issue_type = issue.split('_')[0] issue_types[issue_type] = issue_types.get(issue_type, 0) + 1 log(f"\n Issues by type:") for issue_type, count in sorted(issue_types.items(), key=lambda x: x[1], reverse=True): log(f" - {issue_type}: {count}") # Save minimal summary file if auto-save enabled if auto_save: summary_file = os.path.join(output_path, "scan_summary.txt") with open(summary_file, 'w', encoding='utf-8') as f: f.write(f"QA Scan Summary\n") f.write(f"===============\n\n") f.write(f"Total files scanned: {len(results)}\n") f.write(f"Files with issues: {issue_count}\n\n") f.write(f"Issues by type:\n") for issue_type, count in sorted(issue_types.items(), key=lambda x: x[1], reverse=True): f.write(f" - {issue_type}: {count}\n") log(f"\nπ Summary saved to: {output_path}") elif report_format == 'verbose': # Verbose format - include everything including raw text samples if auto_save: # Save detailed JSON with all data verbose_results = [] for result in results.copy(): verbose_result = result.copy() # Include first 1000 chars of raw text in verbose mode if 'raw_text' in result: verbose_result['text_sample'] = result['raw_text'][:1000] verbose_results.append(verbose_result) with open(os.path.join(output_path, "validation_results_verbose.json"), "w", encoding="utf-8") as jf: json.dump(verbose_results, jf, indent=2, ensure_ascii=False) # Generate detailed text report with open(os.path.join(output_path, "detailed_report.txt"), "w", encoding="utf-8") as tf: tf.write("DETAILED QA SCAN REPORT\n") tf.write("=" * 80 + "\n\n") for result in results: tf.write(f"File: {result['filename']}\n") tf.write(f"Chapter: {result.get('chapter_num', 'Unknown')}\n") tf.write(f"Issues: {len(result['issues'])}\n") if result['issues']: for issue in result['issues']: tf.write(f" - {issue}\n") tf.write(f"Duplicate Confidence: {result.get('duplicate_confidence', 0):.2f}\n") tf.write(f"Preview: {result.get('preview', '')[:200]}...\n") tf.write("-" * 80 + "\n\n") # All existing reports (JSON, CSV, HTML) save_all_reports() else: # detailed (default) # Current behavior - standard reports if auto_save: save_all_reports() else: log(f"\nβ Scan complete! Reports not saved (auto-save disabled)") log(f"\nβ Scan complete!") if auto_save: log(f"π Reports saved to: {output_path}") def generate_duplicate_summary(results, output_path, duplicate_confidence): """Generate a summary of duplicate groups""" # Collect duplicate groups groups = defaultdict(list) for result in results: for issue in result.get('issues', []): if issue.startswith('DUPLICATE:'): # Extract group info if 'part_of_' in issue: group_id = issue.split('part_of_')[1].split('_')[0] groups[f"group_{group_id}"].append(result['filename']) elif 'exact_or_near_copy_of_' in issue: other = issue.split('exact_or_near_copy_of_')[1] groups[f"pair_{result['filename']}_{other}"].append(result['filename']) groups[f"pair_{result['filename']}_{other}"].append(other) # Create summary summary = { 'total_files': len(results), 'files_with_duplicates': sum(1 for r in results if any('DUPLICATE' in i for i in r.get('issues', []))), 'duplicate_groups': len(groups), 'groups': {} } for group_name, files in groups.items(): unique_files = list(set(files)) confidences = [] for i in range(len(unique_files)): for j in range(i + 1, len(unique_files)): pair = tuple(sorted([unique_files[i], unique_files[j]])) if pair in duplicate_confidence: confidences.append(duplicate_confidence[pair]) summary['groups'][group_name] = { 'files': unique_files, 'count': len(unique_files), 'avg_confidence': sum(confidences) / len(confidences) if confidences else 0 } with open(os.path.join(output_path, "duplicate_summary.json"), "w", encoding="utf-8") as f: json.dump(summary, f, indent=2, ensure_ascii=False) def generate_html_report(results, output_path, duplicate_confidence): """Generate enhanced HTML report with duplicate confidence scores""" issue_counts = {} for r in results: for issue in r['issues']: issue_type = issue.split(':')[0] if ':' in issue else issue.split('_')[0] issue_counts[issue_type] = issue_counts.get(issue_type, 0) + 1 html = f"""
Total Files Scanned: {len(results)}
Files with Issues: {sum(1 for r in results if r['issues'])}
Clean Files: {sum(1 for r in results if not r['issues'])}
""" if issue_counts: html += "| Index | Filename | Issues | Confidence | Preview |
|---|---|---|---|---|
| {row['file_index']} | {link} | {issues_str} | {confidence_str} | {preview_escaped} |
contains block elements: {[el.name for el in block_elements[:3]]}") # Check for list items outside of lists all_li = soup_strict.find_all('li') for li in all_li: parent = li.parent if parent and parent.name not in ['ul', 'ol']: invalid_nesting.append(f"