Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import spaces | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer | |
| from transformers.image_utils import load_image | |
| from threading import Thread | |
| import time | |
| import torch | |
| from PIL import Image | |
| import uuid | |
| import io | |
| import os | |
| # Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ] | |
| MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
| processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| # Supported media extensions | |
| image_extensions = Image.registered_extensions() | |
| video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp") | |
| def identify_and_save_blob(blob_path): | |
| """Identifies if the blob is an image or video and saves it accordingly.""" | |
| try: | |
| with open(blob_path, 'rb') as file: | |
| blob_content = file.read() | |
| # Try to identify if it's an image | |
| try: | |
| Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image | |
| extension = ".png" # Default to PNG for saving | |
| media_type = "image" | |
| except (IOError, SyntaxError): | |
| # If it's not a valid image, assume it's a video | |
| extension = ".mp4" # Default to MP4 for saving | |
| media_type = "video" | |
| # Create a unique filename | |
| filename = f"temp_{uuid.uuid4()}_media{extension}" | |
| with open(filename, "wb") as f: | |
| f.write(blob_content) | |
| return filename, media_type | |
| except FileNotFoundError: | |
| raise ValueError(f"The file {blob_path} was not found.") | |
| except Exception as e: | |
| raise ValueError(f"An error occurred while processing the file: {e}") | |
| def process_vision_info(messages): | |
| """Processes vision inputs (images and videos) from messages.""" | |
| image_inputs = [] | |
| video_inputs = [] | |
| for message in messages: | |
| for content in message["content"]: | |
| if content["type"] == "image": | |
| image_inputs.append(load_image(content["image"])) | |
| elif content["type"] == "video": | |
| video_inputs.append(content["video"]) | |
| return image_inputs, video_inputs | |
| def model_inference(input_dict, history): | |
| text = input_dict["text"] | |
| files = input_dict["files"] | |
| # Process media files (images or videos) | |
| media_paths = [] | |
| media_types = [] | |
| for file in files: | |
| if file.endswith(tuple([i for i, f in image_extensions.items()])): | |
| media_type = "image" | |
| elif file.endswith(video_extensions): | |
| media_type = "video" | |
| else: | |
| try: | |
| file, media_type = identify_and_save_blob(file) | |
| except Exception as e: | |
| gr.Error(f"Unsupported media type: {e}") | |
| return | |
| media_paths.append(file) | |
| media_types.append(media_type) | |
| # Validate input | |
| if text == "" and not media_paths: | |
| gr.Error("Please input a query and optionally image(s) or video(s).") | |
| return | |
| if text == "" and media_paths: | |
| gr.Error("Please input a text query along with the image(s) or video(s).") | |
| return | |
| # Prepare messages for the model | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| *[{"type": media_type, media_type: media_path} for media_path, media_type in zip(media_paths, media_types)], | |
| {"type": "text", "text": text}, | |
| ], | |
| } | |
| ] | |
| # Apply chat template and process inputs | |
| prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| # Process vision inputs (images and videos) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| # Ensure video_inputs is not empty | |
| if not video_inputs: | |
| video_inputs = None | |
| inputs = processor( | |
| text=[prompt], | |
| images=image_inputs if image_inputs else None, | |
| videos=video_inputs if video_inputs else None, | |
| return_tensors="pt", | |
| padding=True, | |
| ).to("cuda") | |
| # Set up streamer for real-time output | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
| # Start generation in a separate thread | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| # Stream the output | |
| buffer = "" | |
| yield "Thinking..." | |
| for new_text in streamer: | |
| buffer += new_text | |
| # Remove <|im_end|> or similar tokens from the output | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| # Example inputs | |
| examples = [ | |
| [{"text": "Describe the video.", "files": ["examples/demo.mp4"]}], | |
| [{"text": "Extract JSON from the image", "files": ["example_images/document.jpg"]}], | |
| [{"text": "summarize the letter", "files": ["examples/1.png"]}], | |
| [{"text": "Describe the photo", "files": ["examples/3.png"]}], | |
| [{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], | |
| [{"text": "Summarize the full image in detail", "files": ["examples/2.jpg"]}], | |
| [{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], | |
| [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], | |
| [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], | |
| [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], | |
| [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | |
| ] | |
| demo = gr.ChatInterface( | |
| fn=model_inference, | |
| description="# **Multimodal OCR**", | |
| examples=examples, | |
| textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"), | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| cache_examples=False, | |
| ) | |
| demo.launch(debug=True, share=True) |