Shivamsinghtomar78 commited on
Commit
0a96858
·
verified ·
1 Parent(s): 762fcbe

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +277 -0
app.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from langchain_google_genai import ChatGoogleGenerativeAI
3
+ from langchain_core.messages import SystemMessage, HumanMessage
4
+ from langchain_core.output_parsers import PydanticOutputParser
5
+ from langchain_core.prompts import PromptTemplate
6
+ from langchain.chains import LLMChain
7
+ from pydantic import BaseModel, Field
8
+ from typing import List
9
+ from dotenv import load_dotenv
10
+ import os
11
+ import time
12
+ from datetime import datetime
13
+ import PyPDF2
14
+ from fpdf import FPDF
15
+ from docx import Document
16
+ import io
17
+ from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
18
+ from langchain_community.vectorstores import FAISS
19
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
20
+
21
+
22
+ load_dotenv()
23
+ api_key = os.getenv("GOOGLE_API_KEY")
24
+
25
+ llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro", google_api_key=api_key)
26
+
27
+ class KeyPoint(BaseModel):
28
+ point: str = Field(description="A key point extracted from the document.")
29
+
30
+ class Summary(BaseModel):
31
+ summary: str = Field(description="A brief summary of the document content.")
32
+
33
+ class DocumentAnalysis(BaseModel):
34
+ key_points: List[KeyPoint] = Field(description="List of key points from the document.")
35
+ summary: Summary = Field(description="Summary of the document.")
36
+
37
+ parser = PydanticOutputParser(pydantic_object=DocumentAnalysis)
38
+
39
+ prompt_template = """
40
+ Analyze the following text and extract key points and a summary.
41
+ {format_instructions}
42
+ Text: {text}
43
+ """
44
+ prompt = PromptTemplate(
45
+ template=prompt_template,
46
+ input_variables=["text"],
47
+ partial_variables={"format_instructions": parser.get_format_instructions()}
48
+ )
49
+
50
+ chain = LLMChain(llm=llm, prompt=prompt, output_parser=parser)
51
+
52
+ def analyze_text_structured(text):
53
+ output = chain.run(text=text)
54
+ return output
55
+
56
+
57
+ def extract_text_from_pdf(pdf_file):
58
+ pdf_reader = PyPDF2.PdfReader(pdf_file)
59
+ text = ""
60
+ for page in pdf_reader.pages:
61
+ text += page.extract_text()
62
+ return text
63
+
64
+
65
+ def json_to_text(analysis):
66
+ text_output = "=== Summary ===\n" + f"{analysis.summary.summary}\n\n"
67
+ text_output += "=== Key Points ===\n"
68
+ for i, key_point in enumerate(analysis.key_points, start=1):
69
+ text_output += f"{i}. {key_point.point}\n"
70
+ return text_output
71
+
72
+ def create_pdf_report(analysis):
73
+ pdf = FPDF()
74
+ pdf.add_page()
75
+ pdf.set_font('Helvetica', '', 12)
76
+ pdf.cell(200, 10, txt="PDF Analysis Report", ln=True, align='C')
77
+ pdf.cell(200, 10, txt=f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
78
+ clean_text = json_to_text(analysis)
79
+ pdf.multi_cell(0, 10, txt=clean_text)
80
+ return pdf.output(dest='S')
81
+
82
+ def create_word_report(analysis):
83
+ doc = Document()
84
+ doc.add_heading('PDF Analysis Report', 0)
85
+ doc.add_paragraph(f'Generated on: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')
86
+ clean_text = json_to_text(analysis)
87
+ doc.add_heading('Analysis', level=1)
88
+ doc.add_paragraph(clean_text)
89
+ docx_bytes = io.BytesIO()
90
+ doc.save(docx_bytes)
91
+ docx_bytes.seek(0)
92
+ return docx_bytes.getvalue()
93
+
94
+ st.set_page_config(page_title="Chat With PDF", page_icon="😒")
95
+
96
+
97
+ def local_css():
98
+ st.markdown("""
99
+ <style>
100
+ @import url('https://fonts.googleapis.com/css2?family=Montserrat:wght@400;700&family=Orbitron:wght@400;700&display=swap');
101
+ body {
102
+ font-family: 'Montserrat', sans-serif;
103
+ background: linear-gradient(135deg, #0A0A0A 0%, #1A1A1A 100%);
104
+ color: #FFFFFF;
105
+ }
106
+ h1, h2, h3 { font-family: 'Orbitron', sans-serif; }
107
+ .main-header {
108
+ position: fixed;
109
+ top: 0;
110
+ width: 100%;
111
+ text-align: center;
112
+ padding: 1.5rem;
113
+ background: rgba(0, 0, 0, 0.8);
114
+ border-bottom: 2px solid #00FFFF;
115
+ box-shadow: 0 0 15px #00FFFF;
116
+ animation: slideInLeft 0.5s ease-in;
117
+ z-index: 1000;
118
+ }
119
+ .flag-stripe {
120
+ height: 6px;
121
+ background: linear-gradient(90deg, #FF00FF 33%, #00FFFF 66%, #00FF00 100%);
122
+ animation: slideInLeft 0.5s ease-in;
123
+ }
124
+ .stTextInput > div > input {
125
+ border-radius: 20px;
126
+ padding: 0.8rem 2rem;
127
+ background: rgba(0, 0, 0, 0.7);
128
+ border: 2px solid #00FFFF;
129
+ color: #FFFFFF;
130
+ transition: all 0.3s ease;
131
+ }
132
+ .stTextInput > div > input:focus {
133
+ border-color: #FF00FF;
134
+ box-shadow: 0 0 15px #FF00FF;
135
+ }
136
+ .stButton > button {
137
+ border-radius: 20px;
138
+ padding: 0.6rem 1.5rem;
139
+ background: linear-gradient(135deg, #00FFFF, #FF00FF);
140
+ color: #000000;
141
+ border: none;
142
+ font-weight: bold;
143
+ text-transform: uppercase;
144
+ box-shadow: 0 0 10px #00FFFF;
145
+ transition: all 0.3s ease;
146
+ }
147
+ .stButton > button:hover {
148
+ transform: scale(1.05);
149
+ box-shadow: 0 0 20px #FF00FF;
150
+ }
151
+ .card {
152
+ background: rgba(255, 255, 255, 0.1);
153
+ backdrop-filter: blur(10px);
154
+ border-radius: 15px;
155
+ border: 1px solid rgba(0, 255, 255, 0.3);
156
+ padding: 1.5rem;
157
+ margin: 1rem 0;
158
+ transition: all 0.3s ease;
159
+ }
160
+ .card:hover {
161
+ transform: translateY(-5px);
162
+ box-shadow: 0 0 20px #FF00FF;
163
+ }
164
+ .footer {
165
+ position: fixed;
166
+ bottom: 0;
167
+ width: 100%;
168
+ background: rgba(0, 0, 0, 0.9);
169
+ padding: 1rem;
170
+ text-align: center;
171
+ border-top: 2px solid #00FFFF;
172
+ animation: fadeIn 0.5s ease-in;
173
+ }
174
+ @keyframes fadeIn { from { opacity: 0; } to { opacity: 1; } }
175
+ @keyframes slideInLeft { from { transform: translateX(-100%); } to { transform: translateX(0); } }
176
+ </style>
177
+ """, unsafe_allow_html=True)
178
+
179
+ local_css()
180
+
181
+ if "current_file" not in st.session_state:
182
+ st.session_state.current_file = None
183
+ if "pdf_summary" not in st.session_state:
184
+ st.session_state.pdf_summary = None
185
+ if "analysis_time" not in st.session_state:
186
+ st.session_state.analysis_time = 0
187
+ if "pdf_report" not in st.session_state:
188
+ st.session_state.pdf_report = None
189
+ if "word_report" not in st.session_state:
190
+ st.session_state.word_report = None
191
+ if "vectorstore" not in st.session_state:
192
+ st.session_state.vectorstore = None
193
+ if "messages" not in st.session_state:
194
+ st.session_state.messages = []
195
+
196
+
197
+ st.markdown('<div class="main-header">', unsafe_allow_html=True)
198
+ st.markdown('<div class="flag-stripe"></div>', unsafe_allow_html=True)
199
+ st.title("😒 Chat With PDF")
200
+ st.caption("Your AI-powered Document Analyzer")
201
+ st.markdown('</div>', unsafe_allow_html=True)
202
+
203
+ st.markdown('<div class="card animate-fadeIn">', unsafe_allow_html=True)
204
+ uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
205
+ if uploaded_file is not None:
206
+ if st.session_state.current_file != uploaded_file.name:
207
+ st.session_state.current_file = uploaded_file.name
208
+ st.session_state.pdf_summary = None
209
+ st.session_state.pdf_report = None
210
+ st.session_state.word_report = None
211
+ if "vectorstore" in st.session_state:
212
+ del st.session_state.vectorstore
213
+ if "messages" in st.session_state:
214
+ st.session_state.messages = []
215
+ text = extract_text_from_pdf(uploaded_file)
216
+ if st.button("Analyze Text"):
217
+ start_time = time.time()
218
+ with st.spinner("Analyzing..."):
219
+ analysis = analyze_text_structured(text)
220
+ st.session_state.pdf_summary = analysis
221
+
222
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
223
+ chunks = text_splitter.split_text(text)
224
+ embeddings = HuggingFaceInferenceAPIEmbeddings(
225
+ pi_key=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
226
+ model_name="BAAI/bge-small-en-v1.5"
227
+ )
228
+ st.session_state.vectorstore = FAISS.from_texts(chunks, embeddings)
229
+
230
+ st.session_state.pdf_report = create_pdf_report(analysis)
231
+ st.session_state.word_report = create_word_report(analysis)
232
+ end_time = time.time()
233
+ st.session_state.analysis_time = end_time - start_time
234
+ st.subheader("Analysis Results")
235
+ st.text(json_to_text(analysis))
236
+ st.download_button(
237
+ label="Download PDF Report",
238
+ data=st.session_state.pdf_report,
239
+ file_name="analysis_report.pdf",
240
+ mime="application/pdf"
241
+ )
242
+ st.download_button(
243
+ label="Download Word Report",
244
+ data=st.session_state.word_report,
245
+ file_name="analysis_report.docx",
246
+ mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
247
+ )
248
+ st.markdown('</div>', unsafe_allow_html=True)
249
+
250
+ if "vectorstore" in st.session_state:
251
+ st.subheader("Chat with the Document")
252
+ for message in st.session_state.messages:
253
+ with st.chat_message(message["role"]):
254
+ st.markdown(message["content"])
255
+
256
+ if prompt := st.chat_input("Ask a question about the document"):
257
+ st.session_state.messages.append({"role": "user", "content": prompt})
258
+ with st.chat_message("user"):
259
+ st.markdown(prompt)
260
+
261
+ with st.chat_message("assistant"):
262
+ with st.spinner("Thinking..."):
263
+
264
+ docs = st.session_state.vectorstore.similarity_search(prompt, k=3)
265
+ context = "\n".join([doc.page_content for doc in docs])
266
+
267
+ messages = [
268
+ SystemMessage(content="You are a assistant. Answer the question based on the provided document context."),
269
+ HumanMessage(content=f"Context: {context}\n\nQuestion: {prompt}")
270
+ ]
271
+
272
+ response = llm.invoke(messages)
273
+ st.markdown(response.content)
274
+ st.session_state.messages.append({"role": "assistant", "content": response.content})
275
+
276
+
277
+ st.markdown(f'<div class="footer">Analysis Time: {st.session_state.analysis_time:.1f}s | Powered by Google Generative AI</div>', unsafe_allow_html=True)