Spaces:
Runtime error
Runtime error
Update composable_stable_diffusion_pipeline.py
Browse files
composable_stable_diffusion_pipeline.py
CHANGED
|
@@ -15,8 +15,60 @@ from diffusers.pipeline_utils import DiffusionPipeline
|
|
| 15 |
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
| 16 |
from safety_checker import StableDiffusionSafetyChecker
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def __init__(
|
| 21 |
self,
|
| 22 |
vae: AutoencoderKL,
|
|
@@ -39,6 +91,33 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 39 |
feature_extractor=feature_extractor,
|
| 40 |
)
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
@torch.no_grad()
|
| 43 |
def __call__(
|
| 44 |
self,
|
|
@@ -49,9 +128,56 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 49 |
guidance_scale: Optional[float] = 7.5,
|
| 50 |
eta: Optional[float] = 0.0,
|
| 51 |
generator: Optional[torch.Generator] = None,
|
|
|
|
| 52 |
output_type: Optional[str] = "pil",
|
|
|
|
|
|
|
| 53 |
**kwargs,
|
| 54 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
if "torch_device" in kwargs:
|
| 56 |
device = kwargs.pop("torch_device")
|
| 57 |
warnings.warn(
|
|
@@ -76,7 +202,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 76 |
|
| 77 |
if '|' in prompt:
|
| 78 |
prompt = [x.strip() for x in prompt.split('|')]
|
| 79 |
-
print(prompt)
|
| 80 |
|
| 81 |
# get prompt text embeddings
|
| 82 |
text_input = self.tokenizer(
|
|
@@ -88,6 +214,38 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 88 |
)
|
| 89 |
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 92 |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 93 |
# corresponds to doing no classifier free guidance.
|
|
@@ -95,22 +253,40 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 95 |
# get unconditional embeddings for classifier free guidance
|
| 96 |
if do_classifier_free_guidance:
|
| 97 |
max_length = text_input.input_ids.shape[-1]
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
# to avoid doing two forward passes
|
| 106 |
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 107 |
-
|
| 108 |
-
# get the intial random noise
|
| 109 |
-
latents = torch.randn(
|
| 110 |
-
(batch_size, self.unet.in_channels, height // 8, width // 8),
|
| 111 |
-
generator=generator,
|
| 112 |
-
device=self.device,
|
| 113 |
-
)
|
| 114 |
|
| 115 |
# set timesteps
|
| 116 |
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
|
@@ -133,31 +309,38 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 133 |
if accepts_eta:
|
| 134 |
extra_step_kwargs["eta"] = eta
|
| 135 |
|
| 136 |
-
for i, t in
|
| 137 |
# expand the latents if we are doing classifier free guidance
|
| 138 |
latent_model_input = torch.cat([latents] * text_embeddings.shape[0]) if do_classifier_free_guidance else latents
|
| 139 |
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
| 140 |
sigma = self.scheduler.sigmas[i]
|
|
|
|
| 141 |
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
|
| 142 |
|
|
|
|
|
|
|
| 143 |
# predict the noise residual
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
# perform guidance
|
| 147 |
if do_classifier_free_guidance:
|
| 148 |
-
|
| 149 |
-
|
| 150 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 151 |
|
| 152 |
# compute the previous noisy sample x_t -> x_t-1
|
| 153 |
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
| 154 |
-
latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs)
|
| 155 |
else:
|
| 156 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)
|
| 157 |
|
| 158 |
# scale and decode the image latents with vae
|
| 159 |
latents = 1 / 0.18215 * latents
|
| 160 |
-
image = self.vae.decode(latents)
|
| 161 |
|
| 162 |
image = (image / 2 + 0.5).clamp(0, 1)
|
| 163 |
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
@@ -169,4 +352,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 169 |
if output_type == "pil":
|
| 170 |
image = self.numpy_to_pil(image)
|
| 171 |
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
| 16 |
from safety_checker import StableDiffusionSafetyChecker
|
| 17 |
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
from typing import List, Union
|
| 20 |
+
|
| 21 |
+
import numpy as np
|
| 22 |
+
|
| 23 |
+
import PIL
|
| 24 |
+
|
| 25 |
+
from diffusers.utils import BaseOutput
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
@dataclass
|
| 29 |
+
class StableDiffusionPipelineOutput(BaseOutput):
|
| 30 |
+
"""
|
| 31 |
+
Output class for Stable Diffusion pipelines.
|
| 32 |
+
Args:
|
| 33 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
| 34 |
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
| 35 |
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
| 36 |
+
nsfw_content_detected (`List[bool]`)
|
| 37 |
+
List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 38 |
+
(nsfw) content.
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
| 42 |
+
nsfw_content_detected: List[bool]
|
| 43 |
|
| 44 |
class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
| 45 |
+
r"""
|
| 46 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
| 47 |
+
|
| 48 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 49 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
vae ([`AutoencoderKL`]):
|
| 53 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 54 |
+
text_encoder ([`CLIPTextModel`]):
|
| 55 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
| 56 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
| 57 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
| 58 |
+
tokenizer (`CLIPTokenizer`):
|
| 59 |
+
Tokenizer of class
|
| 60 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 61 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
| 62 |
+
scheduler ([`SchedulerMixin`]):
|
| 63 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
| 64 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
| 65 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
| 66 |
+
Classification module that estimates whether generated images could be considered offsensive or harmful.
|
| 67 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
| 68 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
| 69 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
def __init__(
|
| 73 |
self,
|
| 74 |
vae: AutoencoderKL,
|
|
|
|
| 91 |
feature_extractor=feature_extractor,
|
| 92 |
)
|
| 93 |
|
| 94 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
| 95 |
+
r"""
|
| 96 |
+
Enable sliced attention computation.
|
| 97 |
+
|
| 98 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
| 99 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
| 103 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
| 104 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
| 105 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
| 106 |
+
"""
|
| 107 |
+
if slice_size == "auto":
|
| 108 |
+
# half the attention head size is usually a good trade-off between
|
| 109 |
+
# speed and memory
|
| 110 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
| 111 |
+
self.unet.set_attention_slice(slice_size)
|
| 112 |
+
|
| 113 |
+
def disable_attention_slicing(self):
|
| 114 |
+
r"""
|
| 115 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
| 116 |
+
back to computing attention in one step.
|
| 117 |
+
"""
|
| 118 |
+
# set slice_size = `None` to disable `attention slicing`
|
| 119 |
+
self.enable_attention_slicing(None)
|
| 120 |
+
|
| 121 |
@torch.no_grad()
|
| 122 |
def __call__(
|
| 123 |
self,
|
|
|
|
| 128 |
guidance_scale: Optional[float] = 7.5,
|
| 129 |
eta: Optional[float] = 0.0,
|
| 130 |
generator: Optional[torch.Generator] = None,
|
| 131 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 132 |
output_type: Optional[str] = "pil",
|
| 133 |
+
return_dict: bool = True,
|
| 134 |
+
weights: Optional[str] = "",
|
| 135 |
**kwargs,
|
| 136 |
):
|
| 137 |
+
r"""
|
| 138 |
+
Function invoked when calling the pipeline for generation.
|
| 139 |
+
|
| 140 |
+
Args:
|
| 141 |
+
prompt (`str` or `List[str]`):
|
| 142 |
+
The prompt or prompts to guide the image generation.
|
| 143 |
+
height (`int`, *optional*, defaults to 512):
|
| 144 |
+
The height in pixels of the generated image.
|
| 145 |
+
width (`int`, *optional*, defaults to 512):
|
| 146 |
+
The width in pixels of the generated image.
|
| 147 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 148 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 149 |
+
expense of slower inference.
|
| 150 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 151 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 152 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 153 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 154 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 155 |
+
usually at the expense of lower image quality.
|
| 156 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 157 |
+
Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 158 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 159 |
+
generator (`torch.Generator`, *optional*):
|
| 160 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
| 161 |
+
deterministic.
|
| 162 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 163 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 164 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 165 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 166 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 167 |
+
The output format of the generate image. Choose between
|
| 168 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
|
| 169 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 170 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 171 |
+
plain tuple.
|
| 172 |
+
|
| 173 |
+
Returns:
|
| 174 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 175 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 176 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 177 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 178 |
+
(nsfw) content, according to the `safety_checker`.
|
| 179 |
+
"""
|
| 180 |
+
|
| 181 |
if "torch_device" in kwargs:
|
| 182 |
device = kwargs.pop("torch_device")
|
| 183 |
warnings.warn(
|
|
|
|
| 202 |
|
| 203 |
if '|' in prompt:
|
| 204 |
prompt = [x.strip() for x in prompt.split('|')]
|
| 205 |
+
print(f"composing {prompt}...")
|
| 206 |
|
| 207 |
# get prompt text embeddings
|
| 208 |
text_input = self.tokenizer(
|
|
|
|
| 214 |
)
|
| 215 |
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
| 216 |
|
| 217 |
+
if not weights:
|
| 218 |
+
# specify weights for prompts (excluding the unconditional score)
|
| 219 |
+
print('using equal weights for all prompts...')
|
| 220 |
+
pos_weights = torch.tensor([1 / (text_embeddings.shape[0] - 1)] * (text_embeddings.shape[0] - 1),
|
| 221 |
+
device=self.device).reshape(-1, 1, 1, 1)
|
| 222 |
+
neg_weights = torch.tensor([1.], device=self.device).reshape(-1, 1, 1, 1)
|
| 223 |
+
mask = torch.tensor([False] + [True] * pos_weights.shape[0], dtype=torch.bool)
|
| 224 |
+
else:
|
| 225 |
+
# set prompt weight for each
|
| 226 |
+
num_prompts = len(prompt) if isinstance(prompt, list) else 1
|
| 227 |
+
weights = [float(w.strip()) for w in weights.split("|")]
|
| 228 |
+
if len(weights) < num_prompts:
|
| 229 |
+
weights.append(1.)
|
| 230 |
+
weights = torch.tensor(weights, device=self.device)
|
| 231 |
+
assert len(weights) == text_embeddings.shape[0], "weights specified are not equal to the number of prompts"
|
| 232 |
+
pos_weights = []
|
| 233 |
+
neg_weights = []
|
| 234 |
+
mask = [] # first one is unconditional score
|
| 235 |
+
for w in weights:
|
| 236 |
+
if w > 0:
|
| 237 |
+
pos_weights.append(w)
|
| 238 |
+
mask.append(True)
|
| 239 |
+
else:
|
| 240 |
+
neg_weights.append(abs(w))
|
| 241 |
+
mask.append(False)
|
| 242 |
+
# normalize the weights
|
| 243 |
+
pos_weights = torch.tensor(pos_weights, device=self.device).reshape(-1, 1, 1, 1)
|
| 244 |
+
pos_weights = pos_weights / pos_weights.sum()
|
| 245 |
+
neg_weights = torch.tensor(neg_weights, device=self.device).reshape(-1, 1, 1, 1)
|
| 246 |
+
neg_weights = neg_weights / neg_weights.sum()
|
| 247 |
+
mask = torch.tensor(mask, device=self.device, dtype=torch.bool)
|
| 248 |
+
|
| 249 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 250 |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 251 |
# corresponds to doing no classifier free guidance.
|
|
|
|
| 253 |
# get unconditional embeddings for classifier free guidance
|
| 254 |
if do_classifier_free_guidance:
|
| 255 |
max_length = text_input.input_ids.shape[-1]
|
| 256 |
+
|
| 257 |
+
if torch.all(mask):
|
| 258 |
+
# no negative prompts, so we use empty string as the negative prompt
|
| 259 |
+
uncond_input = self.tokenizer(
|
| 260 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
| 261 |
+
)
|
| 262 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
| 263 |
+
|
| 264 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 265 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 266 |
+
# to avoid doing two forward passes
|
| 267 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 268 |
+
|
| 269 |
+
# update negative weights
|
| 270 |
+
neg_weights = torch.tensor([1.], device=self.device)
|
| 271 |
+
mask = torch.tensor([False] + mask.detach().tolist(), device=self.device, dtype=torch.bool)
|
| 272 |
+
|
| 273 |
+
# get the initial random noise unless the user supplied it
|
| 274 |
+
|
| 275 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
| 276 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
| 277 |
+
# However this currently doesn't work in `mps`.
|
| 278 |
+
latents_device = "cpu" if self.device.type == "mps" else self.device
|
| 279 |
+
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
|
| 280 |
+
if latents is None:
|
| 281 |
+
latents = torch.randn(
|
| 282 |
+
latents_shape,
|
| 283 |
+
generator=generator,
|
| 284 |
+
device=latents_device,
|
| 285 |
)
|
| 286 |
+
else:
|
| 287 |
+
if latents.shape != latents_shape:
|
| 288 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
| 289 |
+
latents = latents.to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
# set timesteps
|
| 292 |
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
|
|
|
| 309 |
if accepts_eta:
|
| 310 |
extra_step_kwargs["eta"] = eta
|
| 311 |
|
| 312 |
+
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
| 313 |
# expand the latents if we are doing classifier free guidance
|
| 314 |
latent_model_input = torch.cat([latents] * text_embeddings.shape[0]) if do_classifier_free_guidance else latents
|
| 315 |
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
| 316 |
sigma = self.scheduler.sigmas[i]
|
| 317 |
+
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
|
| 318 |
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
|
| 319 |
|
| 320 |
+
# reduce memory by predicting each score sequentially
|
| 321 |
+
noise_preds = []
|
| 322 |
# predict the noise residual
|
| 323 |
+
for latent_in, text_embedding_in in zip(
|
| 324 |
+
torch.chunk(latent_model_input, chunks=latent_model_input.shape[0], dim=0),
|
| 325 |
+
torch.chunk(text_embeddings, chunks=text_embeddings.shape[0], dim=0)):
|
| 326 |
+
noise_preds.append(self.unet(latent_in, t, encoder_hidden_states=text_embedding_in).sample)
|
| 327 |
+
noise_preds = torch.cat(noise_preds, dim=0)
|
| 328 |
|
| 329 |
# perform guidance
|
| 330 |
if do_classifier_free_guidance:
|
| 331 |
+
noise_pred_uncond = noise_preds[~mask] * neg_weights
|
| 332 |
+
noise_pred_text = (noise_preds[mask] * pos_weights).sum(dim=0, keepdims=True)
|
| 333 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 334 |
|
| 335 |
# compute the previous noisy sample x_t -> x_t-1
|
| 336 |
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
| 337 |
+
latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample
|
| 338 |
else:
|
| 339 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 340 |
|
| 341 |
# scale and decode the image latents with vae
|
| 342 |
latents = 1 / 0.18215 * latents
|
| 343 |
+
image = self.vae.decode(latents).sample
|
| 344 |
|
| 345 |
image = (image / 2 + 0.5).clamp(0, 1)
|
| 346 |
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
|
| 352 |
if output_type == "pil":
|
| 353 |
image = self.numpy_to_pil(image)
|
| 354 |
|
| 355 |
+
if not return_dict:
|
| 356 |
+
return (image, has_nsfw_concept)
|
| 357 |
+
|
| 358 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|