Di Zhang
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,9 @@ import os
|
|
| 5 |
import gradio as gr
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
from huggingface_hub import hf_hub_download, snapshot_download
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Load the model and tokenizer from Hugging Face
|
| 10 |
model_path = snapshot_download(
|
|
@@ -38,7 +41,7 @@ def llama_o1_template(data):
|
|
| 38 |
@spaces.GPU
|
| 39 |
def generate_text(message, history, max_tokens=512, temperature=0.9, top_p=0.95):
|
| 40 |
input_text = llama_o1_template(message)
|
| 41 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
| 42 |
|
| 43 |
# Generate the text with the model
|
| 44 |
output = model.generate(
|
|
@@ -47,7 +50,6 @@ def generate_text(message, history, max_tokens=512, temperature=0.9, top_p=0.95)
|
|
| 47 |
temperature=temperature,
|
| 48 |
top_p=top_p,
|
| 49 |
do_sample=True,
|
| 50 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 51 |
)
|
| 52 |
|
| 53 |
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
from huggingface_hub import hf_hub_download, snapshot_download
|
| 8 |
+
import accelerate
|
| 9 |
+
|
| 10 |
+
accelerator = accelerate.Accelerator()
|
| 11 |
|
| 12 |
# Load the model and tokenizer from Hugging Face
|
| 13 |
model_path = snapshot_download(
|
|
|
|
| 41 |
@spaces.GPU
|
| 42 |
def generate_text(message, history, max_tokens=512, temperature=0.9, top_p=0.95):
|
| 43 |
input_text = llama_o1_template(message)
|
| 44 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(accelerator.device)
|
| 45 |
|
| 46 |
# Generate the text with the model
|
| 47 |
output = model.generate(
|
|
|
|
| 50 |
temperature=temperature,
|
| 51 |
top_p=top_p,
|
| 52 |
do_sample=True,
|
|
|
|
| 53 |
)
|
| 54 |
|
| 55 |
response = tokenizer.decode(output[0], skip_special_tokens=True)
|