Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,6 @@ import gradio as gr
|
|
| 4 |
from llama_cpp import Llama
|
| 5 |
from huggingface_hub import hf_hub_download
|
| 6 |
|
| 7 |
-
# Keep original template and descriptions
|
| 8 |
DESCRIPTION = '''
|
| 9 |
# SimpleBerry/LLaMA-O1-Supervised-1129 | Duplicate the space and set it to private for faster & personal inference for free.
|
| 10 |
SimpleBerry/LLaMA-O1-Supervised-1129: an experimental research model developed by the SimpleBerry.
|
|
@@ -22,46 +21,74 @@ LICENSE = """
|
|
| 22 |
template = "<start_of_father_id>-1<end_of_father_id><start_of_local_id>0<end_of_local_id><start_of_thought><problem>{content}<end_of_thought><start_of_rating><positive_rating><end_of_rating>\n<start_of_father_id>0<end_of_father_id><start_of_local_id>1<end_of_local_id><start_of_thought><expansion>"
|
| 23 |
|
| 24 |
class OptimizedLLMInterface:
|
|
|
|
|
|
|
| 25 |
def __init__(
|
| 26 |
self,
|
| 27 |
model_repo_id: str = "Lyte/LLaMA-O1-Supervised-1129-Q4_K_M-GGUF",
|
| 28 |
model_filename: str = "llama-o1-supervised-1129-q4_k_m.gguf",
|
| 29 |
-
context_size: int = 32768,
|
| 30 |
-
num_threads: int = 8,
|
| 31 |
):
|
| 32 |
-
"""Initialize optimized LLM interface"""
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
def generate_response(
|
| 44 |
self,
|
| 45 |
message: str,
|
| 46 |
history: Optional[list] = None,
|
| 47 |
-
max_tokens: int =
|
| 48 |
-
temperature: float = 0.
|
| 49 |
top_p: float = 0.95,
|
| 50 |
) -> Generator[str, None, None]:
|
| 51 |
-
"""
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
temp = ""
|
| 56 |
for token in self.model.generate(
|
| 57 |
input_tokens,
|
| 58 |
top_p=top_p,
|
| 59 |
temp=temperature,
|
| 60 |
-
|
|
|
|
| 61 |
):
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
def create_demo(llm_interface: OptimizedLLMInterface) -> gr.Blocks:
|
| 67 |
"""Create the Gradio interface"""
|
|
@@ -77,29 +104,29 @@ def create_demo(llm_interface: OptimizedLLMInterface) -> gr.Blocks:
|
|
| 77 |
['If Diana needs to bike 10 miles to reach home and she can bike at a speed of 3 mph for two hours before getting tired, and then at a speed of 1 mph until she reaches home, how long will it take her to get home?'],
|
| 78 |
['Find the least odd prime factor of $2019^8+1$.'],
|
| 79 |
],
|
| 80 |
-
cache_examples=
|
| 81 |
fill_height=True
|
| 82 |
)
|
| 83 |
|
| 84 |
with gr.Accordion("Adjust Parameters", open=False):
|
| 85 |
-
gr.Slider(minimum=128, maximum=
|
| 86 |
-
gr.Slider(minimum=0.1, maximum=1.
|
| 87 |
-
gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.
|
| 88 |
|
| 89 |
gr.Markdown(LICENSE)
|
| 90 |
|
| 91 |
return demo
|
| 92 |
|
| 93 |
def main():
|
| 94 |
-
# Initialize
|
| 95 |
-
llm = OptimizedLLMInterface(
|
| 96 |
-
num_threads=os.cpu_count() or 8 # Automatically use available CPU cores
|
| 97 |
-
)
|
| 98 |
|
| 99 |
-
# Create and launch the demo
|
| 100 |
demo = create_demo(llm)
|
| 101 |
-
demo.queue(max_size=10)
|
| 102 |
-
demo.launch(
|
|
|
|
|
|
|
| 103 |
|
| 104 |
if __name__ == "__main__":
|
| 105 |
main()
|
|
|
|
| 4 |
from llama_cpp import Llama
|
| 5 |
from huggingface_hub import hf_hub_download
|
| 6 |
|
|
|
|
| 7 |
DESCRIPTION = '''
|
| 8 |
# SimpleBerry/LLaMA-O1-Supervised-1129 | Duplicate the space and set it to private for faster & personal inference for free.
|
| 9 |
SimpleBerry/LLaMA-O1-Supervised-1129: an experimental research model developed by the SimpleBerry.
|
|
|
|
| 21 |
template = "<start_of_father_id>-1<end_of_father_id><start_of_local_id>0<end_of_local_id><start_of_thought><problem>{content}<end_of_thought><start_of_rating><positive_rating><end_of_rating>\n<start_of_father_id>0<end_of_father_id><start_of_local_id>1<end_of_local_id><start_of_thought><expansion>"
|
| 22 |
|
| 23 |
class OptimizedLLMInterface:
|
| 24 |
+
_model_instance = None # Class-level model instance for singleton pattern
|
| 25 |
+
|
| 26 |
def __init__(
|
| 27 |
self,
|
| 28 |
model_repo_id: str = "Lyte/LLaMA-O1-Supervised-1129-Q4_K_M-GGUF",
|
| 29 |
model_filename: str = "llama-o1-supervised-1129-q4_k_m.gguf",
|
|
|
|
|
|
|
| 30 |
):
|
| 31 |
+
"""Initialize optimized LLM interface with aggressive performance settings"""
|
| 32 |
+
# Only create model instance once
|
| 33 |
+
if OptimizedLLMInterface._model_instance is None:
|
| 34 |
+
OptimizedLLMInterface._model_instance = Llama(
|
| 35 |
+
model_path=hf_hub_download(repo_id=model_repo_id, filename=model_filename),
|
| 36 |
+
n_ctx=512, # Reduced context size for speed
|
| 37 |
+
n_threads=4, # Fixed thread count
|
| 38 |
+
n_batch=32, # Smaller batch size for faster responses
|
| 39 |
+
logits_all=False,
|
| 40 |
+
embedding=False,
|
| 41 |
+
seed=-1, # Disable seed for performance
|
| 42 |
+
verbose=False, # Disable logging
|
| 43 |
+
offload_kqv=True,
|
| 44 |
+
)
|
| 45 |
+
self.model = OptimizedLLMInterface._model_instance
|
| 46 |
+
|
| 47 |
+
# Pre-compute template parts
|
| 48 |
+
template_parts = template.split("{content}")
|
| 49 |
+
self._prefix_tokens = self.model.tokenize(template_parts[0].encode())
|
| 50 |
+
self._suffix_tokens = self.model.tokenize(template_parts[1].encode())
|
| 51 |
|
| 52 |
def generate_response(
|
| 53 |
self,
|
| 54 |
message: str,
|
| 55 |
history: Optional[list] = None,
|
| 56 |
+
max_tokens: int = 256, # Reduced max tokens
|
| 57 |
+
temperature: float = 0.7,
|
| 58 |
top_p: float = 0.95,
|
| 59 |
) -> Generator[str, None, None]:
|
| 60 |
+
"""Optimized response generation"""
|
| 61 |
+
# Fast token combination
|
| 62 |
+
message_tokens = self.model.tokenize(message.encode())
|
| 63 |
+
input_tokens = []
|
| 64 |
+
input_tokens.extend(self._prefix_tokens)
|
| 65 |
+
input_tokens.extend(message_tokens)
|
| 66 |
+
input_tokens.extend(self._suffix_tokens)
|
| 67 |
+
|
| 68 |
+
# Batch output processing
|
| 69 |
+
output = ""
|
| 70 |
+
batch = []
|
| 71 |
+
batch_size = 8 # Process tokens in small batches
|
| 72 |
|
|
|
|
| 73 |
for token in self.model.generate(
|
| 74 |
input_tokens,
|
| 75 |
top_p=top_p,
|
| 76 |
temp=temperature,
|
| 77 |
+
top_k=1, # Minimal sampling for speed
|
| 78 |
+
repeat_penalty=1.0, # Disable repeat penalty
|
| 79 |
):
|
| 80 |
+
batch.append(token)
|
| 81 |
+
if len(batch) >= batch_size:
|
| 82 |
+
text = self.model.detokenize(batch).decode('utf-8', errors='ignore')
|
| 83 |
+
output += text
|
| 84 |
+
yield output
|
| 85 |
+
batch = []
|
| 86 |
+
|
| 87 |
+
# Handle remaining tokens
|
| 88 |
+
if batch:
|
| 89 |
+
text = self.model.detokenize(batch).decode('utf-8', errors='ignore')
|
| 90 |
+
output += text
|
| 91 |
+
yield output
|
| 92 |
|
| 93 |
def create_demo(llm_interface: OptimizedLLMInterface) -> gr.Blocks:
|
| 94 |
"""Create the Gradio interface"""
|
|
|
|
| 104 |
['If Diana needs to bike 10 miles to reach home and she can bike at a speed of 3 mph for two hours before getting tired, and then at a speed of 1 mph until she reaches home, how long will it take her to get home?'],
|
| 105 |
['Find the least odd prime factor of $2019^8+1$.'],
|
| 106 |
],
|
| 107 |
+
cache_examples=True, # Enable example caching
|
| 108 |
fill_height=True
|
| 109 |
)
|
| 110 |
|
| 111 |
with gr.Accordion("Adjust Parameters", open=False):
|
| 112 |
+
gr.Slider(minimum=128, maximum=2048, value=256, step=128, label="Max Tokens")
|
| 113 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
|
| 114 |
+
gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
| 115 |
|
| 116 |
gr.Markdown(LICENSE)
|
| 117 |
|
| 118 |
return demo
|
| 119 |
|
| 120 |
def main():
|
| 121 |
+
# Initialize with performance settings
|
| 122 |
+
llm = OptimizedLLMInterface()
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
# Create and launch the demo with minimal overhead
|
| 125 |
demo = create_demo(llm)
|
| 126 |
+
demo.queue(max_size=10)
|
| 127 |
+
demo.launch(
|
| 128 |
+
quiet=True,
|
| 129 |
+
)
|
| 130 |
|
| 131 |
if __name__ == "__main__":
|
| 132 |
main()
|