Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Dict, Tuple | |
| import torch | |
| from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator | |
| from sam2.build_sam import build_sam2 | |
| from sam2.sam2_image_predictor import SAM2ImagePredictor | |
| BOX_PROMPT_MODE = "box prompt" | |
| MASK_GENERATION_MODE = "mask generation" | |
| MODE_NAMES = [BOX_PROMPT_MODE, MASK_GENERATION_MODE] | |
| CHECKPOINT_NAMES = ["tiny", "small", "base_plus", "large"] | |
| CHECKPOINTS = { | |
| "tiny": ["sam2_hiera_t.yaml", "checkpoints/sam2_hiera_tiny.pt"], | |
| "small": ["sam2_hiera_s.yaml", "checkpoints/sam2_hiera_small.pt"], | |
| "base_plus": ["sam2_hiera_b+.yaml", "checkpoints/sam2_hiera_base_plus.pt"], | |
| "large": ["sam2_hiera_l.yaml", "checkpoints/sam2_hiera_large.pt"], | |
| } | |
| def load_models( | |
| device: torch.device | |
| ) -> Tuple[Dict[str, SAM2ImagePredictor], Dict[str, SAM2AutomaticMaskGenerator]]: | |
| image_predictors = {} | |
| mask_generators = {} | |
| for key, (config, checkpoint) in CHECKPOINTS.items(): | |
| model = build_sam2(config, checkpoint, device=device) | |
| image_predictors[key] = SAM2ImagePredictor(sam_model=model) | |
| mask_generators[key] = SAM2AutomaticMaskGenerator( | |
| model=model, | |
| points_per_side=32, | |
| points_per_batch=64, | |
| pred_iou_thresh=0.7, | |
| stability_score_thresh=0.92, | |
| stability_score_offset=0.7, | |
| crop_n_layers=1, | |
| box_nms_thresh=0.7, | |
| ) | |
| return image_predictors, mask_generators | |