Spaces:
Running
Running
| """ | |
| Question Answering with Retrieval QA and LangChain Language Models featuring FAISS vector stores. | |
| This script uses the LangChain Language Model API to answer questions using Retrieval QA | |
| and FAISS vector stores. It also uses the Mistral huggingface inference endpoint to | |
| generate responses. | |
| """ | |
| import os | |
| import streamlit as st | |
| from dotenv import load_dotenv | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.embeddings import HuggingFaceBgeEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.chains import ConversationalRetrievalChain | |
| from htmlTemplates import css, bot_template, user_template | |
| from langchain.llms import HuggingFaceHub | |
| def get_pdf_text(pdf_docs): | |
| """ | |
| Extract text from a list of PDF documents. | |
| Parameters | |
| ---------- | |
| pdf_docs : list | |
| List of PDF documents to extract text from. | |
| Returns | |
| ------- | |
| str | |
| Extracted text from all the PDF documents. | |
| """ | |
| text = "" | |
| for pdf in pdf_docs: | |
| pdf_reader = PdfReader(pdf) | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| return text | |
| def get_text_chunks(text): | |
| """ | |
| Split the input text into chunks. | |
| Parameters | |
| ---------- | |
| text : str | |
| The input text to be split. | |
| Returns | |
| ------- | |
| list | |
| List of text chunks. | |
| """ | |
| text_splitter = CharacterTextSplitter( | |
| separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len | |
| ) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| def get_vectorstore(text_chunks): | |
| """ | |
| Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings. | |
| Parameters | |
| ---------- | |
| text_chunks : list | |
| List of text chunks to be embedded. | |
| Returns | |
| ------- | |
| FAISS | |
| A FAISS vector store containing the embeddings of the text chunks. | |
| """ | |
| model = "BAAI/bge-base-en-v1.5" | |
| encode_kwargs = { | |
| "normalize_embeddings": True | |
| } # set True to compute cosine similarity | |
| embeddings = HuggingFaceBgeEmbeddings( | |
| model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"} | |
| ) | |
| vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
| return vectorstore | |
| def get_conversation_chain(vectorstore): | |
| """ | |
| Create a conversational retrieval chain using a vector store and a language model. | |
| Parameters | |
| ---------- | |
| vectorstore : FAISS | |
| A FAISS vector store containing the embeddings of the text chunks. | |
| Returns | |
| ------- | |
| ConversationalRetrievalChain | |
| A conversational retrieval chain for generating responses. | |
| """ | |
| llm = HuggingFaceHub( | |
| repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| model_kwargs={"temperature": 0.5, "max_length": 1048}, | |
| ) | |
| # llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") | |
| memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
| conversation_chain = ConversationalRetrievalChain.from_llm( | |
| llm=llm, retriever=vectorstore.as_retriever(), memory=memory | |
| ) | |
| return conversation_chain | |
| def handle_userinput(user_question): | |
| """ | |
| Handle user input and generate a response using the conversational retrieval chain. | |
| Parameters | |
| ---------- | |
| user_question : str | |
| The user's question. | |
| """ | |
| response = st.session_state.conversation({"question": user_question}) | |
| st.session_state.chat_history = response["chat_history"] | |
| for i, message in enumerate(st.session_state.chat_history): | |
| if i % 2 == 0: | |
| st.write("//_^ User: " + message.content) | |
| else: | |
| st.write("🤖 ChatBot: " + message.content) | |
| def main(): | |
| """ | |
| Putting it all together. | |
| """ | |
| st.set_page_config( | |
| page_title="Chat with a Bot that tries to answer questions about multiple PDFs", | |
| page_icon=":books:", | |
| ) | |
| st.markdown("# Chat with a Bot") | |
| st.markdown("This bot tries to answer questions about multiple PDFs. Let the processing of the PDF finish before adding your question. 🙏🏾") | |
| st.write(css, unsafe_allow_html=True) | |
| # set huggingface hub token in st.text_input widget | |
| # then hide the input | |
| huggingface_token = st.text_input("Enter your HuggingFace Hub token", type="password") | |
| #openai_api_key = st.text_input("Enter your OpenAI API key", type="password") | |
| # set this key as an environment variable | |
| os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token | |
| #os.environ["OPENAI_API_KEY"] = openai_api_key | |
| if "conversation" not in st.session_state: | |
| st.session_state.conversation = None | |
| if "chat_history" not in st.session_state: | |
| st.session_state.chat_history = None | |
| st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:") | |
| user_question = st.text_input("Ask a question about your documents:") | |
| if user_question: | |
| handle_userinput(user_question) | |
| with st.sidebar: | |
| st.subheader("Your documents") | |
| pdf_docs = st.file_uploader( | |
| "Upload your PDFs here and click on 'Process'", accept_multiple_files=True | |
| ) | |
| if st.button("Process"): | |
| with st.spinner("Processing"): | |
| # get pdf text | |
| raw_text = get_pdf_text(pdf_docs) | |
| # get the text chunks | |
| text_chunks = get_text_chunks(raw_text) | |
| # create vector store | |
| vectorstore = get_vectorstore(text_chunks) | |
| # create conversation chain | |
| st.session_state.conversation = get_conversation_chain(vectorstore) | |
| if __name__ == "__main__": | |
| main() | |