Spaces:
Runtime error
Runtime error
Added files
Browse files- app.py +61 -0
- requirements.txt +2 -0
app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
from peft import AutoPeftModelForCausalLM
|
| 5 |
+
from transformers import AutoTokenizer
|
| 6 |
+
|
| 7 |
+
#
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
| 10 |
+
"Someman/bloomz-560m-fine-tuned-adapters_v1.0"
|
| 11 |
+
).to(device)
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-1b1")
|
| 13 |
+
|
| 14 |
+
SUMMARIZATION = "Summarization"
|
| 15 |
+
TITLE_GENERATION = "Title Generation"
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def generate_output(prompt, input, kwargs):
|
| 19 |
+
text = prompt + input
|
| 20 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 21 |
+
generate = model.generate(**inputs, **kwargs)
|
| 22 |
+
output = tokenizer.batch_decodee(
|
| 23 |
+
generate[:, inputs.input_ids.shape[1] :], skip_special_tokens=True
|
| 24 |
+
)
|
| 25 |
+
return output[0].split("\n\n")[0].strip()
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def summarization(input: str):
|
| 29 |
+
prompt = "\\nSummary in the same language as the doc:"
|
| 30 |
+
kwargs = {"max_new_tokens": 50, "penalty_alpha": 0.6, "top_k": 4}
|
| 31 |
+
return generate_output(prompt, input, kwargs)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def title_generation(input: str):
|
| 35 |
+
prompt = " \\n\\nGive me a good title for the article above."
|
| 36 |
+
kwargs = {"max_new_tokens": 50, "penalty_alpha": 0.6, "top_k": 4}
|
| 37 |
+
return generate_output(prompt, input, kwargs)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def generate(task: str, input: str):
|
| 41 |
+
if task == SUMMARIZATION:
|
| 42 |
+
return summarization(input)
|
| 43 |
+
elif task == TITLE_GENERATION:
|
| 44 |
+
return title_generation(input)
|
| 45 |
+
else:
|
| 46 |
+
return "Wow! Very Dangerous!"
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
demo = gr.Interface(
|
| 50 |
+
generate,
|
| 51 |
+
[
|
| 52 |
+
gr.Dropdown(
|
| 53 |
+
[SUMMARIZATION, TITLE_GENERATION],
|
| 54 |
+
label="Task",
|
| 55 |
+
info="Will add more task later!",
|
| 56 |
+
),
|
| 57 |
+
gr.TextArea(),
|
| 58 |
+
],
|
| 59 |
+
outputs="text",
|
| 60 |
+
)
|
| 61 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
peft
|
| 2 |
+
transformers
|