Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files
README.md
CHANGED
|
@@ -1,14 +1,59 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Thai License Plate Detection App 🚗
|
| 2 |
+
|
| 3 |
+
This Streamlit application detects and recognizes Thai license plates and provinces from images. It uses YOLOv8 for object detection and TrOCR for text recognition.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- 📷 Upload images containing Thai license plates
|
| 8 |
+
- 🔍 Detect and extract license plate numbers
|
| 9 |
+
- 🏠 Recognize and match province names
|
| 10 |
+
- 🖼️ Display cropped regions of detected plates and provinces
|
| 11 |
+
- 🎯 High accuracy text recognition using TrOCR
|
| 12 |
+
|
| 13 |
+
## How to Use
|
| 14 |
+
|
| 15 |
+
1. Upload an image containing a Thai license plate using the file uploader
|
| 16 |
+
2. Wait for the processing to complete
|
| 17 |
+
3. View the results:
|
| 18 |
+
- Detected license plate number
|
| 19 |
+
- Cropped license plate image
|
| 20 |
+
- Detected province name
|
| 21 |
+
- Cropped province image
|
| 22 |
+
|
| 23 |
+
## Technical Details
|
| 24 |
+
|
| 25 |
+
The application uses:
|
| 26 |
+
- YOLOv8 for license plate and province detection
|
| 27 |
+
- TrOCR (Thai) for text recognition
|
| 28 |
+
- OpenCV for image preprocessing
|
| 29 |
+
- Levenshtein distance for province name matching
|
| 30 |
+
|
| 31 |
+
## Models
|
| 32 |
+
|
| 33 |
+
- Object Detection: YOLOv8 (custom trained for Thai license plates)
|
| 34 |
+
- Text Recognition: openthaigpt/thai-trocr
|
| 35 |
+
|
| 36 |
+
## Deployment
|
| 37 |
+
|
| 38 |
+
This app is deployed on Hugging Face Spaces. The deployment includes:
|
| 39 |
+
- Streamlit web interface
|
| 40 |
+
- Pre-trained YOLO model weights
|
| 41 |
+
- Required Python dependencies
|
| 42 |
+
|
| 43 |
+
## Requirements
|
| 44 |
+
|
| 45 |
+
All required packages are listed in `requirements.txt`. The main dependencies are:
|
| 46 |
+
- streamlit
|
| 47 |
+
- opencv-python-headless
|
| 48 |
+
- transformers
|
| 49 |
+
- ultralytics
|
| 50 |
+
- torch
|
| 51 |
+
- python-Levenshtein
|
| 52 |
+
|
| 53 |
+
## License
|
| 54 |
+
|
| 55 |
+
[Your chosen license]
|
| 56 |
+
|
| 57 |
+
## Credits
|
| 58 |
+
|
| 59 |
+
Created by [Your Name/Organization]
|
app.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
import cv2
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 7 |
+
from ultralytics import YOLO
|
| 8 |
+
import Levenshtein
|
| 9 |
+
|
| 10 |
+
# Page config
|
| 11 |
+
st.set_page_config(
|
| 12 |
+
page_title="Thai License Plate Detection",
|
| 13 |
+
page_icon="🚗",
|
| 14 |
+
layout="centered"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# Initialize session state for models
|
| 18 |
+
if 'models_loaded' not in st.session_state:
|
| 19 |
+
st.session_state['models_loaded'] = False
|
| 20 |
+
|
| 21 |
+
# Load models
|
| 22 |
+
@st.cache_resource
|
| 23 |
+
def load_models():
|
| 24 |
+
processor = TrOCRProcessor.from_pretrained('openthaigpt/thai-trocr')
|
| 25 |
+
ocr_model = VisionEncoderDecoderModel.from_pretrained('openthaigpt/thai-trocr')
|
| 26 |
+
yolo_model = YOLO('best.pt') # Make sure to include this in the repository
|
| 27 |
+
return processor, ocr_model, yolo_model
|
| 28 |
+
|
| 29 |
+
# Thai provinces list
|
| 30 |
+
thai_provinces = [
|
| 31 |
+
"กรุงเทพมหานคร", "กระบี่", "กาญจนบุรี", "กาฬสินธุ์", "กำแพงเพชร", "ขอนแก่น", "จันทบุรี", "ฉะเชิงเทรา",
|
| 32 |
+
"ชลบุรี", "ชัยนาท", "ชัยภูมิ", "ชุมพร", "เชียงราย", "เชียงใหม่", "ตรัง", "ตราด", "ตาก", "นครนายก",
|
| 33 |
+
"นครปฐม", "นครพนม", "นครราชสีมา", "นครศรีธรรมราช", "นครสวรรค์", "นราธิวาส", "น่าน", "บึงกาฬ",
|
| 34 |
+
"บุรีรัมย์", "ปทุมธานี", "ประจวบคีรีขันธ์", "ปราจีนบุรี", "ปัตตานี", "พะเยา", "พังงา", "พัทลุง",
|
| 35 |
+
"พิจิตร", "พิษณุโลก", "เพชรบูรณ์", "เพชรบุรี", "แพร่", "ภูเก็ต", "มหาสารคาม", "มุกดาหาร", "แม่ฮ่องสอน",
|
| 36 |
+
"ยโสธร", "ยะลา", "ร้อยเอ็ด", "ระนอง", "ระยอง", "ราชบุรี", "ลพบุรี", "ลำปาง", "ลำพูน", "เลย",
|
| 37 |
+
"ศรีสะเกษ", "สกลนคร", "สงขลา", "สมุทรปราการ", "สมุทรสงคราม", "สมุทรสาคร", "สระแก้ว", "สระบุรี",
|
| 38 |
+
"สิงห์บุรี", "สุโขทัย", "สุพรรณบุรี", "สุราษฎร์ธานี", "สุรินทร์", "หนองคาย", "หนองบัวลำภู", "อำนาจเจริญ",
|
| 39 |
+
"อุดรธานี", "อุทัยธานี", "อุบลราชธานี", "อ่างทอง"
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
def get_closest_province(input_text, provinces):
|
| 43 |
+
min_distance = float('inf')
|
| 44 |
+
closest_province = None
|
| 45 |
+
for province in provinces:
|
| 46 |
+
distance = Levenshtein.distance(input_text, province)
|
| 47 |
+
if distance < min_distance:
|
| 48 |
+
min_distance = distance
|
| 49 |
+
closest_province = province
|
| 50 |
+
return closest_province, min_distance
|
| 51 |
+
|
| 52 |
+
def process_image(image, processor, ocr_model, yolo_model):
|
| 53 |
+
CONF_THRESHOLD = 0.2
|
| 54 |
+
data = {"plate_number": "", "province": "", "raw_province": "", "plate_crop": None, "province_crop": None}
|
| 55 |
+
|
| 56 |
+
# Convert PIL Image to cv2 format
|
| 57 |
+
image = np.array(image)
|
| 58 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
| 59 |
+
|
| 60 |
+
# Image enhancement
|
| 61 |
+
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
|
| 62 |
+
l, a, b = cv2.split(lab)
|
| 63 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
| 64 |
+
cl = clahe.apply(l)
|
| 65 |
+
enhanced = cv2.merge((cl,a,b))
|
| 66 |
+
image = cv2.cvtColor(enhanced, cv2.COLOR_LAB2BGR)
|
| 67 |
+
|
| 68 |
+
# YOLO detection
|
| 69 |
+
results = yolo_model(image)
|
| 70 |
+
|
| 71 |
+
# Process detections
|
| 72 |
+
detections = []
|
| 73 |
+
for result in results:
|
| 74 |
+
for box in result.boxes:
|
| 75 |
+
confidence = float(box.conf)
|
| 76 |
+
class_id = int(box.cls.item())
|
| 77 |
+
if confidence < CONF_THRESHOLD:
|
| 78 |
+
continue
|
| 79 |
+
x1, y1, x2, y2 = map(int, box.xyxy.flatten())
|
| 80 |
+
detections.append((class_id, confidence, (x1, y1, x2, y2)))
|
| 81 |
+
|
| 82 |
+
# Sort by class_id
|
| 83 |
+
detections.sort(key=lambda x: x[0])
|
| 84 |
+
|
| 85 |
+
for class_id, confidence, (x1, y1, x2, y2) in detections:
|
| 86 |
+
cropped_image = image[y1:y2, x1:x2]
|
| 87 |
+
if cropped_image.size == 0:
|
| 88 |
+
continue
|
| 89 |
+
|
| 90 |
+
# Preprocess for OCR
|
| 91 |
+
cropped_image_gray = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2GRAY)
|
| 92 |
+
thresh_image = cv2.adaptiveThreshold(
|
| 93 |
+
cropped_image_gray,
|
| 94 |
+
255,
|
| 95 |
+
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 96 |
+
cv2.THRESH_BINARY_INV,
|
| 97 |
+
11,
|
| 98 |
+
2
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
|
| 102 |
+
thresh_image = cv2.morphologyEx(thresh_image, cv2.MORPH_CLOSE, kernel)
|
| 103 |
+
cropped_image_3d = cv2.cvtColor(thresh_image, cv2.COLOR_GRAY2RGB)
|
| 104 |
+
resized_image = cv2.resize(cropped_image_3d, (128, 32))
|
| 105 |
+
|
| 106 |
+
# OCR processing
|
| 107 |
+
pixel_values = processor(resized_image, return_tensors="pt").pixel_values
|
| 108 |
+
generated_ids = ocr_model.generate(pixel_values)
|
| 109 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 110 |
+
|
| 111 |
+
# Convert crop to PIL for display
|
| 112 |
+
cropped_pil = Image.fromarray(cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB))
|
| 113 |
+
|
| 114 |
+
if class_id == 0: # License plate
|
| 115 |
+
data["plate_number"] = generated_text
|
| 116 |
+
data["plate_crop"] = cropped_pil
|
| 117 |
+
elif class_id == 1: # Province
|
| 118 |
+
generated_province, distance = get_closest_province(generated_text, thai_provinces)
|
| 119 |
+
data["raw_province"] = generated_text
|
| 120 |
+
data["province"] = generated_province
|
| 121 |
+
data["province_crop"] = cropped_pil
|
| 122 |
+
|
| 123 |
+
return data
|
| 124 |
+
|
| 125 |
+
# Main app
|
| 126 |
+
st.title("Thai License Plate Detection 🚗")
|
| 127 |
+
|
| 128 |
+
# Load models
|
| 129 |
+
try:
|
| 130 |
+
if not st.session_state['models_loaded']:
|
| 131 |
+
with st.spinner("Loading models... (this may take a minute)"):
|
| 132 |
+
processor, ocr_model, yolo_model = load_models()
|
| 133 |
+
st.session_state['models_loaded'] = True
|
| 134 |
+
st.session_state['processor'] = processor
|
| 135 |
+
st.session_state['ocr_model'] = ocr_model
|
| 136 |
+
st.session_state['yolo_model'] = yolo_model
|
| 137 |
+
except Exception as e:
|
| 138 |
+
st.error(f"Error loading models: {str(e)}")
|
| 139 |
+
st.stop()
|
| 140 |
+
|
| 141 |
+
# File uploader
|
| 142 |
+
uploaded_file = st.file_uploader("Upload an image of a Thai license plate", type=["jpg", "jpeg", "png"])
|
| 143 |
+
|
| 144 |
+
if uploaded_file is not None:
|
| 145 |
+
try:
|
| 146 |
+
# Display the uploaded image
|
| 147 |
+
col1, col2 = st.columns(2)
|
| 148 |
+
with col1:
|
| 149 |
+
st.subheader("Uploaded Image")
|
| 150 |
+
image = Image.open(uploaded_file)
|
| 151 |
+
st.image(image, use_column_width=True)
|
| 152 |
+
|
| 153 |
+
# Process the image
|
| 154 |
+
with col2:
|
| 155 |
+
st.subheader("Detection Results")
|
| 156 |
+
with st.spinner("Processing image..."):
|
| 157 |
+
results = process_image(
|
| 158 |
+
image,
|
| 159 |
+
st.session_state['processor'],
|
| 160 |
+
st.session_state['ocr_model'],
|
| 161 |
+
st.session_state['yolo_model']
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
if results["plate_number"]:
|
| 165 |
+
st.success("Detection successful!")
|
| 166 |
+
st.write("📝 License Plate:", results['plate_number'])
|
| 167 |
+
|
| 168 |
+
if results['plate_crop'] is not None:
|
| 169 |
+
st.subheader("Cropped License Plate")
|
| 170 |
+
st.image(results['plate_crop'], caption="Detected License Plate Region")
|
| 171 |
+
|
| 172 |
+
if results['raw_province']:
|
| 173 |
+
st.write("🔍 Detected Province Text:", results['raw_province'])
|
| 174 |
+
if results['province']:
|
| 175 |
+
st.write("🏠 Matched Province:", results['province'])
|
| 176 |
+
else:
|
| 177 |
+
st.write("⚠️ No close province match found")
|
| 178 |
+
|
| 179 |
+
if results['province_crop'] is not None:
|
| 180 |
+
st.subheader("Cropped Province")
|
| 181 |
+
st.image(results['province_crop'], caption="Detected Province Region")
|
| 182 |
+
else:
|
| 183 |
+
st.write("⚠️ No province text detected")
|
| 184 |
+
else:
|
| 185 |
+
st.error("No license plate detected in the image.")
|
| 186 |
+
|
| 187 |
+
except Exception as e:
|
| 188 |
+
st.error(f"An error occurred: {str(e)}")
|
| 189 |
+
|
| 190 |
+
st.markdown("---")
|
| 191 |
+
st.markdown("### Instructions")
|
| 192 |
+
st.markdown("""
|
| 193 |
+
1. Upload an image containing a Thai license plate
|
| 194 |
+
2. Wait for the processing to complete
|
| 195 |
+
3. View the detected license plate number and province
|
| 196 |
+
""")
|
| 197 |
+
|
| 198 |
+
# Add footer with GitHub link
|
| 199 |
+
st.markdown("---")
|
| 200 |
+
st.markdown("Made with ❤️ by [Your Name/Organization]")
|
| 201 |
+
st.markdown("Check out the [GitHub Repository](https://github.com/yourusername/your-repo) for more information")
|
best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b1da8d9362a1005aa5b060b0ac53b4622677e753eded2893da10b6a69bc9fb7
|
| 3 |
+
size 5468691
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.29.0
|
| 2 |
+
opencv-python-headless==4.8.1.78
|
| 3 |
+
numpy==1.26.2
|
| 4 |
+
Pillow==10.1.0
|
| 5 |
+
transformers==4.36.2
|
| 6 |
+
torch==2.1.2
|
| 7 |
+
ultralytics==8.0.227
|
| 8 |
+
python-Levenshtein==0.23.0
|