Update app.py
Browse files
app.py
CHANGED
|
@@ -1,142 +1,171 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
import asyncio
|
| 6 |
-
import
|
|
|
|
| 7 |
from huggingface_hub import login
|
| 8 |
-
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool
|
| 9 |
|
| 10 |
-
# --- Constants ---
|
| 11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 12 |
-
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
|
| 13 |
-
SUBMIT_URL = f"{DEFAULT_API_URL}/submit"
|
| 14 |
|
| 15 |
-
# --- Hugging Face Login ---
|
| 16 |
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
|
| 17 |
|
| 18 |
-
# --- Define Tools ---
|
| 19 |
search_tool = DuckDuckGoSearchTool()
|
| 20 |
|
| 21 |
-
# --- Main Async Function with Progress Logs ---
|
| 22 |
async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 23 |
log_output = ""
|
|
|
|
| 24 |
try:
|
| 25 |
agent = CodeAgent(
|
| 26 |
tools=[search_tool],
|
| 27 |
model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
|
| 28 |
max_steps=5,
|
| 29 |
-
verbosity_level=2
|
| 30 |
)
|
| 31 |
except Exception as e:
|
| 32 |
-
yield f"
|
| 33 |
return
|
| 34 |
|
| 35 |
-
space_id = os.getenv("SPACE_ID"
|
| 36 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 37 |
|
|
|
|
| 38 |
try:
|
| 39 |
-
response = requests.get(
|
| 40 |
response.raise_for_status()
|
| 41 |
-
|
| 42 |
-
if not
|
| 43 |
-
yield "
|
| 44 |
return
|
| 45 |
except Exception as e:
|
| 46 |
-
yield f"
|
| 47 |
return
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
loop = asyncio.
|
| 52 |
|
| 53 |
-
for item in
|
| 54 |
task_id = item.get("task_id")
|
| 55 |
-
|
| 56 |
-
if not task_id or
|
| 57 |
continue
|
| 58 |
|
| 59 |
log_output += f"π Solving Task ID: {task_id}...\n"
|
| 60 |
-
yield None, None, log_output
|
| 61 |
-
|
| 62 |
-
system_prompt = (
|
| 63 |
-
"You are a general AI assistant. I will ask you a question. "
|
| 64 |
-
"Report your thoughts, and finish your answer with the following template: "
|
| 65 |
-
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.\n\n"
|
| 66 |
-
)
|
| 67 |
-
full_prompt = system_prompt + f"Question: {question.strip()}"
|
| 68 |
|
| 69 |
try:
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
else:
|
| 78 |
-
final_answer =
|
| 79 |
else:
|
| 80 |
-
final_answer = str(
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
| 90 |
|
| 91 |
-
|
|
|
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
return
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
"answers": valid_answers
|
| 101 |
-
}
|
| 102 |
-
|
| 103 |
-
print("[DEBUG] Submitting:\n", json.dumps(submission, indent=2))
|
| 104 |
-
|
| 105 |
try:
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
result_data =
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
f"β
Submission Successful\n"
|
| 112 |
f"User: {result_data.get('username')}\n"
|
| 113 |
-
f"Score: {result_data.get('score', 'N/A')}% "
|
| 114 |
-
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n"
|
| 115 |
-
f"Message: {result_data.get('message', 'No message.')}"
|
| 116 |
)
|
| 117 |
-
|
| 118 |
-
|
| 119 |
except Exception as e:
|
| 120 |
-
|
|
|
|
|
|
|
| 121 |
|
| 122 |
-
# --- Gradio UI ---
|
| 123 |
with gr.Blocks() as demo:
|
| 124 |
-
gr.Markdown("#
|
| 125 |
gr.Markdown("""
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
""")
|
| 130 |
|
| 131 |
gr.LoginButton()
|
| 132 |
-
run_button = gr.Button("π Run Evaluation & Submit")
|
| 133 |
-
status = gr.Textbox(label="Final Status", lines=6)
|
| 134 |
-
table = gr.DataFrame(label="Answer Log")
|
| 135 |
-
progress_log = gr.Textbox(label="Live Progress Log", lines=10, interactive=False)
|
| 136 |
|
| 137 |
-
run_button.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
# --- Launch ---
|
| 140 |
if __name__ == "__main__":
|
| 141 |
-
print("
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
+
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
import asyncio
|
| 7 |
+
from smolagents import ToolCallingAgent, InferenceClientModel, HfApiModel
|
| 8 |
+
from smolagents import DuckDuckGoSearchTool, Tool, CodeAgent
|
| 9 |
from huggingface_hub import login
|
|
|
|
| 10 |
|
|
|
|
| 11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
| 12 |
|
|
|
|
| 13 |
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
|
| 14 |
|
|
|
|
| 15 |
search_tool = DuckDuckGoSearchTool()
|
| 16 |
|
|
|
|
| 17 |
async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 18 |
log_output = ""
|
| 19 |
+
|
| 20 |
try:
|
| 21 |
agent = CodeAgent(
|
| 22 |
tools=[search_tool],
|
| 23 |
model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
|
| 24 |
max_steps=5,
|
| 25 |
+
verbosity_level=2
|
| 26 |
)
|
| 27 |
except Exception as e:
|
| 28 |
+
yield f"Error initializing agent: {e}", None, log_output
|
| 29 |
return
|
| 30 |
|
| 31 |
+
space_id = os.getenv("SPACE_ID")
|
| 32 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 33 |
|
| 34 |
+
questions_url = f"{DEFAULT_API_URL}/questions"
|
| 35 |
try:
|
| 36 |
+
response = requests.get(questions_url, timeout=15)
|
| 37 |
response.raise_for_status()
|
| 38 |
+
questions_data = response.json()
|
| 39 |
+
if not questions_data:
|
| 40 |
+
yield "Fetched questions list is empty or invalid format.", None, log_output
|
| 41 |
return
|
| 42 |
except Exception as e:
|
| 43 |
+
yield f"Error fetching questions: {e}", None, log_output
|
| 44 |
return
|
| 45 |
|
| 46 |
+
results_log = []
|
| 47 |
+
answers_payload = []
|
| 48 |
+
loop = asyncio.get_event_loop()
|
| 49 |
|
| 50 |
+
for item in questions_data:
|
| 51 |
task_id = item.get("task_id")
|
| 52 |
+
question_text = item.get("question")
|
| 53 |
+
if not task_id or question_text is None:
|
| 54 |
continue
|
| 55 |
|
| 56 |
log_output += f"π Solving Task ID: {task_id}...\n"
|
| 57 |
+
yield None, None, log_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
try:
|
| 60 |
+
system_prompt = (
|
| 61 |
+
"You are a general AI assistant. I will ask you a question. "
|
| 62 |
+
"Report your thoughts, and finish your answer with the following template: "
|
| 63 |
+
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. "
|
| 64 |
+
"If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. "
|
| 65 |
+
"If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. "
|
| 66 |
+
"If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n\n"
|
| 67 |
+
)
|
| 68 |
+
full_prompt = system_prompt + f"Question: {question_text.strip()}"
|
| 69 |
+
|
| 70 |
+
agent_result = await loop.run_in_executor(None, agent, full_prompt)
|
| 71 |
+
|
| 72 |
+
# Extract final answer cleanly
|
| 73 |
+
if isinstance(agent_result, dict) and "final_answer" in agent_result:
|
| 74 |
+
final_answer = str(agent_result["final_answer"]).strip()
|
| 75 |
+
elif isinstance(agent_result, str):
|
| 76 |
+
response_text = agent_result.strip()
|
| 77 |
+
|
| 78 |
+
# Remove known boilerplate
|
| 79 |
+
if "Here is the final answer from your managed agent" in response_text:
|
| 80 |
+
response_text = response_text.split(":", 1)[-1].strip()
|
| 81 |
+
|
| 82 |
+
if "FINAL ANSWER:" in response_text:
|
| 83 |
+
_, final_answer = response_text.rsplit("FINAL ANSWER:", 1)
|
| 84 |
+
final_answer = final_answer.strip()
|
| 85 |
else:
|
| 86 |
+
final_answer = response_text
|
| 87 |
else:
|
| 88 |
+
final_answer = str(agent_result).strip()
|
| 89 |
|
| 90 |
+
answers_payload.append({
|
| 91 |
+
"task_id": task_id,
|
| 92 |
+
"model_answer": final_answer
|
| 93 |
+
})
|
| 94 |
|
| 95 |
+
results_log.append({
|
| 96 |
+
"Task ID": task_id,
|
| 97 |
+
"Question": question_text,
|
| 98 |
+
"Submitted Answer": final_answer
|
| 99 |
+
})
|
| 100 |
|
| 101 |
+
log_output += f"β
Done: {task_id} β Answer: {final_answer[:60]}\n"
|
| 102 |
+
yield None, None, log_output
|
| 103 |
|
| 104 |
+
except Exception as e:
|
| 105 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 106 |
+
results_log.append({
|
| 107 |
+
"Task ID": task_id,
|
| 108 |
+
"Question": question_text,
|
| 109 |
+
"Submitted Answer": f"AGENT ERROR: {e}"
|
| 110 |
+
})
|
| 111 |
+
log_output += f"βοΈ Error: {task_id} β {e}\n"
|
| 112 |
+
yield None, None, log_output
|
| 113 |
+
|
| 114 |
+
if not answers_payload:
|
| 115 |
+
yield "Agent did not produce any answers to submit.", pd.DataFrame(results_log), log_output
|
| 116 |
return
|
| 117 |
|
| 118 |
+
username = profile.username if profile else "unknown"
|
| 119 |
+
submit_url = f"{DEFAULT_API_URL}/submit"
|
| 120 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
try:
|
| 122 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 123 |
+
response.raise_for_status()
|
| 124 |
+
result_data = response.json()
|
| 125 |
+
final_status = (
|
| 126 |
+
f"Submission Successful!\n"
|
|
|
|
| 127 |
f"User: {result_data.get('username')}\n"
|
| 128 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 129 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 130 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
| 131 |
)
|
| 132 |
+
results_df = pd.DataFrame(results_log)
|
| 133 |
+
yield final_status, results_df, log_output
|
| 134 |
except Exception as e:
|
| 135 |
+
status_message = f"Submission Failed: {e}"
|
| 136 |
+
results_df = pd.DataFrame(results_log)
|
| 137 |
+
yield status_message, results_df, log_output
|
| 138 |
|
|
|
|
| 139 |
with gr.Blocks() as demo:
|
| 140 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 141 |
gr.Markdown("""
|
| 142 |
+
**Instructions:**
|
| 143 |
+
1. Clone this space and define your agent logic.
|
| 144 |
+
2. Log in to your Hugging Face account.
|
| 145 |
+
3. Click 'Run Evaluation & Submit All Answers'.
|
| 146 |
+
---
|
| 147 |
+
**Note:**
|
| 148 |
+
The run may take time. Async is now used to improve responsiveness.
|
| 149 |
""")
|
| 150 |
|
| 151 |
gr.LoginButton()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 154 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 155 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 156 |
+
progress_log = gr.Textbox(label="Progress Log", lines=10, interactive=False)
|
| 157 |
+
|
| 158 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table, progress_log])
|
| 159 |
|
|
|
|
| 160 |
if __name__ == "__main__":
|
| 161 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 162 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
| 163 |
+
space_id_startup = os.getenv("SPACE_ID")
|
| 164 |
+
|
| 165 |
+
if space_host_startup:
|
| 166 |
+
print(f"β
SPACE_HOST: https://{space_host_startup}.hf.space")
|
| 167 |
+
if space_id_startup:
|
| 168 |
+
print(f"β
SPACE_ID: https://huggingface.co/spaces/{space_id_startup}")
|
| 169 |
+
|
| 170 |
+
print("Launching Gradio Interface...")
|
| 171 |
+
demo.launch(debug=True, share=False)
|