Update app.py
Browse files
app.py
CHANGED
|
@@ -1,183 +1,160 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
-
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
import asyncio
|
| 7 |
-
|
| 8 |
-
|
| 9 |
from huggingface_hub import login
|
|
|
|
| 10 |
|
|
|
|
| 11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
| 12 |
|
|
|
|
| 13 |
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
|
| 14 |
|
|
|
|
| 15 |
search_tool = DuckDuckGoSearchTool()
|
| 16 |
|
|
|
|
|
|
|
| 17 |
async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
|
|
| 18 |
try:
|
| 19 |
agent = CodeAgent(
|
| 20 |
tools=[search_tool],
|
| 21 |
model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
|
| 22 |
max_steps=5,
|
| 23 |
-
verbosity_level=2
|
| 24 |
)
|
| 25 |
except Exception as e:
|
| 26 |
return f"Error initializing agent: {e}", None
|
| 27 |
|
| 28 |
-
|
|
|
|
| 29 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 30 |
|
| 31 |
-
|
| 32 |
try:
|
| 33 |
-
response = requests.get(
|
| 34 |
response.raise_for_status()
|
| 35 |
questions_data = response.json()
|
| 36 |
if not questions_data:
|
| 37 |
-
return "
|
| 38 |
except Exception as e:
|
| 39 |
return f"Error fetching questions: {e}", None
|
| 40 |
|
| 41 |
-
|
| 42 |
answers_payload = []
|
|
|
|
| 43 |
loop = asyncio.get_event_loop()
|
| 44 |
|
| 45 |
for item in questions_data:
|
| 46 |
task_id = item.get("task_id")
|
| 47 |
-
|
| 48 |
-
if not task_id or
|
| 49 |
continue
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
try:
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
"If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. "
|
| 58 |
-
"If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n\n"
|
| 59 |
-
)
|
| 60 |
-
full_prompt = system_prompt + f"Question: {question_text.strip()}"
|
| 61 |
-
|
| 62 |
-
agent_result = await loop.run_in_executor(None, agent, full_prompt)
|
| 63 |
-
|
| 64 |
-
# Try to extract final answer depending on type of result
|
| 65 |
-
# ✅ CLEAN AND PARSE AGENT OUTPUT
|
| 66 |
-
# ✅ CLEAN AND PARSE AGENT OUTPUT
|
| 67 |
if isinstance(agent_result, dict) and "final_answer" in agent_result:
|
| 68 |
final_answer = str(agent_result["final_answer"]).strip()
|
| 69 |
-
|
| 70 |
elif isinstance(agent_result, str):
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
#
|
| 74 |
-
if "Here is the final answer from your managed agent" in
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
#
|
| 78 |
-
if "FINAL ANSWER:" in
|
| 79 |
-
_, final_answer =
|
| 80 |
final_answer = final_answer.strip()
|
| 81 |
else:
|
| 82 |
-
final_answer =
|
| 83 |
-
|
| 84 |
else:
|
| 85 |
final_answer = str(agent_result).strip()
|
| 86 |
|
|
|
|
|
|
|
|
|
|
| 87 |
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
"model_answer": final_answer
|
| 92 |
-
})
|
| 93 |
-
|
| 94 |
-
results_log.append({
|
| 95 |
-
"Task ID": task_id,
|
| 96 |
-
"Question": question_text,
|
| 97 |
-
"Submitted Answer": final_answer
|
| 98 |
-
})
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
results_log.append({
|
| 103 |
-
"Task ID": task_id,
|
| 104 |
-
"Question": question_text,
|
| 105 |
-
"Submitted Answer": f"AGENT ERROR: {e}"
|
| 106 |
-
})
|
| 107 |
-
|
| 108 |
-
if not answers_payload:
|
| 109 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 110 |
|
|
|
|
| 111 |
username = profile.username if profile else "unknown"
|
| 112 |
-
submit_url = f"{DEFAULT_API_URL}/submit"
|
| 113 |
-
cleaned_answers = []
|
| 114 |
-
for entry in answers_payload:
|
| 115 |
-
if isinstance(entry.get("task_id"), str) and isinstance(entry.get("model_answer"), str):
|
| 116 |
-
cleaned_answers.append(entry)
|
| 117 |
-
else:
|
| 118 |
-
print(f"[WARNING] Skipping invalid answer: {entry}")
|
| 119 |
-
|
| 120 |
-
# ✅ PREPARE SUBMISSION DATA
|
| 121 |
submission_data = {
|
| 122 |
"username": username.strip(),
|
| 123 |
"agent_code": agent_code,
|
| 124 |
-
"answers":
|
| 125 |
}
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
print("[DEBUG] Submission Payload:")
|
| 130 |
-
print(json.dumps(submission_data, indent=2))
|
| 131 |
-
|
| 132 |
-
# ✅ SUBMIT
|
| 133 |
try:
|
| 134 |
-
response = requests.post(
|
| 135 |
response.raise_for_status()
|
| 136 |
result_data = response.json()
|
|
|
|
| 137 |
final_status = (
|
| 138 |
-
f"Submission Successful
|
| 139 |
f"User: {result_data.get('username')}\n"
|
| 140 |
-
f"
|
| 141 |
-
f"({result_data.get('correct_count'
|
| 142 |
-
f"Message: {result_data.get('message', 'No message
|
| 143 |
)
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
except Exception as e:
|
| 148 |
-
|
| 149 |
-
results_df = pd.DataFrame(results_log)
|
| 150 |
-
return status_message, results_df
|
| 151 |
|
|
|
|
|
|
|
| 152 |
with gr.Blocks() as demo:
|
| 153 |
-
gr.Markdown("#
|
| 154 |
gr.Markdown("""
|
| 155 |
**Instructions:**
|
| 156 |
-
1. Clone
|
| 157 |
-
2. Log in to
|
| 158 |
-
3. Click
|
| 159 |
-
---
|
| 160 |
-
**Note:**
|
| 161 |
-
The run may take time. Async is now used to improve responsiveness.
|
| 162 |
""")
|
| 163 |
|
| 164 |
gr.LoginButton()
|
| 165 |
-
|
| 166 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 167 |
-
status_output = gr.Textbox(label="
|
| 168 |
-
results_table = gr.DataFrame(label="
|
| 169 |
|
| 170 |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
| 171 |
|
| 172 |
-
if __name__ == "__main__":
|
| 173 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 174 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
| 175 |
-
space_id_startup = os.getenv("SPACE_ID")
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
demo.launch(debug=True, share=False)
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
import asyncio
|
| 6 |
+
import json
|
| 7 |
+
import concurrent.futures
|
| 8 |
from huggingface_hub import login
|
| 9 |
+
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool
|
| 10 |
|
| 11 |
+
# --- Constants ---
|
| 12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 13 |
+
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
|
| 14 |
+
SUBMIT_URL = f"{DEFAULT_API_URL}/submit"
|
| 15 |
|
| 16 |
+
# --- Hugging Face Login ---
|
| 17 |
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
|
| 18 |
|
| 19 |
+
# --- Define Tools ---
|
| 20 |
search_tool = DuckDuckGoSearchTool()
|
| 21 |
|
| 22 |
+
|
| 23 |
+
# --- Main Function ---
|
| 24 |
async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 25 |
+
# Initialize Agent
|
| 26 |
try:
|
| 27 |
agent = CodeAgent(
|
| 28 |
tools=[search_tool],
|
| 29 |
model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
|
| 30 |
max_steps=5,
|
| 31 |
+
verbosity_level=2
|
| 32 |
)
|
| 33 |
except Exception as e:
|
| 34 |
return f"Error initializing agent: {e}", None
|
| 35 |
|
| 36 |
+
# Get Space ID for agent_code link
|
| 37 |
+
space_id = os.getenv("SPACE_ID", "unknown")
|
| 38 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 39 |
|
| 40 |
+
# Fetch questions
|
| 41 |
try:
|
| 42 |
+
response = requests.get(QUESTIONS_URL, timeout=15)
|
| 43 |
response.raise_for_status()
|
| 44 |
questions_data = response.json()
|
| 45 |
if not questions_data:
|
| 46 |
+
return "No questions received.", None
|
| 47 |
except Exception as e:
|
| 48 |
return f"Error fetching questions: {e}", None
|
| 49 |
|
| 50 |
+
# Prepare results
|
| 51 |
answers_payload = []
|
| 52 |
+
results_log = []
|
| 53 |
loop = asyncio.get_event_loop()
|
| 54 |
|
| 55 |
for item in questions_data:
|
| 56 |
task_id = item.get("task_id")
|
| 57 |
+
question = item.get("question")
|
| 58 |
+
if not task_id or not question:
|
| 59 |
continue
|
| 60 |
|
| 61 |
+
system_prompt = (
|
| 62 |
+
"You are a general AI assistant. I will ask you a question. "
|
| 63 |
+
"Report your thoughts, and finish your answer with the following template: "
|
| 64 |
+
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. "
|
| 65 |
+
"If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. "
|
| 66 |
+
"If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. "
|
| 67 |
+
"If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n\n"
|
| 68 |
+
)
|
| 69 |
+
prompt = system_prompt + f"Question: {question.strip()}"
|
| 70 |
+
|
| 71 |
+
# Run agent with timeout
|
| 72 |
try:
|
| 73 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 74 |
+
future = executor.submit(agent, prompt)
|
| 75 |
+
agent_result = await loop.run_in_executor(None, future.result, 60) # timeout=60s
|
| 76 |
+
|
| 77 |
+
# Clean model output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
if isinstance(agent_result, dict) and "final_answer" in agent_result:
|
| 79 |
final_answer = str(agent_result["final_answer"]).strip()
|
|
|
|
| 80 |
elif isinstance(agent_result, str):
|
| 81 |
+
response_text = agent_result.strip()
|
| 82 |
+
|
| 83 |
+
# Remove known boilerplate
|
| 84 |
+
if "Here is the final answer from your managed agent" in response_text:
|
| 85 |
+
response_text = response_text.split(":", 1)[-1].strip()
|
| 86 |
+
|
| 87 |
+
# Extract final answer
|
| 88 |
+
if "FINAL ANSWER:" in response_text:
|
| 89 |
+
_, final_answer = response_text.rsplit("FINAL ANSWER:", 1)
|
| 90 |
final_answer = final_answer.strip()
|
| 91 |
else:
|
| 92 |
+
final_answer = response_text
|
|
|
|
| 93 |
else:
|
| 94 |
final_answer = str(agent_result).strip()
|
| 95 |
|
| 96 |
+
except Exception as e:
|
| 97 |
+
print(f"[ERROR] Task {task_id} failed: {e}")
|
| 98 |
+
final_answer = f"AGENT ERROR: {e}"
|
| 99 |
|
| 100 |
+
answers_payload.append({"task_id": task_id, "model_answer": final_answer})
|
| 101 |
+
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": final_answer})
|
| 102 |
|
| 103 |
+
# Clean invalid entries
|
| 104 |
+
valid_answers = [a for a in answers_payload if isinstance(a["task_id"], str) and isinstance(a["model_answer"], str)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
if not valid_answers:
|
| 107 |
+
return "Agent produced no valid answers.", pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
# Prepare submission
|
| 110 |
username = profile.username if profile else "unknown"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
submission_data = {
|
| 112 |
"username": username.strip(),
|
| 113 |
"agent_code": agent_code,
|
| 114 |
+
"answers": valid_answers
|
| 115 |
}
|
| 116 |
+
|
| 117 |
+
print("[DEBUG] Submission Payload:\n", json.dumps(submission_data, indent=2))
|
| 118 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
try:
|
| 120 |
+
response = requests.post(SUBMIT_URL, json=submission_data, timeout=60)
|
| 121 |
response.raise_for_status()
|
| 122 |
result_data = response.json()
|
| 123 |
+
|
| 124 |
final_status = (
|
| 125 |
+
f"✅ Submission Successful\n"
|
| 126 |
f"User: {result_data.get('username')}\n"
|
| 127 |
+
f"Score: {result_data.get('score', 'N/A')}% "
|
| 128 |
+
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n"
|
| 129 |
+
f"Message: {result_data.get('message', 'No message.')}"
|
| 130 |
)
|
| 131 |
+
return final_status, pd.DataFrame(results_log)
|
| 132 |
+
|
|
|
|
| 133 |
except Exception as e:
|
| 134 |
+
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
|
| 137 |
+
# --- Gradio UI ---
|
| 138 |
with gr.Blocks() as demo:
|
| 139 |
+
gr.Markdown("# Agent Evaluation Interface")
|
| 140 |
gr.Markdown("""
|
| 141 |
**Instructions:**
|
| 142 |
+
1. Clone and customize the agent logic.
|
| 143 |
+
2. Log in to Hugging Face.
|
| 144 |
+
3. Click "Run Evaluation" to test and submit your answers.
|
|
|
|
|
|
|
|
|
|
| 145 |
""")
|
| 146 |
|
| 147 |
gr.LoginButton()
|
|
|
|
| 148 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 149 |
+
status_output = gr.Textbox(label="Status", lines=5, interactive=False)
|
| 150 |
+
results_table = gr.DataFrame(label="Agent Answers", wrap=True)
|
| 151 |
|
| 152 |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
# --- App Launch ---
|
| 156 |
+
if __name__ == "__main__":
|
| 157 |
+
print("\n--- Launching Gradio Space ---")
|
| 158 |
+
print(f"✅ SPACE_HOST: {os.getenv('SPACE_HOST')}")
|
| 159 |
+
print(f"✅ SPACE_ID: {os.getenv('SPACE_ID')}")
|
| 160 |
+
demo.launch(debug=True, share=False)
|
|
|